
KRONECKER GRAPHICAL LASSO

Theodoros Tsiligkaridis∗, Alfred O. Hero III∗,† and Shuheng Zhou†,∗

University of Michigan, ∗EECS Dept. and † Dept. Statistics, Ann Arbor, USA
{ttsili,hero,shuhengz}@umich.edu

ABSTRACT

We consider high-dimensional estimation of a (possibly
sparse) Kronecker-decomposable covariance matrix given
i.i.d. Gaussian samples. We propose a sparse covariance esti-
mation algorithm, Kronecker Graphical Lasso (KGlasso), for
the high dimensional setting that takes advantage of structure
and sparsity. Convergence and limit point characterization
of this iterative algorithm is established. Compared to stan-
dard Glasso, KGlasso has low computational complexity as
the dimension of the covariance matrix increases. We de-
rive a tight MSE convergence rate for KGlasso and show it
strictly outperforms standard Glasso and FF. Simulations val-
idate these results and shows that KGlasso outperforms the
maximum-likelihood solution (FF), in the high-dimensional
small-sample regime.

Index Terms— sparsity, structured covariance estima-
tion, penalized maximum likelihood, graphical lasso

1. INTRODUCTION

Covariance estimation is a problem of great interest in many
different disciplines, including machine learning, signal pro-
cessing, economics and bioinformatics. In this paper we
consider covariance estimation in the multivariate Gaussian
model under the separable positive definite pf × pf covari-
ance matrix assumption:

Σ0 = A0 ⊗B0 (1)

where A0 is a p × p positive definite matrix and B0 is an
f × f positive definite matrix. Model (1) arises in channel
modeling for MIMO wireless communications, where A0 is
a transmit covariance matrix and B0 is a receive covariance
matrix, and in other applications, see [1]. Let Θ0 := Σ−1

0 de-
note the inverse covariance, or precision matrix. As compared
to the standard saturated (unstructured) model, the number of
independent parameters in (1) is reduced from Θ(p2f2) to
Θ(p2) + Θ(f2). Furthermore, as shown [1], factorization (1)
results in a significant reduction in estimation mean squared
error and in estimator computational complexity. In this paper
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we propose estimation of a sparse version of the Kronecker
product model (1) resulting in even more significant perfor-
mance improvements than for the saturated model studied in
[1].

Under model (1), the joint probability distribution of the
measurements can be represented by an undirected graph G =
(V, E), where V is the vertex set (each vertex corresponding
to a variable) and E is the edge set. If, given all the other vari-
ables, the ith variable is conditionally independent of the jth
variable, then (i, j) /∈ E [2]. Estimating an undirected Gaus-
sian graphical model is equivalent to estimating the inverse
covariance matrix. Penalized likelihood estimators for Gaus-
sian graphical models, such as the graphical lasso (Glasso)
have been proposed [3, 4, 5]. The maximum-likelihood (ML)
estimator of the Kronecker product (1) has been studied in
[1, 6]. While the ML estimator has no known closed-form
solution, an approximation to the solution can be iteratively
computed via an alternating algorithm: the flip-flop (FF) al-
gorithm [1, 6].

To our knowledge, ML estimation for the situation where
the Kronecker component matrices are themselves sparse has
not been studied. In addition to the Kronecker factorization,
we exploit sparsity in order to derive better estimators, espe-
cially for the large-dimension small-sample regime. In this
paper, we propose an `1-penalized likelihood estimator for
the sparse Kronecker product case.

Statistical consistency is guaranteed, i.e., the estimator
converges in probability to the true inverse covariance matrix
Θ0 asymptotically as the number of samples and dimensions
of Kronecker factor matrices grows to infinity. The main con-
tribution is the derivation of the high-dimensional MSE con-
vergence rates for KGlasso. When both Kronecker factors are
sparse, it is shown that KGlasso strictly outperforms FF and
naive Glasso in MSE, and the performance improvement can
be very significant. Simulations show that KGlasso exhibits
superior empirical performance.

2. NOTATION

For a square matrix M, define |M|1 = ‖vec(M)‖1 and
|M|∞ = ‖vec(M)‖∞, where vec(M) denotes the vectorized
form of M (concatenation of columns into a vector). ‖M‖2
is the spectral norm of M. Mi,j and [M]i,j are the (i, j)th el-
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ement of M. Let the inverse transformation (from a vector to
a matrix) be defined as: vec−1(x) = X, where x = vec(X).
Define the pf × pf permutation operator Kp,f such that
Kp,fvec(N) = vec(NT ) for any p× f matrix N. For a sym-
metric matrix M, λ(M) will denote the vector of real eigen-
values of M and define λmax(M) = ‖M‖2 = maxλi(M)
for p.d. symmetric matrix, and λmin(M) = minλi(M).

For a matrix M of size pf × pf , let {M(i, j)}pi,j=1

denote its f × f block submatrices, where each block sub-
matrix is M(i, j) = [M](i−1)f+1:if,(j−1)f+1:jf . Also let
{M(k, l)}fk,l=1 denote the p × p block submatrices of the
permuted matrix M = KT

p,fMKp,f .
Define the set of symmetric matrices Sp and the set of

symmetric positive definite (pd) matrices Sp++.

3. GRAPHICAL LASSO FRAMEWORK

Available are n i.i.d. multivariate Gaussian observations
{zt}nt=1, where zt ∈ Rpf has zero-mean and covariance
equal to Σ = A0 ⊗ B0. The log-likelihood function is
proportional to:

l(Σ) := log det(Σ−1)− tr(Σ−1Ŝn), (2)

where Σ is the positive definite covariance matrix and Ŝn =
1
n

∑n
t=1 ztz

T
t is the sample covariance matrix. Recent work

[7, 8] has considered `1-penalized maximum likelihood esti-
mators for the saturated model where Σ belongs to the unre-
stricted cone of positive definite matrices. These estimators
are known as graphical lasso (Glasso) estimators and are the
solution to the `1-penalized minimization problem:

Σ̂n ∈ arg min
Σ∈Sp

++

{−l(Σ) + λ|Σ−1|1}, (3)

where λ ≥ 0 is a regularization parameter. If λ > 0 and Ŝn
is positive definite, then Σ̂n in (3) is the unique minimizer.

A fast iterative algorithm, based on a block coordinate
descent approach, exhibiting a computational complexity
O((pf)3), was developed in [8] to solve the convex program

(3). Under the assumption λ �
√

log(pf)
n solution of (3) was

shown to have high dimensional convergence rate [3]:

‖G(Ŝn, λ)−Θ0‖F = OP

(√
(pf + s) log(pf)

n

)
(4)

where s is an upper bound on the number of non-zero off-
diagonal elements of Θ0. When s = O(pf), this rate is better
than the non-regularized sample covariance estimator:

‖Ŝn −Σ0‖F = OP

(√
p2f2

n

)
. (5)

4. KRONECKER GRAPHICAL LASSO

Let Σ0 := A0⊗B0 denote the true covariance matrix, where
A0 := X−1

0 and B0 = Y−1
0 are the true Kronecker factors.

Let Ainit denote the initial guess of A0 = X−1
0 .

Define J(X,Y) as the negative log-likelihood

J(X,Y) = tr((X⊗Y)Ŝn)− f log det(X)

− p log det(Y) (6)

Although the objective (6) is not jointly convex in (X,Y), it
is biconvex. This motivates the flip-flop algorithm [1]. Adapt-
ing the notation from [1], define the mappings Â(·), B̂(·):

Â(B)︸ ︷︷ ︸
p×p

=
1

f

f∑
k,l=1

[B−1]k,lŜn(l, k), (7)

B̂(A)︸ ︷︷ ︸
f×f

=
1

p

p∑
i,j=1

[A−1]i,jŜn(j, i), (8)

where Ŝn = KT
p,f ŜnKp,f . For fixed B ∈ Sf++, Â(B) in (7)

is the minimizer of J(A−1,B−1) over A ∈ Sp++. A similar
interpretation holds for (8). The flip-flop algorithm [1] starts
with some arbitrary p.d. matrix Ainit and computes B using
(8), then A using (7), and repeats until convergence. The FF
algorithm does not account for sparsity.

If Θ0 = X0⊗Y0 is a sparse matrix, which implies that at
least one of X0 or Y0 is sparse, one can penalize the outputs
of the flip-flop algorithm and iteratively minimize

Jλ(X,Y) = J(X,Y) + λ̄X |X|1 + λ̄Y |Y|1. (9)

This leads to an algorithm that we call KGlasso (see Algo-
rithm 1), which sparsifies the Kronecker factors in proportion
to the parameters λ̄X , λ̄Y > 0. This additive penalty was first
proposed in [9] in the context of missing data.

Algorithm 1 Kronecker Graphical Lasso (KGlasso)

1: Input: Ŝn, p, f , n, λ̄X > 0, λ̄Y > 0
2: Output: Θ̂KGlasso

3: Initialize Ainit to be positive definite satisfying Assump-
tion 1.

4: X̌← A−1
init

5: repeat
6: B̂← 1

p

∑p
i,j=1 [X̌]i,jŜn(j, i) (see Eq. (7))

7: Y̌ ← G(B̂, λ̄Y

p ), where G(·, ·) is defined in (10)

8: Â← 1
f

∑f
k,l=1 [Y̌]k,lŜn(l, k) (see Eq. (8))

9: X̌← G(Â, λ̄X

f )
10: until convergence
11: Θ̂KGlasso ← X̌⊗ Y̌



The Glasso mapping (3) is written as G(·, λ) : Sd → Sd,

G(T, λ) = arg min
Θ∈Sd

++

{
tr(ΘT)− log det(Θ) + λ|Θ|1

}
.

(10)
As compared to the O(p4f4) computational complexity of
Glasso [8], KGlasso has a computational complexity of only
O(p4 + f4).

Assuming Ŝn is p.d., KGlasso converges to a critical point
of the objective function [10]. Under a mild assumption on
the starting point, KGlasso can be shown to converge to a
local minimum [10].

5. HIGH DIMENSIONAL CONSISTENCY OF FF

In this section, we show that the flip-flop (FF) algorithm
achieves the optimal (non-sparse) statistical convergence rate

of OP

(√
p2+f2

n

)
(up to a log-factor). This result (Thm.

1) allows us to establish that the proposed KGlasso has sig-
nificantly improved MSE convergence rate (Thm 2). We
make the following standard assumption on the spectra of the
Kronecker factors.

Assumption 1. Uniformly Bounded Spectra
There exist absolute constants kA, kA, kB , kB , kAinit

, kAinit

such that:
1a. 0 < kA ≤ λmin(A0) ≤ λmax(A0) ≤ kA <∞
1b. 0 < kB ≤ λmin(B0) ≤ λmax(B0) ≤ kB <∞
2. 0 < kAinit

≤ λmin(Ainit) ≤ λmax(Ainit) ≤
kAinit

<∞

Let RFF (3) := Â(B̂(Ainit))⊗B̂(Â(B̂(Ainit))) denote
the 3-step (noniterative) version of the flip-flop algorithm [1].
More generally, let R̂FF (k) denote the k-step version of the
flip-flop algorithm. Let ΘFF (k) = (RFF (k))−1.

Theorem 1. Let A0,B0, and Ainit satisfy Assumption 1 and
defineM = max(p, f, n). Assume p ≥ f ≥ 2 and p logM ≤
C ′′n for some finite constant C ′′ > 0. Finally, assume n ≥
p
f + 1. Then, for k ≥ 2 finite,

‖ΘFF (k)−Θ0‖F = OP

(√
(p2 + f2) logM

n

)
(11)

as n→∞.

Proof. Due to space limitations the proof is given in [10].

The bound (11) specifies the rate of reduction of the es-
timation error for the multi-iteration FF algorithm, which in-
cludes the three step FF algorithm (k = 3) [1] as a special
case. The error reduction decreases as long as p and f do not
increase too quickly in n.

Note that (11) specifies a faster rate than that of the naive
sample covariance matrix estimator (5). Furthemore, since

the computational complexity for FF is O(p2 + f2) which is
less than theO(p2f2) complexity of SCM, by exploiting Kro-
necker structure FF simultaneously achieves improved MSE
performance and reduced computational complexity.

6. HIGH DIMENSIONAL CONSISTENCY OF
KGLASSO

In this section, high dimensional consistency is established
for KGlasso as n, p, f →∞.

Define ΘKGlasso(k) as the output of the kth KGlasso it-
eration.

Theorem 2. Let A0,B0,Ainit satisfy Assumption 1. Let

M = max(p, f, n). Let λ̄(1)
Y � p

√
logM
np and λ̄

(k)
X �(

1√
p + 1√

f

)
f
√

logM
n , λ̄

(k′)
Y �

(
1√
p + 1√

f

)
p
√

logM
n as

p, f, n → ∞ for all k ≥ 1 and k′ ≥ 2. Assume sparse
X0 and Y0, i.e. sX0

= O(p), sY0
= O(f). Assume

max
(
p
f ,

f
p

)
logM = o(n). Then, for k ≥ 2 finite, we

have

‖ΘKGlasso(k)−Θ0‖F = OP

(√
(p+ f) logM

n

)
(12)

as n→∞.

Proof. The proof uses results from large deviation theory. See
[10].

Thm. 2 generalizes Thm. 1 to the case of sparse Kro-
necker structure. Comparison between the error expressions
(4), (11) and (12) show that, by exploiting both Kronecker
structure and sparsity, KGlasso can attain significantly lower
estimation error than standard Glasso [3] and FF [1].

7. SIMULATION RESULTS

In this section, we compare the KGlasso algorithm with the
flip-flop (FF) algorithm [1] that iteratively computes the ML
solution. The Glasso algorithm implementation used was
based on [8] with a stopping criterion determined by when
the duality gap falls below a threshold of 10−5.

To empirically evaluate performance, Monte Carlo simu-
lations were used. The true matrices X0 := A−1

0 and Y0 :=
B−1

0 were unstructured randomly generated positive definite
matrices based on an Erdös-Rényi graph model. Performance
assessment was based on normalized Frobenius norm error in
the covariance and precision matrix estimates. The normal-

ized error was calculated using
√

1
NMC

∑NMC

i=1
‖Σ0−Σ̂(i)‖2F
‖Σ0‖2F

,

where NMC is the number of Monte Carlo runs and Σ̂(i) is
the covariance output from the ith trial run. 1

1The same formula can be adapted to calculate the normalized error in the
precision matrix Θ̂0.



In our implementation of KGlasso, the regularization
parameters were chosen as follows. The initialization was
Xinit = Ip. The regularization parameters were selected as

λ
(1)
Y = cy

√
logM
np , λ(2)

X = cx

√
logM
nf + λ

(1)
Y , λ(2)

Y = λ
(2)
X ,

λ
(3)
X = λ

(2)
X , etc. We set cx = cy = 0.4.

We consider the setting where X0 and Y0 are large sparse
matrices of dimension p = f = 60 (see Fig. 1). The dimen-
sion of Θ0 is d = 3, 600, which is too large for standard
Glasso to handle. Thus, it is not shown.

Figure 2 compares the root-mean squared error (RMSE)
performance in precision and covariance matrices as a func-
tion of n. As expected, KGlasso outperforms FF [1] over the
exhibited range of n for both the covariance and the inverse
covariance estimation problem.

Fig. 1. Sparse Kronecker matrix representation. Left panel:
left Kronecker factor. Right panel: right Kronecker factor.

Fig. 2. Normalized RMSE performance for precision matrix
(top) and covariance matrix (bottom) as a function of n. For
n = 10, there is a 69% RMSE reduction for the precision
matrix and 36% RMSE reduction for the covariance matrix
when using KGlasso instead of FF.

8. CONCLUSION

We considered high-dimensional estimation of a Kronecker-
decomposable covariance matrix given i.i.d. Gaussian sam-

ples. A `1-penalized likelihood approach was proposed for
estimating the covariance matrix when the kronecker factors
are sparse. This led to an iterative algorithm (KGlasso) that
takes advantage of structure and sparsity. A tight MSE con-
vergence rate was derived for KGlasso, showing significantly
better MSE performance than standard Glasso and FF [1].
Simulations validated our theoretical predictions.
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