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Abstract—In this paper, we introduce a new support recovery
algorithm from noisy measurements called Bayesian hypothesis
test via belief propagation (BHT-BP). BHT-BP focuses on sparse
support recovery rather than sparse signal estimation. The key
idea behind BHT-BP is to detect the support set of a sparse
vector using hypothesis test where the posterior densities used in
the test are obtained by aid of belief propagation (BP). Since BP
provides precise posterior information using the noise statistic,
BHT-BP can recover the support with robustness against the
measurement noise. In addition, BHT-BP has low computational
cost compared to the other algorithms by the use of BP. We show
the support recovery performance of BHT-BP on the parameters
(N,M,K, SNR) and compare the performance of BHT-BP to
OMP and Lasso via numerical results.

Index Terms—Sparsity pattern recovery, support recovery,
Bayesian hypothesis test, compressed sensing, belief propagation,
sparse matrix

I. INTRODUCTION

Support recovery (also known as sparsity pattern recovery)
refers to the problem of finding the support set corresponding
to K nonzero elements of a sparse vector x ∈ RN from a noisy
measurement vector z ∈ RM . This problem is fundamentally
important to solve underdetermined systems (M < N) be-
cause once the support set is known, the system is simplified
to an overdetermined system, which can be solved by the
conventional least square approach. Therefore, the support
recovery is associated with a broad variety of underdetermined
problems such as compressed sensing [1], subset selection in
regression [2], sparse approximation [3].

Recently, a plenty body of works has analyzed the perfor-
mance of the support recovery [4]-[9]. Wainwright investigated
the performance of the support recovery with Lasso in [4],
and Fletcher and Rangan analyzed that of OMP in [5]. In
addition, the theoretical limit of the support recovery has been
discussed in terms of maximum likelihood (ML) [6],[7], and
information theory [8],[9]. These theoretical works reveal that
current practical algorithms have a potentially large gap from
the theoretic limit; therefore, developing practical algorithms
which approach the limit is an open challenge.

One line of approaches is sparse recovery using sparse
matrices [12]-[15]. These works are inspired by the success
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of low-density parity-check codes [11],[10]. The use of the
sparse matrix enables simple and fast measurement generation.
In addition, these approaches can be made more attractive if
they are applied in conjunction with belief propagation (BP).
BP replaces the recovery process by iterative message-passing
processes. This replacement reduces the computational cost to
the O(N logN) order [12].

Motivated by such previous works, in this paper, we propose
a new support recovery algorithm using BP called Bayesian
hypothesis test via BP (BHT-BP). BHT-BP utilizes a hypoth-
esis test to detects the support set from noisy measurements,
where the posterior density used in the test is provided by BP.
Hence, BHT-BP has low computational cost from the use of
BP and noise robustness from the hypothesis test.

In our previous work [15], BHT-BP was a part to provide
support set information for the process of sparse signal esti-
mation. Differently from [15], this paper aims to investigate
performance of support recovery by BHT-BP rather than the
signal estimation. We show the support recovery performance
of BHT-BP on the parameters (N,M,K, SNR) and demon-
strate the superiority of BHT-BP compared to support recovery
by OMP and Lasso via simulation results.

II. PROBLEM FORMULATION

A. Signal Model

Let x ∈ RN denote a random K-sparse vector with a
state vector s(x) indicating the support set of x; therefore
||s(x)||0 = K. Each element si ∈ s(x) is defined as

si =

{
1, if xi 6= 0
0, else

for all i ∈ {1, ..., N}. (1)

We limit our discussion to the random vector x whose ele-
ments are i.i.d. random variables. Then, the decoder observes
a measurement vector z ∈ RM , given as

z = Φx0 + n, (2)

where x0 ∈ RN is a deterministic realization of x; and
n ∼ N (0, σ2

nIM ) is an additive Gaussian noise vector.
For the measurement matrix Φ, we employ sparse-Bernoulli
matrices Φ ∈ {0, 1,−1}M×N with rank(Φ) ≤ M and
M ≤ N . Namely, in the matrix, sparsely nonzero elements
are equiprobably equal to 1 or −1. In addition, we fix the
column weight of Φ to L such that ‖φjth col‖22 = L.
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B. Problem Statement

The goal of the decoder is to detect the support set s(x̂0)
from z where each supportive state si(x̂0,i) is independently
detected in each element unit, given as:

Pr{si = 0|z}
Pr{si = 1|z}

H0

≷
H1

1 for all i ∈ {1, ..., N}, (3)

where H0 : si(x0,i) = 0 and H1 : si(x0,i) = 1 are two
possible hypotheses.

To see the performance of the algorithms, we measure the
state error rate (SER) between the detected support s(x̂0) and
the true support s(x0), given as

SER :=
#{i ∈ {1, ..., N}|si(x̂0,i) 6= si(x0,i)}

N
. (4)

We are interested in the SER performance as a function of
undersampling ratio M/N for a veriety of signal sparsity K
and SNR defined as

SNR : = 10 log10
E‖Φx‖22
Mσ2

n

dB . (5)

III. PROPOSED ALGORITHM

A. Prior Model

We first specify our prior model since the proposed al-
gorithm is derived on the basis of the Bayesian rule. By
associating state variable si, we model the prior density of
xi using a spike-and-slab model originating in a two-state
mixture density as follows:

fx(x) := qfx(x|s = 1) + (1− q)fx(x|s = 0)

= qN (x; 0, σ2
x) + (1− q)δ(x), (6)

where δ(x) indicates a Dirac distribution having nonzero value
between x ∈ [0−, 0+] and

∫
δ(x)dx = 1; q = K

N is the
sparsity rate. In addition, we drop the index i from the prior
density under the assumption of i.i.d. elements. The spike-and-
slab prior has been widely employed in Bayesian inference
problems [16].

B. Hypothesis Detection of Support

In order to perform the hypothesis test in (3), the decoder
needs to calculate a probability ratio Pr{si=0|z}

Pr{si=1|z} . By factorizing
over xi, the ratio becomes

Pr{si = 0|z}
Pr{si = 1|z}

=

∫
Pr{si = 0|z, xi}fxi(x|z)dx∫
Pr{si = 1|z, xi}fxi(x|z)dx

H0

≷
H1

1, (7)

where fxi(x|z) denotes the posterior density of xi given
z. In (7), Pr{si|z, xi} = Pr{si|xi} holds true since the
measurements z do not provide any additional information on
si given xi. Using the Bayesian rule and the prior information,
the test in (7) is rewritten as∫ fx(x|s=0)

fx(x)
fxi(x|z)dx∫ fx(x|s=1)

fx(x)
fxi

(x|z)dx

H0

≷
H1

Pr{s = 1}
Pr{s = 0}

= γ, (8)

where γ := q
(1−q) . Therefore, the probability ratio is obtained

from the corresponding posterior and prior densities. The
overall flow of the hypothesis test for a supportive state
detection is shown in Fig.1.

 

|

 

| 0

| 1

Pr 0|

Pr 1|

Pr 0|
Pr 1|

0H


1H
 

Hypothesis TestPosterior

Prior

Prior

,

Detected
State

Fig. 1. Bayesian hypothesis test for a state detection

C. Belief Propagation for Posterior Approximation

The posterior density fxi
(x|z) used in the hypothesis test

is obtained by BP. Using Bayesian rule, we can represent the
posterior density fxi(x|z) in the form of Posterior = Prior×
Likelihood
Evidence , given as

fxi(x|z) = fx(x)×
fz(z|xi)
fz(z)

. (9)

If the measurement matrix Φ is sufficiently sparse such that the
corresponding bipartite graph is tree-like, we postulate that the
elements of z associated with xi are independent each other
[10]. Under the tree-like assumption, we can decompose the
likelihood density fz(z|xi) to the product of densities:

fxi
(x|z) ∝ fx(x)×

∏
j:φji 6=0

fzj (z|xi). (10)

Since each element of z is represented by the sum of indepen-
dent random variables with Φ, we can expressed fzj (z|xi) as
linear convolution of associated density functions, given as

fzj (z|xi) =

δ(z − zj)⊗ fnj (n)⊗

( ⊗
k:φjk 6=0,k 6=i

fxk
(x)

)
.

(11)

The essence of the BP-process is to obtain an approxima-
tion of fxi

(x|z) from iterative mutual update of probability
messages. The message update rule is formulated based on
(10),(11). We follow the rule introduced in [15], given as

ali→j := η

fx(x)× ∏
k:φki 6=0,k 6=j

bl−1k→i

 , (12)

blj→i :=

 ⊗
k:φjk 6=0,k 6=i

alk→j

⊗ δ(z − zj)⊗ fnj
(n), (13)

for all (i, j) ∈ {1, ..., N} × {1, ...,M} : |φji| = 1, where
⊗ and

⊗
are the operator for linear convolution and the

linear convolution of a sequence of functions, respectively;
η(·) denote a normalization function for probability densities;,
and l denotes the iteration index. The probability messages
ai→j and bj→i are mutually updated via BP-iterations. Then,
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we approximate the posterior density fxi
(x|z) after a certain

number of iterations l∗ as follows:

fxi
(x|z) ≈ η

fx(x)× ∏
j:φji 6=0

bl
∗

j→i

 . (14)

IV. NUMERICAL RESULTS

We demonstrate the performance of BHT-BP via simulation
results. We consider the SER performance given in (4) and
take 1000 Monte Carlo trials for each experimental point to
show the average performance. In each trial, we generate a
deterministic sparse vector x0 with N = 128. The generation
of xi belonging to the support set follows zero mean Gaussian
distribution with σx = 10; but we restrict the magnitude level
to σx/5 ≤ |xi| ≤ 3σx. For the measurement matrix Φ, BHT-
BP uses sparse-Bernoulli matrix with L = 3.

Fig.2 shows the SER performance as a function of under-
sampling ratio M/N for a variety of SNR and K. Naturally,
BHT-BP is well performed as SNR increases. However, BHT-
BP works similarly beyond 30 dB as shown in Fig.2-(c),(d).
Regarding the signal sparsity K, BHT-BP needs at least
SNR ≥ 30 dB to recover the support with SER below the
1/N ≈ 0.0078 for K ≤ 18 if M/N is sufficient.

Fig.3 shows the advantages of BHT-BP compared to OMP
[17] and Lasso [18]. The source codes of OMP and Lasso
were obtained from SparseLab 2.0 package (available at
http://sparselab.stanford.edu/). OMP and Lasso use a Gaussian
measurement matrix having the same column energy as the
sparse-Bernoulli matrix for fairness, i.e., ‖φj,Gaussian‖22 =

‖φj,Sparse‖22 = L. In addition, we choose the K-largest values
from x̂0 for the support detection of OMP and Lasso. We
generate x0 with N = 128 and K = 12 in this simulation. At
SNR=10 dB, we can see that BHT-BP outperforms Lasso and
OMP as shown in Fig.3-(a), because the use of noise statis-
tic fnj (n) in the BP-process provides the precise posterior
information, and it leads to reducing of misdetection of the
supportive state ŝ0,i in the hypothesis test. Nevertheless, the
SER curves at SNR=10 dB are far from SER = 1/N due
to the noise effect. Such a fact is supported by the theoretical
work in [6] where the ML decoder needs M/N ≥ 1.02 for
exact support recovery when SNR=10 dB.

As SNR increases, all algorithms are gradually performed
similarly, but Lasso and OMP have slightly lower cross point
to SER= 1/N as shown in Fig.3-(b),(c),(d) and Table I.
Such a result is caused by sensing inefficiency from the use
of sparse measurement matrices [8]. However, BHT-BP has
advantage on low computational cost and the fast measurement
generation with the sparse matrix. Indeed, BHT-BP has the
lower cost O(N logN) by aid of BP, than OMP O(KNM)
and Lasso O(NM2).

V. SUMMARY

We proposed a new support recovery algorithm using belief
propagation called BHT-BP. Our proposed algorithm utilizes
hypothesis test to detects the support set from noisy measure-
ments where posterior used in the test is provided by belief
propagation. Our numerical results showed that the proposed
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Fig. 2. SER performance of BHT-BP over M/N for a variety of
SNR and K: (a) SNR=10 dB, (b) SNR=20 dB, (c) SNR=30 dB, (d)
SNR=50 dB.
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Fig. 3. SER performance comparison to OMP and Lasso over M/N
when K = 12: (a) SNR=10 dB, (b) SNR=20 dB, (c) SNR=30 dB,
(d) SNR=50 dB.

TABLE I
CROSS POINT IN M/N TO SER= 1/N WHEN K = 12

Algorithms / SNR 50 dB 30 dB 20 dB 10 dB
BHT-BP 0.357 0.375 0.575 -

Lasso 0.350 0.361 0.550 -
OMP 0.331 0.335 0.552 -

ML limit for exact 0.101 0.1108 0.1935 1.021
recovery in [6]

algorithm outperforms OMP and Lasso in the low SNR
regime, and becomes working similarly as SNR increases.
However, the proposed algorithm still has strength in terms of
low computational cost and the fast measurement generation
by the use of the sparse matrix and belief propagation.
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