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Abstract

In multipath systems, available degrees of freedom can be considered as a key performance indicator, since the

channel capacity grows linearly with the available degreesof freedom. However, a fundamental question arises: given

a size limitation on the observable region, what is the intrinsic number of degrees of freedom available in a wideband

random multipath wavefield observed over a finite time interval? In this paper, we focus on answering this question

by modelling the wavefield as a sum of orthogonal waveforms orspatial orders. We show that for each spatial order,

(i) the observable wavefield is band limited within an effective bandwidth rather than the given bandwidth and (ii)

the observation time varies from the given observation time. These findings show the strong coupling between space

and time as well as space and bandwidth. In effect, for spatially diverse multipath wavefields, the classical degrees

of freedom result oftime-bandwidthproduct does not directly extend totime-space-bandwidthproduct.

Index Terms

Random multipath, degrees of freedom, spatial diversity, signal to noise ratio.

I. I NTRODUCTION

In multipath wireless communication systems, the use of thespatial aspects of multipaths can ensure improved

system performances [1]. The study of the spatial aspects ofmultipath fields, thus, becomes an important thread

of research in wireless communications and signal processing, and has more recently been addressed by [2]–[6].

None of these approaches, however, provide clear view of theinterrelationships between space, frequency and time

that affects the degrees of freedom of multipath fields.

In this work, we study a band limited random multipath field observed over a limited source-free region of

space over a finite time window. The observable multipath wavefield is considered to be farfield, and we study

this from a physical wavefield perspective. In particular, the underlying physics of free space propagation is used
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to model the multipath field as a sum of orthogonal waveforms or spatial orders. This mathematical framework is

similarly used in [7]. However, in comparison, our derived result is more accurate, since we have considered the

effect of available spatial information on the observationtime. Moreover, the results provided in [7], are derived by

using a geometrical argument to extend the narrowband degrees of freedom result of [2] to a broadband scenario

and resulted in a complicated formula. Further, it is unclear, how the usable (effective) bandwidth varies from the

given frequency bandwidth for the different spatial orders. In this work, on the contrary, the degrees of freedom of

wideband multipath fields is evaluated in a simple manner, and we derive that the wavefield is bandlimited within

an effective frequency bandwidth for each spatial order.

The work [4] characterized multi-antenna systems in a wideband transmission regime, but how the coupling

between space and time as well as space and frequency affectsthe information content of the waves was left as an

open and important problem. We show that the effective frequency bandwidth of each spatial order is essentially

related to the spatial dimension of the observable field and varies from the frequency bandwidth of the channel.

Our results indicate that even though for lower spatial orders, effective bandwidth is equal to the given frequency

bandwidth, for higher orders, effective bandwidth is less than the given frequency bandwidth. Moreover, we show

that the effective observation time is independent of spatial order and is related to the finite size of the observation

region. These findings clearly indicate the strong link between space and time as well as space and frequency

in spatially diverse multipath fields. These findings also indicate that the classical degrees of freedom result of

time-bandwidthproduct does not directly extend totime-space-bandwidthproduct as shown in [3], [6], rather the

degrees of freedom of any particular spatial ordern can be expressed as a product ofeffective observation time

and effective bandwidth of thenth order. If we denote the degrees of freedom of thenth order asDn, the total

degrees of freedom can be calculated by∑nDn, for all possible values ofn.

In recent times, the study of degrees of freedom of distributed MIMO communications (e.g., [5]) has gained a lot

of attention. In distributed MIMO systems, the users cooperate in clusters to receive information. In such scenarios,

our derived results indicate that the lower spatial orders (independent channels) can utilize the full bandwidth,

whereas, the higher orders can utilize only a fraction of thegiven bandwidth. We envisage that our results will be

useful in characterizing the degrees of freedom of distributed or large scale MIMO systems.

II. RANDOM 2D MULTIPATH FIELDS

We consider a wireless multipath wavefield band limited to[F0 −W,F0 +W ] and observed within a2D disk

region of radiusR over a finite time interval[0, T ]. The observable multipath wavefield within this channel is

assumed to be farfield and is generated by a source or distribution of sources and scatterers that exist outside the

region of interest.

A. Multipath Plane Wave Representation

Let Ψ(x, ω) denote a finite complex-valued wideband multipath field in the region of interest wherex ≡ (r, φx)
represents a position vector within the2D observation region,r = ∥x∥ ≤ R denotes the Euclidean distance ofx
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from the origin,φx ∈ [0,2π) is the azimuth angle of vectorx andω is the angular frequency. Note that a standard

multipath model involves modeling every distinct path explicitly as a plane wave. Hence, in this model, the multipath

field is generated by the superposition of plane waves as

Ψ(x, ω) = ∫ 2π

0

a(φ,ω)eikx⋅̂ydφ (1)

whereŷ ≡ (1, φ), k = ω/c is the scalar wavenumber,c is the wave velocity anda(φ,ω) is the complex-valued gain

of scatterers as a function of direction of arrivalφ ∈ [0,2π) and angular frequencyω.

B. Orthogonal Basis Expansion

We consider that the multipath field is generated by sources external to the region of interest. Hence, we can use

Jacobi-Anger expansion [8, p. 67] to represent the plane waves in (1) as

eikx⋅̂y = ∞∑
n=−∞

inJn(ω
c
r)ein(φx−φ) (2)

whereJn(⋅) is the Bessel function of the first kind of integer ordern, and we can identify a countable set of

orthogonal basis functions over the2D disk since

∫ 2π

0

Φn(x)Φ∗m(x)dφx =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2π, n =m
0, otherwise

(3)

whereΦn(x) = einφx and (⋅)∗ is the complex conjugate operator. Observe that by substituting (2) into (1), we

obtain

Ψ(x, ω) = ∞∑
n=−∞

inαn(ω)Jn(ω
c
r)einφx (4)

whereαn(ω) is thenth frequency dependent coefficient and using (1) can be defined as

αn(ω) = ∫ 2π

0

a(φ,ω)e−inφdφ. (5)

However, the information available about scatterers that generate the multipath fieldΨ(x, ω) is usually limited.

Thus, it is reasonable to represent the multipath field as a random process. Referring to (1), the scattering gain

a(φ,ω) is random and so isαn(ω) in (5). For mathematical simplicity of the analysis, we assume uncorrelated

scattering. As a result, the random gainsa(φ,ω) anda(φ′, ω) at two distinct incident angles and different frequencies

are uncorrelated from each other. Hence, using (5), the uncorrelated scattering assumption, and following a few

intermediate steps, we find that

E{∣αn(ω)∣2} = ∫ 2π

0

E{a(φ,ω)a∗(φ,ω)}dφ (6)

whereE{⋅} represents the expectation operation. Therefore, our observable field (4) is a random multipath field

and can be represented by an infinite but countable set of orthogonal basis functions.
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III. O BSERVATION TIME OF THE SPATIAL ORDERS

If the wavefield is generated by a single point/ source transmitting a time domain signal, then observing the

resulting travelling wavefield over a time window[0, T ] within a 2D disk of radiusR captures information content

of the time domain signal over a time intervalT +2R/c. We formalize this statement for thenth order time domain

signalan(t) producing thenth order space-time wavefieldψn(r, t) in the following theorem.

Theorem 1 (Observation time of the spatial orders):Given that the spatial ordersn are separated, observing a

random wireless multipath wavefield over a2D disk of radiusR for a time intervalT is equivalent to observing

the information content of the underlyingnth order time domain signalan(t) over an effective time interval

Teff = T + 2R

c
. (7)

Further, this effective time intervalTeff is not order dependent and increases with the size of the observation region.

Proof: We can define thenth order signal spectrum over space from (4) as

Ψn(r,ω) ≜ αn(ω)Jn(ω
c
r). (8)

Let ψn(r, t) be the inverse Fourier transform ofΨn(r,ω). Then, by taking the inverse Fourier transform of (8), we

obtain

ψn(r, t) = an(t) ∗Un( tc
r
) (9)

where the time domain coefficientan(t) is the inverse Fourier transform ofαn(ω) which represents thenth order

time domain signal and the Chebyshev Polynomial of the first kind Un(tc/r) is the inverse Fourier transform of

Jn(ωr/c).
Observe that in (9), thenth order signal over spaceψn(r, t) is a convolution between thenth order time domain

signalan(t) and the Chebyshev PolynomialUn(tc/r). Hence, any information content in thenth order signal over

spaceψn(r, t) is contained in thenth order time domain signalan(t).
We observe thenth order signal over spaceψn(r, t) over a time window[0, T ] within a 2D disk region of radius

R. Moreover, the Chebyshev PolynomialUn(z) is defined only for−1 ≤ z ≤ 1, as illustrated in Fig. 1. Hence,

Un(tc/r) is defined only for−r/c ≤ t ≤ r/c. As a result, if we consider that thenth order signal over spaceψn(r, t)
is observed within a disk of radiusR over the time window[0, T ], it is possible to capture information about the

nth order time domain signalan(t) over the time window[−R/c, T + R/c]. This is equivalent to observing the

nth order time domain signalan(t) over a maximum time window ofT + 2R/c.
IV. EFFECTIVE BANDWIDTH OF THE nth ORDER

Ideally, if it is possible to measure signals with infinite precision without noise, each spatial ordern would have

an effective bandwidth equal to the frequency bandwidth available, i.e., fromF0 −W to F0 +W . However, in

practical communication systems, noise is present. As a result, it is not possible to detect signals within the band

of frequencies where the signal power to noise ratio (SNR) drops below a certain thresholdγ. This threshold is

dependent on the sensor sensitivity or the robustness of thesignal processing method to noise.
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Fig. 1. Chebyshev Polynomial of the first kindUn(z) for n=0,1,2,3,4.

Lets considerηR(φx, ω) as the white Gaussian noise on the circle (at radiusR) associated with antenna/ sensor

at an angleφx. Hence, the received signal on the circle is given by

Ψ(R,φx, ω) = ∞∑
n=−∞

inαn(ω)Jn(ω
c
R)einφx

+ ηR(φx, ω). (10)

The following theorem proves that the white Gaussian noise power remains the same at all frequencies in the modal

expansion (4).

Theorem 2 (White Gaussian Noise inL2): Given a zero mean white Gaussian noise with varianceσ2

0
in L2(S1)

represented by a random variableηR(φ) whereφ ∈ S1, such that for any functionψi(φ) ∈ L2(S1) the complex

scalarνi

νi ≜ ∫
S1
ηR(φ)ψ∗i (φ)dφ = ⟨ηR(φ), ψi(φ)⟩

is also a zero mean Gaussian random variable with varianceE{∣νi∣2} = σ2

0 ∫S1 ∣ψi(φ)∣2dφ = σ2

0
(∥ψi(φ)∥L2)2. [9,

eqn 8.1.35]

Definition 1: By takingψi(φ) to be the orthogonal basis functionseinφx , the spatial Fourier coefficients for the

noise is

νn(ω) = ∫
S1
ηR(φx, ω)e−inφxdφx (11)

and applying Theorem2, νn(ω) are also zero mean Gaussian random variables with varianceσ2

0
.

Based on Definition1, we can define thenth order received signal at radiusR as

Ψn(R,ω) = αn(ω)Jn(ω
c
R) + νn(ω), (12)

and we assume that the noise and the signal are independent ofeach other.

Note that we can considerαn(⋅) as thenth order signal spectrum that is defined only over the range[F0−W,F0+

W ]. Also note that for a fixed value of the radius,Jn(⋅) can be treated as a function of frequency. However, it is

evident from Fig. 2 that except for the0th order, Bessel functions start small before increasing monotonically to

their maximum. Further, the Bessel functions start more slowly as the ordern increases. Thus, for any particular
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order ∣n∣(> 0) and for frequencies less than a critical frequencyFn, the magnitude of the Bessel functions∣Jn(⋅)∣
is negligible.
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Fig. 2. Bessel functions of first kindJn(z) vs. argumentz for different values ofn.

We note that our observable signal spectrum (12) is a productof αn(⋅) and Jn(⋅). Thus, for a fixed value of

radius, at each order∣n∣ > 0, the SNR is less than the thresholdγ for frequencies less than a critical frequencyFn.

In effect, we can not detect the signal spectrum for frequencies less thanFn. From Fig. 2,J0(⋅) is active within

the frequency range[0,∞), hence, the effective bandwidth of the0th order signal spectrum is2W .

Theorem 3 (Effective Bandwidth of thenth Order): Given any wireless random multipath wavefield band limited

to [F0 −W,F0 +W ] and observed within a2D disk region of radiusR, such that the wavefield is encoded in finite

number of ordersn <Nu, the effective frequency bandwidth of thenth order signal spectrum is given by

Wn =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2W, n = 0
F0+W −max{F0−W,Fn}, ∣n∣ <Nu

0, otherwise

(13)

whereNu is the lowest order for which the critical frequencyFn > F0 +W and

Fn ≥ nc

eπR
+

c

2eπR
log( γ

(SNR)
max

) . (14)

with the thresholdγ depicting the ability of the system to detect signals buriedin noise and assuming that the

power of the spectrumαn(ω) is finite and bounded for all frequenciesω and ordersn, i.e.,E{∣αn(ω)∣2} ≤ Pmax,

the maximum SNR for any ordern is

(SNR)
max
= Pmax

σ2

0

. (15)

Proof: From (4) and (12), the observable random multipath field can be represented by an infinite but countable

set of orthogonal basis functions as follows

Ψ(x, ω) = ∞∑
n=−∞

in[αn(ω)Jn(ω
c
R) + νn(ω)]einφx (16)
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We now define the average power of our observable multipath field (16) from all azimuth directionsφx as

1

2π
∫ 2π

0

E{∣Ψ(x, ω)∣2}dφx = ∞∑
n=−∞

E{∣αn(ω)∣2}∣Jn(ω
c
R)∣2+σ2

0
. (17)

The SNR at thenth order over the frequency band[0, ωn] with ωn = 2πFn is

(SNR)n = ∫
ωn

0
E{∣αn(ω)∣2}∣Jn(ωcR)∣2dω

∫ ωn

0
σ2

0
dω

. (18)

Note that we consider white noise and is independent of frequency. Hence, using (15), (18) can be rewritten as

(SNR)n ≤ (SNR)max

(R/c)2n
ωn22n[Γ(n + 1)]2 ∫

ωn

0

ω2ndω. (19)

This result is obtained based on the fact that for large ordern, the Bessel functions can be approximated as [10,

eqn 9.1.7]

Jn(z) ∼ (1
2
z)n/Γ(n + 1), n ≥ 0 (20)

whereΓ(⋅) is the Gamma function. Now, we use the Stirling lower bound onthe Gamma functions,Γ(n + 1) >√
2πnnne−n, to write (19) as

(SNR)n < (SNR)
max

1

2πn(2n + 1)(
eωnR/c

2n
)
2n

< (SNR)
max

e−(2n−2πeFnR/c) (21)

sinceβ = 1/(2πn(2n+ 1)) < 1 and using the exponential inequality,(1 + x/n)n ≤ ex for n ≠ 0.

Note that for thenth order, the(SNR)n must be larger than the thresholdγ, in effect,

(SNR)
max

e−(2n−2πeFnR/c) ≥ γ (22)

which results in (14). This means that for ordern, signals below frequencyFn are not detectable since (22) will

not be satisfied. Observe that for any particular order∣n∣(> 0), if Fn > F0 −W , the effective bandwidth of that

order isF0 +W − Fn. In addition, if Fn > F0 +W , the effective bandwidth of this order and orders above thisis

zero and we can truncate the infinite series in (16) to∣n∣ < Nu. These arguments can be written mathematically as

(13).

V. DEGREES OFFREEDOM OF2D MULTIPATH FIELDS

In this section, we derive an expression to estimate the degrees of freedom available in a wideband multipath field

observable over finite time and space windows. Note that so far we showed that any wireless multipath wavefield

band limited to[F0 −W,F0 +W ] and observed within a2D disk region of radiusR over a finite time interval

[0, T ] can be represented as a series of orthogonal basis functionsencoded in a finite number of ordersn. A simple

observation based on this representation is that for each ordern, the observation time over spaceTeff is fixed (7).

Whereas, for each ordern, the effective frequency bandwidthWn is different (13).
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Note that the work of Shannon [11] provided a theorem to determine the degrees of freedom available in a

wideband channel observed over a finite time interval for point to point communications. We can think of Shannon’s

model as a wavefield encoded in only one spatial order. Hence,following the classical degrees of freedom result

of time-bandwidth product+ 1, the available degrees of freedom for each order isWnTeff + 1. Therefore, we can

evaluate the total degrees of freedom available in our observable2D multipath field as

D = ∑
∣n∣<Nu

(WnTeff + 1) = ∑
∣n∣<Nu

[Wn (T + 2R

c
) + 1] (23)

whereWn is given by (13). Note that the degrees of freedom result in (23) does not agree with the well established

result of evaluating degrees of freedom of spatially diverse wideband wavefields as a product ofspace-time-

bandwidth [3], [6]. However, in the propagation of waves even though space, time and frequency are separate

entities, in spatially diverse wideband wavefields space and time as well as space and frequency are strongly

coupled, the results of [3], [6] fail to show those coupling relationships. On the contrary, our derived result clearly

indicates the coupling relationships between space and time as well as space and frequency.

VI. CONCLUSION

In this paper, we express any band limited wireless multipath wavefield observed within a2D disk region of

finite radius over a finite time interval as a series of orthogonal basis functions encoded in a finite number of

spatial orders. Our analysis shows that (i) the effective observation time varies from given observation time and

is not spatial order dependent, and (ii) the lower spatial orders can utilize the full frequency bandwidth, whereas,

the higher orders can utilize only a fraction of the given bandwidth. These findings portray the strong coupling

relations between space and time as well as space and frequency. Thus, our derived degrees of freedom result based

on these findings clearly indicates how the coupling relations impact the available degrees of freedom of any2D

wideband multipath field observed over finite time and space windows. We also show that the degrees of freedom

is affected by the acceptable SNR in each spatial order.
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