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Abstract

In this paper, we study the data gathering problem in the context
of power grids by using a network of sensors, where the sensed data
have inter-node redundancy. Specifically, we propose a new transmis-
sion method, called quantized network coding, which performs linear net-
work coding in the infinite field of real numbers, and quantization to
accommodate the finite capacity of edges. By using the concepts in com-
pressed sensing literature, we propose to use `1-minimization to decode
the quantized network coded packets, especially when the number of re-
ceived packets at the decoder is less than the size of sensed data (i.e.
number of nodes). We also propose an appropriate design for network
coding coefficients, based on restricted isometry property, which results
in robust `1-min decoding. Our numerical analysis show that the proposed
quantized network coding scheme with `1-min decoding can achieve sig-
nificant improvements, in terms of compression ratio and delivery delay,
compared to conventional packet forwarding.

1 Introduction

Based on the data, reported by North American electric reliability council on
162 disturbances in the power system, problems in real-time monitoring and
control system, communication system, and delayed restoration were the major
cause of these disturbances [1]. This fact indicates the importance of information
infrastructures for reliable and economic operation of power systems. In the past
decade, sensor networks have been widely proposed (and in some cases used) as
a promising technology to enhance the future of electric power grid, in different
aspects, including power generation, distribution and utilization [2].

As the primary element of information chain, collection of sensed data by
sensor networks is a critical task in monitoring and control of power grids. Espe-
cially, we are interested in data collection in a power substation, where most of
the sensed data are naturally (inter-node) correlated. Motivated by this appli-
cation, we study data gathering scenario (in which messages of different nodes
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are transmitted to a single node) for correlated sensed data, especially when
they are sparse in some transform domain. Specifically, we compare conven-
tional packet forwarding with network coding and present our proposed net-
work coding based data gathering, followed by a discussion on its theoretical
and numerical guarantees.

It is proved that by using packet forwarding via optimal routing, one can
achieve the cut set upper bound [3] on the information rates of independent
sources, in data gathering scenario [4]. For the case of correlated sources, op-
timal distributed source coding and packet forwarding can achieve maximum
throughput of the network in data gathering scenario and there is no through-
put advantage for using network coding [4]. But, this requires the knowledge
of source dependencies and network deployment to be available at all nodes,
which signifies the importance of using network coding. Moreover, flexibility
and robustness to deployment changes have drawn attention to network coding,
as a good alternative for packet forwarding.

Random linear network coding for correlated messages has been studied in
[5], for the case of two messages (n = 2) and an upper bound on error probability
of a so called α-decoder is derived. Recently, the idea of using the concepts of
compressed sensing in data gathering scenario has been proposed in a number
of papers [6][7][8], where different applications are considered. Feizi et. al.
have proposed the idea of joint source and network coding in which a random
mapping is aligned with analogue network coding [9] to decrease temporal and
spatial redundancy of sensor data [7][8].

Unfortunately, there is not any published result, which discusses the theoret-
ical requirements of local network coding to ensure robust recovery of messages.
We address this by formulating data gathering scenario with network coding
and discussing theoretical requirements for robust compressed sensing (`1-min)
decoding.

Our proposed Quantized Network Coding (QNC) with `1-min decoding is
formulated in section 2. The discussion on the design of local network coding
coefficients and theoretical feasibility of `1-min decoding, using restricted isom-
etry property is presented in section 3, which is followed by deriving an upper
bound on the recovery error of `1-min decoder in section 4. Finally, in section 5,
we present our simulation results and discuss our conclusions in and section 6.

2 Quantized Network Coding

Consider a sensor network, represented by a directed graph, G = (V, E), where
V = {1, . . . , n} and E = {1, . . . , |E|} are the sets of nodes and edges (links),
respectively. Each edge, e, can maintain a lossless communication from its tail
node, tail(e), to its head node, head(e), without any interface from other edges,
at a maximum rate of Ce bits per channel use. This implies that the input
and output contents of edge e, at time t, represented by ye(t), are the same.
Furthermore, ye(t) is from a discrete finite alphabet of size 2LCe , where L is the
block length, used for transmitting over edges. We define the set of incoming
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edges to node v, as In(v) = {e : head(e) = v}, and outgoing edges from node v,
as Out(v) = {e : tail(e) = v}.

We assume that each node includes a random information source, Xv, which
generates, (random) message xv. Furthermore, the messages, x = [xv : v ∈ V] ∈
Rn, are such that there is a linear transform matrix, φn×n, for which x = φ · s,
and s is k-sparse (has k non-zero elements). Referred as data gathering scenario,
all of the messages, xv’s, are transmitted to a single node, v0 ∈ V, called gateway
(or decoder) node.

In networks with finite link capacities, conventional linear network coding
should be performed in finite field where the operations are closed in the field
[10]. However, since theoretical results of compressed sensing are developed for
the field of real numbers, we propose to perform linear network coding in real
field and then quantize the results to couple with the finite capacity of outgoing
edges. Specifically, for all v ∈ V and e ∈ Out(v), we define QNC, according to:

ye(t) = Qe

[ ∑
e′∈In(v)

βe,e′(t) ye(t− 1) + αe,v(t) xv

]
, (1)

where Qe[�] is the quantizer, associated with the outgoing edge e, and βe,e′(t)
and αe,v(t) are the corresponding network coding coefficients, picked from real
numbers. Time index, t, is integer and represents the time during which blocks of
length L, representing quantized network coded packets are transmitted over all
edges. Messages, xv’s, are supposed not to be changing with t and are constant
until they are decoded. Initial rest condition is also assumed to be satisfied in
our QNC scenario: ye(1) = 0, ∀ e ∈ E . Representing the quantization error by
ne(t), QNC can be reformulated according to:

ye(t) =
∑

e′∈In(v)

βe,e′(t) ye(t− 1) + αe,v(t) xv + ne(t). (2)

Moreover, we assume bounded source values, so that: ∀v ∈ V, |xv| < +qmax.
To have |ye(t)| < +qmax, for all e ∈ E , we pick network coding coefficients such
that at each node v:∑

e′∈In(v)

|βe,e′(t)|+ |αe,v(t)| ≤ 1,∀ v ∈ V, ∀ e ∈ Out(v). (3)

By defining vectors of edge contents, y(t) = [ye(t) : e ∈ E ], and quantization
noises, n(t) = [ne(t) : e ∈ E ], we have:

y(t) = F (t) · y(t− 1) +A(t) · x+ n(t), (4)

where F (t), and A(t) are defined according to:

F (t)|E|×|E| : {F (t)}e,e′ =

{
βe,e′(t) , tail(e) = head(e′)
0 , otherwise

(5)

A(t)|E|×|V| : {A(t)}e,v =

{
αe,v(t) , tail(e) = v
0 , otherwise

. (6)
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By considering (4) as the difference equation for a linear system with n(t)’s and
x as its input, and the content of gateway incoming edges as its output, and
using the results in [11], the marginal measurements, {z(t)}i, at time t, are given
by:

z(t) = [ye(t) : e ∈ In(v0)] = B · y(t) = Ψ(t) · x+ neff (t), (7)

where

Ψ(t) = B ·
t∑

t′=2

t′+1∏
t′′=t

F (t′′)A(t′), (8)

neff (t) = B ·
t∑

t′=2

t′+1∏
t′′=t

F (t′′) · n(t′), (9)

and B is defined such that:

{B}i,e =

{
1 , i corresponds to e, e ∈ In(v0)
0 , otherwise

. (10)

By storing enough marginal measurements, at the decoder, we build up the total
measurements vector, ztot(t), as follows:

ztot(t) =

 z(2)
...

z(t)


m×1

= Ψtot(t) · x+ neff,tot(t), (11)

where the total measurement matrix, Ψtot(t), and total effective noise vector,
neff,tot(t), are calculated as follows:

Ψtot(t) =

 Ψ(2)
...

Ψ(t)

 , neff,tot(t) =

 neff (2)
...

neff (t)

 .1 (12)

It is now desired to recover original messages, x, from the noisy measure-
ments, ztot(t), assuming that enough measurements are stored at the decoder.
Specifically, we are interested in investigating the feasibility of compressed sens-
ing decoding by using `1-minimization, when the number of measurements
({ztot(t)}i, 1 ≤ i ≤ m, and m = (t − 1)|In(v0)|) is less than number of mes-
sages, n; that is: m < n.

3 Design of Network Coding Coefficients

For compressed sensing with `1-min decoding, appropriate measurement ma-
trices should be used [12]. Specifically, Matrices with good norm conservation

1Since we assume transmission starts from t = 1, at which initial rest condition holds,
{z(1)}i’s are all zero and not useful for decoding.

4



properties are shown to be good choices, in this case [13]. Restricted Isometry
Property (RIP) is defined to characterize this norm conservation. Explicitly,
Θtot(t) = Ψtot(t)φ is said to satisfy RIP of order k with constant δk if we have:

1− δk ≤
||Θtot(t) s||22
||s||22

≤ 1 + δk, ∀ s ∈ Rn, ||s||0 ≤ k. (13)

It is also shown that random matrices with independently and identically dis-
tributed zero mean Gaussian entries of appropriate dimension satisfy RIP with
overwhelming probability [14]. Such measurement matrices are also global, in
the sense that the choice of φ does not affect the satisfaction of RIP. In the
following, we present a theorem, which summarizes the result of our work on
designing local network coding coefficients such that the resulting Ψtot(t) (and
also Θtot(t) = Ψtot(t)φ) is appropriate for compressive sensing.

Theorem 3.1 If the network coding coefficients, αe,v(t) and βe,e′(t), are such
that:

• αe,v(t) = 0, ∀ t > 2, and αe,v(2)’s are independent zero mean Gaussian
random variables,

• βe,e′(t)’s are deterministic,

then the resulting total measurement matrix, Ψtot(t), has zero-mean Gaussian
entries, and for every v, v′ ∈ V, where v 6= v′, {Ψtot(t)}iv and {Ψtot(t)}iv′ are
independent. 2

The proof of this theorem is omitted for lack of space; it is based on manip-
ulation of Gaussian random variable and their linear combinations.

The beauty of this proposed design (based on conditions of theorem 3.1) is
that there is no need to have an extra overhead communication between the
nodes, in order to generate appropriate network coding coefficients.

4 Recovery Error Bound for `1-min Decoder

In the following, we derive an upper bound for the `2-norm of recovery error of
QNC with `1-min decoder (which itself can be implemented by linear program-
ming [12]).

Theorem 4.1 Consider a data gathering scenario with k-sparse messages, x,
and sparsity transform φ, where |xv| < qmax, ∀ v. Assume at all nodes, QNC
with uniform quantizer of step size ∆Q,e (possibly different for each e) and
network coding coefficients αe,v(t) and βe,e′(t) is performed. Network coding
coefficients are also assumed to satisfy the condition of Eq. 3. In such network,
if Ψtot(t) and φ are such that Ψtot(t) ·φ satisfies RIP of order 2k with a constant

2The structurally zero entries of F (t)’s do not let us have the same variances for entries of
Ψtot(t).
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δ2k <
√

2 − 1, and x̂(t) is the recovery result of `1-min decoder of Eq. 14 with
ε2(t) calculated according to Eq. 17, then the `2-norm of recovery error is upper
bounded as in (15).

x̂(t) = φ · arg min
s′
||s′||1, (14)

subject to: ||ztot(t)−Ψtot(t) φ s
′||22 ≤ ε

2(t)

||x− x̂||22 ≤ c1 ε
2(t) (15)

c1 = 4

√
1 + δ2k

1− (1 +
√

2)δ2k
(16)

ε2(t) =
1

4

t∑
t′=2

( t′−1∑
t′′=1

∆T
Q

∣∣∣ t∏
t′′′=t′′+2

F (t′′′)
∣∣∣T (17)

·BTB ·
t′−1∑
t′′=1

∣∣∣ t′∏
t′′′=t′′+2

F (t′′′)
∣∣∣ ∆Q

)
∆Q = [∆Q,e : e ∈ E ] (18)

Proof Since the network is lossless and network coding coefficients satisfy the
condition of Eq. 3, and |xv| ≤ qmax, ∀ v, the only associated noise is quantization
noise at each edge. As a result of having uniform quantizers, we have: |ne(t)| ≤
∆Q,e

2 , ∀ e ∈ E . Equivalently, the absolute value vector of n(t), represented by
|n(t)|, is such that: |n(t)| ≤ 1

2∆Q. Therefore, |neff (t)| can be upper bounded
as follows: ∣∣∣neff (t)

∣∣∣ ≤ B ·
t−1∑
t′=1

∣∣∣ t∏
t′′=t′+2

F (t′′)
∣∣∣ · 1

2
∆Q. (19)

This implies:

∣∣∣∣neff,tot(t)∣∣∣∣22 =

t∑
t′=2

∣∣∣∣neff (t′)
∣∣∣∣2

2
(20)

=

t∑
t′=2

∣∣∣neff (t′)
∣∣∣T ∣∣∣neff (t′)

∣∣∣ ≤ ε2(t),

where ε2(t) is as in Eq. 17. Now, by applying theorem 1.2 in [13] and using (20),
theorem is proved. �

Since for uniform quantizers ∆Q,e is equal to 2qmax/(2
LCe − 1), the upper

bound in the theorem, c1ε is decreases when the block length, L, is increased.
However, this will result in an undesirable increase on the delivery delay in the
network, which requires us to find the optimal L for each quality of service (i.e.
SNR).
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5 Simulation Results

We evaluate the performance of QNC in terms of average Signal to Noise Ra-
tio (SNR), SNR(t) = 10 log10(||x||2/||x− x̂(t)||2), and average delivery delay,

τd(t) = L(t− 1), where the averaging is done over different realizations of sim-
ulation runs, i.e. network deployments.

To set up the simulations, we randomly generate networks of nodes, in which
directed edges with unit capacity, i.e. Ce = 1 [ bit

channel use ], ∀ e, are randomly
spread between different pairs of nodes. One of the nodes is randomly picked to
be the gateway node, v0, at which the messages are recovered. Simulations are
repeated by generating 150 different random realizations of network deployments
to obtain smoothed results.

For each generated random network deployment, we perform QNC for dif-
ferent values of message sparsity factor; i.e. k

n = 0.1, 0.2, 0.3. Specifically,
to generate messages, x, we first generate a k-sparse random vector, s, whose
components are uniformly distributed between − 1

2 and + 1
2 . This is followed by

generation of an orthonormal random matrix, φ, calculating φ·s and normalizing
the results between −qmax and +qmax to obtain x. Moreover, network coding
coefficients, αe,v(t) and βe,e′(t), are generated according to the conditions of
theorem 3.1 and normalizing the results to satisfy the condition of Eq. 3 and
prevent overflow. At the decoder, the received measurements up to t, ztot(t),
are used to recover x̂(t), according to (14), which is calculated by using the open
source implementation in [15].

For each deployment, we also simulate a routing based packet forwarding
and compare its performance with QNC. To find the routes from each node to
the gateway node, we calculate the shortest path from each node to the gateway
node, using the Dijkstra algorithm [16]. Obviously, in this case, the only asso-
ciated error for received packets (messages) at the decoder is the quantization
noise at the source nodes.

In each case of QNC and packet forwarding, we find the optimal block length,
L, by repeating the simulations for different integer values of L and then picking
the smallest τd(t) for each value of SNR(t). The average SNR - average delivery
delay curves, resulting from optimizing the block length for QNC and packet
forwarding, are depicted in Fig. 1. As shown, in all of the cases, the proposed
QNC with `1-min decoding outperforms packet forwarding in small delivery
delays, which corresponds to small number of received measurements at the
decoder. However, when the number of received measurement passes a certain
threshold and increases, the SNR of `1-min decoder can not beat that of packet
forwarding. Even for 1100 edges in Fig. 1(b), QNC fails to achieve the same
SNR as packet forwarding. To explain this, we should note that for higher
SNR values, we may need to collect more measurements at the decoder, which
requires a larger t. Since a larger t is picked for decoding the messages, more
quantization noises are contributed to the measurements, which increases the
`2-norm of effective measurement noise.
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6 Conclusions and Future Works

Joint source and network coding of sparse messages was discussed in this paper.
As a good alternative for packet forwarding, linear network coding in the real
field, is coupled with quantization, to gather sparse data in a decoder node.
Moreover, the required conditions for theoretical guarantee of `1-min recovery
was discussed and an appropriate design for network coding coefficients, in terms
of RIP, was proposed. Finally, in section 5, by using simulations, we have shown
the promising performance of `1-min recovery for quantized network coded pack-
ets, in terms of SNR versus delivery delay. As our future plan, we are interested
to derive theoretical guarantees for satisfaction of RIP of Ψtot(t), resulted from
our designed network coding coefficients. It is also planned to apply our QNC
with `1-min decoding to realistic data gathering scenarios in power substations.
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Figure 1: Average SNR versus average delivery delay of QNC and Packet For-
warding for (a) 1400 (b) 1100 edges and k

n = 0.1, 0.2, 0.3.
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