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The Cauchy-Schwarz divergence for Poisson point
processes

Hung Gia Hoang, Ba-Ngu Vo, Ba-Tuong Vo, and Ronald Mahler

Abstract—In this paper, we extend the notion of Cauchy-
Schwarz divergence to point processes and establish that the
Cauchy-Schwarz divergence between the probability densities
of two Poisson point processes is half the squaredL2-distance
between their intensity functions. Extension of this result to
mixtures of Poisson point processes and, in the case where the in-
tensity functions are Gaussian mixtures, closed form expressions
for the Cauchy-Schwarz divergence are presented. Our result also
implies that the Bhattacharyya distance between the probability
distributions of two Poisson point processes is equal to thesquare
of the Hellinger distance between their intensity measures. We
illustrate the result via a sensor management application where
the system states are modeled as point processes.

Index Terms—Poisson point process, information divergence,
random finite sets

I. I NTRODUCTION

The Poisson point process, which models “no interaction”
or “complete spatial randomness” in spatial point patterns, is
arguably one of the best known and most tractable of point
processes [2]–[6]. Point process theory is the study of random
counting measures with applications spanning numerous dis-
ciplines, see for example [2], [3], [6]–[8]. The Poisson point
process itself arises in forestry [9], geology [10], biology [11],
particle physics [12], communication networks [13]–[15] and
signal processing [16]–[18]. The role of the Poisson point
process in point process theory, in most respects, is analogous
to that of the normal distribution in random vectors [19].

Similarity measures between random variables are funda-
mental in information theory and statistical analysis [20]. In-
formation theoretic divergences, for example Kullback-Leibler,
Rényi (or α-divergence) and their generalization Csiszár-
Morimoto (or Ali-Silvey), Jensen-Rényi, Cauchy-Schwarzetc.,
measure the difference between the information content of
the random variables. Similarity between random variables
can also be measured via the statistical distance between
their probability distributions, for example total variation,
Bhattacharyya, Hellinger/Matusita, Wasserstein, etc. Some dis-
tances are actually special cases off -divergences [21]. Note
that statistical distances are not necessarily proper metrics.

For point processes or random finite sets, similarity mea-
sures have been studied extensively in various application
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areas such as sensor management [22]–[27] and neuroscience
[28]. However, so far except for trivial special cases, these sim-
ilarity measures cannot be computed analytically and require
expensive approximations such as Monte Carlo.

In this paper, we present results on similarity measures
for Poisson point processes via the Cauchy-Schwarz diver-
gence and its relationship to the Bhattacharyya and Hellinger
distances. In particular, we show that the Cauchy-Schwarz
divergence between two Poisson point processes is given by
the square of theL2-distance between their intensity functions.
Geometrically, this result relates the angle subtended by the
probability densities of the Poisson point processes to the
L2-distance between their corresponding intensity functions.
For Gaussian mixture intensity functions, theirL2-distance,
and hence the Cauchy-Schwarz divergence can be evaluated
analytically. We also extend the result to the Cauchy-Schwarz
divergence for mixtures of Poisson point processes. In addi-
tion, using our result on the Cauchy-Schwarz divergence, we
show that the Bhattacharyya distance between the probability
distributions of two Poisson point processes is the square of the
Hellinger distance between their respective intensity measures.
The Poisson point process enjoys a number of nice properties
[2]–[4], and our results are useful additions. We illustrate the
use of our result on the Cauchy-Schwarz divergence in a sensor
management application for multi-target tracking involving the
Probability Hypothesis Density (PHD) filter [16].

The organization of the paper is as follows. Background on
point processes and the Cauchy-Schwarz divergence is pro-
vided in Section II. Section III presents the main results ofthe
paper that establish the analytical formulation for the Cauchy-
Schwarz divergence and Bhattacharyya distance between two
Poisson point processes. In Section IV, the application of the
Cauchy-Schwarz divergence to sensor management, including
numerical examples, is studied. Finally, Section V concludes
the paper.

II. BACKGROUND

In this work we consider a state spaceX ⊆ R
d, and adopt

the inner product notation〈f, g〉 ,
∫

f(x)g(x)dx; the L2-
norm notation‖f‖ ,

√

〈f, f〉; the multi-target exponential
notationhX ,

∏

x∈X h(x), whereh is a real-valued function,
with h∅ = 1 by convention; and the indicator function notation

1B(x) ,

{

1, if x ∈ B
0, otherwise

.

The notationN (x;m,Q) is used to explicitly denote the
probability density of a Gaussian random variable with mean
m and covarianceQ, evaluated atx.

http://arxiv.org/abs/1312.6224v3
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A. Point processes

This section briefly summarizes concepts in point process
theory needed for the exposition of our result. Point process
theory, in general, is concerned withrandom counting mea-
sures. Our result is restricted to simple-finite point processes,
which can be regarded asrandom finite sets. For simplicity,
we omit the prefix “simple-finite” in the rest of the paper. For
an introduction to the subject we refer the reader to the article
[7], and for detailed treatments, books such as [2], [3], [5],
[6].

A point processor random finite setX on X is a random
variable taking values inF(X ), the space of finite subsets of
X . Let |X | denotes the number of elements in a setX . A point
processX on X is said to bePoissonwith a given intensity
functionu (defined onX ) if [2], [3]:

1) for any B ⊆ X such that〈u, 1B〉 < ∞, the random
variable |X ∩ B| is Poisson distributed with mean
〈u, 1B〉,

2) for any disjointB1, ..., Bi ⊆ X , the random variables
|X ∩B1|, ..., |X ∩Bi| are independent.

Since 〈u, 1B〉 is the expected number of points ofX in
the regionB, the intensity valueu(x) can be interpreted as
the instantaneous expected number of points per unit hyper-
volume at x. Consequently,u(x) is not dimensionless in
general. If hyper-volume (onX ) is measured in units ofK
(e.g.md, cmd, ind, etc.) then the intensity functionu has unit
K−1.

The number of points of a Poisson point processX is
Poisson distributed with mean〈u, 1〉, and conditional on the
number of points the elementsx of X , are independently
and identically distributed (i.i.d.) according to the probability
densityu(·)/ 〈u, 1〉 [2], [3], [5], [6]. It is implicit that 〈u, 1〉
is finite since we only consider simple-finite point processes.

The probability distribution of a Poisson point processX
with intensity functionu is given by [6, pp. 15]

Pr(X ∈ T ) =
∞
∑

i=0

e−〈u,1〉

i!

∫

X i

1T ({x1, ..., xi})u{x1,...,xi}d(x1, ..., xi), (1)

for any (measurable) subsetT of F(X ), whereX i denotes
the ith-fold Cartesian product ofX , with the convention
X 0 = {∅}, and the integral overX 0 is 1T (∅). A Poisson point
process is completely characterized by its intensity function (or
more generally the intensity measure).

Probability densities of point processes considered in this
work are defined with respect to the reference measureµ given
by

µ(T ) =
∞
∑

i=0

1

i!Ki

∫

X i

1T ({x1, ..., xi})d(x1, ..., xi) (2)

for any (measurable) subsetT of F(X ). The measureµ is
analogous to the Lebesque measure onX (indeed it is the
unnormalized distribution of a Poisson point process with unit
intensity u = 1/K when the state spaceX is bounded).
Moreover, it was shown in [29] that for this choice of reference

measure, the integral of a functionf : F(X ) → R, given by
∫

f(X)µ(dX) =
∞
∑

i=0

1

i!Ki

∫

X i

f({x1, ..., xi})d(x1, ..., xi),

(3)
is equivalent to Mahler’s set integral [30]. Note that the
reference measureµ, and the integrandf are all dimensionless.

Our main result involves Poisson point processes with
probability densities of the form

f(X) = e−〈u,1〉 [Ku]
X
. (4)

Note that for any (measurable) subsetT of F(X )
∫

T

f(X)µ(dX)

=

∫

1T (X)f(X)µ(dX)

=

∞
∑

i=0

e−〈u,1〉

i!

∫

X i

1T ({x1, ..., xi})u{x1,...,xi}d(x1, ..., xi).

Thus, comparing with (1),f is indeed a probability density
(with respect toµ) of a Poisson point process with intensity
functionu.

B. The Cauchy-Schwarz divergence

The Cauchy-Schwarz divergence is based on the Cauchy-
Schwarz inequality for inner products, and is defined for two
random vectors with probability densitiesf andg by [31]

DCS(f, g) = − ln
〈f, g〉

‖f‖ ‖g‖ . (5)

The argument of the logarithm in (5) is non-negative (since
probability densities are non-negative) and does not exceed
one (by the Cauchy-Schwarz inequality). Moreover, this quan-
tity can be interpreted as the cosine of the angle subtended by
f andg in L2(X ,R), the space of square integrable functions
takingX to R. Note thatDCS(f, g) is symmetric and positive
unlessf = g, in which caseDCS(f, g) = 0.

Geometrically, the Cauchy-Schwarz divergence determines
the information “difference” between random vectors from
the angle between their probability densities. The Cauchy-
Schwarz divergence can also be interpreted as an approx-
imation to the Kullback-Leibler divergence [31]. While the
Kullback-Leibler divergence can be evaluated analytically for
Gaussians (random vectors) [32], [33], for the more versatile
class of Gaussian mixtures, only Jensen-Rényi and Cauchy-
Schwarz divergences can be evaluated in closed form [31],
[34]. Hence, the Cauchy-Schwarz divergence between two
densities of random variables has been employed in many
information theoretic applications, especially in machine learn-
ing and pattern recognition [31], [35]–[38].

III. T HE CAUCHY-SCHWARZ DIVERGENCE FORPOISSON

POINT PROCESSES

This section presents the main theoretical results of the
paper. Subsection III-A establishes the Cauchy-Schwarz di-
vergence for general Poisson point processes. Subsection III-B
presents analytical solution for Poisson point processes with
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Gaussian mixture intensities while subsection III-C details the
solution for mixtures of Poisson point processes. Finally,sub-
section III-D presents a result on the Bhattacharyya distance
between two Poisson processes.

A. Cauchy-Schwarz divergence for Poisson point processes

For point processes, the Csiszár-Morimoto divergence,
which includes the Kullback-Leibler and Rényi, were formu-
lated in [23] by replacing the standard (Lebesque) integral
with the set integral which is defined for a Finite Set Statistics
(FISST) densityφ as follows [30]

∫

φ(X)δX =

∞
∑

i=0

1

i!

∫

φ({x1, ..., xi})d(x1, ..., xi).

The FISST densityφ is not a probability density, but is
closely related to a probability density, see [29] for further
details. Note thatφ({x1, ..., xi}) has unit K−i, since the
infinitesimal hyper-volumed(x1, ..., xi) has unitKi. Thus,
φ(X) has different units for different cardinalities ofX .

Unlike the Csiszár-Morimoto divergence, the Cauchy-
Schwarz divergence, however, cannot be extended to point
processes by simply replacing the standard integral with the set
integral. To see this, consider the naı̈ve inner product between
two FISST densitiesφ andϕ via the set integral:

〈φ, ϕ〉 =
∫

φ(X)ϕ(X)δX

=

∞
∑

i=0

1

i!

∫

φ({x1, ..., xi})ϕ({x1, ..., xi})d(x1, ..., xi);

since thei-th term in the above sum has units ofK−i, the
sum itself is meaningless because the terms cannot be added
together due to unit mismatch, e.g. ifK = m3, then the first
term is unitless, the second term is inm−3, the third term is
in m−6, etc. Indeed such naı̈ve inner product has been used
incorrectly in [39].

Using the standard notion of density and integration sum-
marized in subsection II-A, we can define the inner product

〈f, g〉µ =

∫

f(X)g(X)µ(dX),

and corresponding norm

‖f‖µ ,

√

〈f, f〉µ
on L2(F(X ),R). Such forms for the inner product and norm
are well-defined because the densitiesf , g and reference
measureµ are all unitless.

Interestingly, the inner product between multi-object expo-
nentials is given by the following result.

Lemma 1. Let f(X) = rX and g(X) = sX with r, s ∈
L2(X ,R). Then〈f, g〉µ = eK

−1〈r,s〉.

Proof:

〈f, g〉µ =

∫

[rs]X µ(dX)

=

∞
∑

i=0

1

i!Ki

[∫

X

r(x)s(x)dx

]i

(using (3))

=

∞
∑

i=0

〈r, s〉i
i!Ki

= eK
−1〈r,s〉.

In the spirit of using the angle between probability densi-
ties to determine the information “difference”, the Cauchy-
Schwarz divergence can be extended to point processes as
follows.

Definition 1. The Cauchy-Schwarz divergence between the
probability densitiesf and g of two point processes with
respect to the reference measureµ is defined by

DCS(f, g) = − ln
〈f, g〉µ

‖f‖µ ‖g‖µ
. (6)

The above definition of the Cauchy-Schwarz divergence
can be equivalently expressed in terms of set integrals as
follows. Let φ and ϕ denote the FISST densities of the
respective point processes. Using the relationship between the
FISST density and the Radon-Nikodym derivative in [29], the
corresponding probability densities relative toµ are given by
f(X) = K |X|φ(X) andg(X) = K |X|ϕ(X). Since

〈f, g〉µ =

∞
∑

i=0

1

i!Ki

∫

X i

Kiφ({x1, ..., xi})×

Kiϕ({x1, ..., xi})d(x1, ..., xi)

=

∫

K |X|φ(X)ϕ(X)δX

the Cauchy-Schwarz divergence can be written as

DCS(φ, ϕ) = − ln

∫

K |X|φ(X)ϕ(X)δX
√

∫

K |X|φ2(X)δX
∫

K |X|ϕ2(X)δX
.

The following proposition asserts thatthe Cauchy-Schwarz
divergence between two Poisson point processes is half the
squared distance between their intensity functions.

Proposition 1. The Cauchy-Schwarz divergence between the
probability densitiesf and g of two Poisson point processes
with respective intensity functionsu and v ∈ L2(X ,R)
(measured in units ofK−1), is given by

DCS(f, g) =
K

2
‖u− v‖2 . (7)

Proof: Substituting f(X) = e−〈u,1〉 [Ku]X , g(X) =
e−〈v,1〉 [Kv]X into (6) and canceling out the constantse−〈u,1〉,
e−〈v,1〉 we have

DCS(f, g) = − ln





〈

[Ku](·), [Kv](·)
〉

µ
〈

[Ku](·), [Ku](·)
〉

1

2

µ

〈

[Kv](·), [Kv](·)
〉

1

2

µ





Applying Lemma 1 to the above equation gives

DCS(f, g) = − ln
(

eK〈u,v〉−K
2
〈u,u〉−K

2
〈v,v〉

)

= − ln
(

e−
K
2
(〈u,u〉−2〈u,v〉+〈v,v〉)

)

=
K

2
‖u− v‖2 .

Note that since the intensity functions have units ofK−1,
‖u− v‖2 also has unit ofK−1 and henceK ‖u− v‖2 is
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unitless. Moreover,K ‖u− v‖2, referred to as thesquared
distancebetween the intensity functionsu and v, takes on
the same value regardless of the choice of measurement unit.
Suppose that the unit of the hyper-volume in the state space
X has been changed fromK to ρK (for example, from
dm3 to m3 = 103dm3) as illustrated in Fig. 1. The change
of unit inevitably leads to the change in numerical values
of the two intensity functions (for example, the intensity
measured inm−3, which is the expected number of points
per cubic meter, is one thousand times the intensity measured
in dm−3). However, these changes cancel each other in the
productρK2 ‖uρ − vρ‖2 such that thesquared distanceremains
unchanged.

u [K−1]

u0

x0 x[K]

u ′ [ρ−1K−1]

ρu0

x ′ [ρK]ρ−1x0

Fig. 1. Change of unit in the state space

Proposition 1 has a nice geometric interpretation that re-
lates the angle subtended by the probability densities in
L2(F(X ),R) to the distance between the corresponding in-
tensity functions inL2(X ,R) as depicted in Fig. 2. More
concisely: the secant of the angle between the probability
densities of two Poisson point processes equals the exponential
of half the squared distance between their intensity functions.

L2(F(X ),R) L2(X ,R)

θ
0 0

f

g

u

v

‖
u
−

v
‖

ln(sec θ) = K

2
‖u− v‖2

Fig. 2. Geometric interpretation of Proposition 1

The above result has important implications in the approx-
imation of Poisson point processes through their intensity
functions. It is intuitive that the “difference” between the

Poisson distributions vanishes as the distance between their
intensity functions tends to zero. However, it was not clear
that a reduction in the error between the intensity functions
necessarily implies a reduction in the “difference” between
the corresponding distributions. Our result not only verifies
that the “difference” between the distributions is reduced, it
also quantifies the reduction.

B. Gaussian Mixture Intensities

In general, theL2-distance between the intensity functions,
and hence the Cauchy-Schwarz divergence, cannot be numer-
ically evaluated in closed form. However, for Poisson point
processes with Gaussian mixture intensity functions, applying
the following identity for Gaussian probability density func-
tions [40, pp. 200]

〈N (·;µ0,Σ0),N (·;µ1,Σ1)〉 = N (µ0;µ1,Σ0 +Σ1),

to (7) yields an analytic expression for the Cauchy-Schwarz
divergence. This is stated more concisely in the following
result.

Corollary 1. The Cauchy-Schwarz divergence between two
Poisson point processes with Gaussian mixture intensities:

u(x) =

Nu
∑

i=1

w(i)
u N (x;m(i)

u , P (i)
u ), (8a)

v(x) =

Nv
∑

i=1

w(i)
v N (x;m(i)

v , P (i)
v ) (8b)

(measured in units ofK−1) is given by

DCS(f, g) =

1

2

Nu
∑

i=1

Nu
∑

j=1

w(i)
u w(j)

u N
(

m(i)
u ;m(j)

u , P (i)
u + P (j)

u

)

+

1

2

Nv
∑

i=1

Nv
∑

j=1

w(i)
v w(j)

v N
(

m(i)
v ;m(j)

v , P (i)
v + P (j)

v

)

−

Nu
∑

i=1

Nv
∑

j=1

w(i)
u w(j)

v N
(

m(i)
u ;m(j)

v , P (i)
u + P (j)

v

)

(9)

In terms of computational complexity, each term in (9)
involves evaluations of a Gaussian probability density func-
tion within a double sum. Hence, if we use the standard
Gauss-Jordan elimination for matrix inversions, computing
DCS(f, g) is quadratic in the number of Gaussian components
and cubic in the state dimension (i.e.O(N2

v d
3), assuming

Nv ≥ Nu). The complexity can be reduced toO(N2
v d

2.373)
if the optimized Coppersmith-Winograd algorithm [41] was
employed in place of the Gauss-Jordan elimination.

This Corollary has important implications in Gaussian mix-
ture reduction for intensity functions. The result provides
mathematical justification for Gaussian mixture reductionfor
intensity functions based onL2-error. Furthermore, since
Gaussian mixtures can approximate any density to any de-
sired accuracy [42], Corollary 1 enables the Cauchy-Schwarz
divergence between two Poisson point processes to be approx-
imated to any desired accuracy.
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C. Mixture of Poisson point processes

Proposition 1 can be easily extended to mixtures of Poisson
point processes, i.e. those whose probability densities can be
written as a weighted sum of Poisson point process densities:

f(X) =

Nf
∑

i=1

w
(i)
f e−〈ui,1〉 [Kui]

X
, (10a)

g(X) =

Ng
∑

i=1

w(i)
g e−〈vi,1〉 [Kvi]

X
, (10b)

where
∑Nf

i=1 w
(i)
f =

∑Ng

i=1 w
(i)
g = 1. Such point processes

have applications in immunology [43], neural data analysis
[44], criminology [45], and machine learning [46].

Substituting (10) into (6) and applying Lemma 1, the
Cauchy-Schwarz divergence between two mixtures of Poisson
point processes is stated as follows.

Corollary 2. The Cauchy-Schwarz divergence between two
mixtures of Poisson point processes given in(10) is

DCS(f, g) =− ln





Nf
∑

i=1

Ng
∑

j=1

w
(i)
f w(j)

g

eK〈ui,vj〉

e〈ui+vj ,1〉



+

1

2
ln





Nf
∑

i=1

Nf
∑

j=1

w
(i)
f w

(j)
f

eK〈ui,uj〉

e〈ui+uj ,1〉



+

1

2
ln





Ng
∑

i=1

Ng
∑

j=1

w(i)
g w(j)

g

eK〈vi,vj〉

e〈vi+vj ,1〉



 . (11)

Furthermore, if the intensity function of each Poisson point
process component is a Gaussian mixture (in units ofK−1):

ui(x) =

Nui
∑

ℓ=1

ω(ℓ)
ui

N (x;m(ℓ)
ui

, P (ℓ)
ui

),

vj(x) =

Nvj
∑

ℓ=1

ω(ℓ)
vj

N (x;m(ℓ)
vj

, P (ℓ)
vj

),

thenDCS(f, g) can be evaluated analytically by substituting
the following equations into(11)

K〈ui, uj〉 =
Nui
∑

ℓ=1

Nuj
∑

k=1

ω(ℓ)
ui

ω(k)
uj

N
(

m(ℓ)
ui

;m(k)
uj

, P (ℓ)
ui

+ P (k)
uj

)

,

K〈vi, vj〉 =
Nvi
∑

ℓ=1

Nvj
∑

k=1

ω(ℓ)
vi

ω(k)
vj

N
(

m(ℓ)
vi

;m(k)
vj

, P (ℓ)
vi

+ P (k)
vj

)

,

K〈ui, vj〉 =
Nui
∑

ℓ=1

Nvj
∑

k=1

ω(ℓ)
ui

ω(k)
vj

N
(

m(ℓ)
ui

;m(k)
vj

, P (ℓ)
ui

+ P (k)
vj

)

,

〈ui + vj , 1〉 =
Nui
∑

ℓ=1

Nvj
∑

k=1

ω(ℓ)
ui

+ ω(k)
vj

,

〈ui + uj, 1〉 =
Nui
∑

ℓ=1

Nuj
∑

k=1

ω(ℓ)
ui

+ ω(k)
uj

,

〈vi + vj , 1〉 =
Nvi
∑

ℓ=1

Nvj
∑

k=1

ω(ℓ)
vi

+ ω(k)
vj

.

D. Bhattacharyya distance for Poisson point processes

The Cauchy-Schwarz divergence is based on the angle
between two probability densities (with respect to a reference
measure), and is not necessarily invariant to the choice of
reference measure. Closely related to the Cauchy-Schwarz
divergence is the Bhattacharyya distance between two proba-
bility measures [47].

Definition 2. The Bhattacharyya distance between to proba-
bility measuresF andG, is defined by

DB(F,G) = − ln

〈
√

dF

dµ
,

√

dG

dµ

〉

µ

(12)

where µ is any measure dominatingF and G. The inner
product in the above definition, denoted byCB(F,G), is called
the Bhattacharyya coefficient and is invariant to the choiceof
reference measureµ [47].

Unlike the Cauchy-Schwarz divergence, the Bhattacharyya
distance avoids the requirement of square integrable proba-
bility densities since square roots of probability densities are
always square integrable. Note also that the Bhattacharyya
distance can be expressed as the Cauchy-Schwarz divergence
between the square roots of the probability densities, i.e.for
anyµ that dominatesF andG

DB(F,G) = DCS

(
√

dF

dµ
,

√

dG

dµ

)

(13)

Hence, Proposition 1 can be applied to relate the Bhat-
tacharyya distance between the probability distributionsof
Poisson point processes to their intensity functions.

Corollary 3. The Bhattacharyya distance between the prob-
ability distributionsF andG of two Poisson point processes
with respective intensity measuresU andV (assumed to have
densities with respect to the Lebesque measure), is given by

DB(F,G) = D2
H(U, V ), (14)

where

DH(U, V ) =
1√
2

∥

∥

∥

∥

∥

√

dU

dλ
−
√

dV

dλ

∥

∥

∥

∥

∥

,

is the Hellinger distance between the measuresU, and V ,
(which is invariant to the choice of reference measure).

Proof: Let u and v be densities (measured in units of
K−1) of U and V relative to the Lebesque measureλ.
Then the densities ofF and G relative to µ, are given by
f(X) = e−〈u,1〉 [Ku]

X , g(X) = e−〈v,1〉 [Kv]
X . From Propo-

sition 1 the Cauchy-Schwarz divergence between
√

f(X) ∝
[

K
√

u/K
]X

, and
√

g(X) ∝
[

K
√

v/K
]X

is given by

DCS

(

√

f,
√
g
)

=
K

2

∥

∥

∥

∥

√

u

K
−
√

v

K

∥

∥

∥

∥

2

,

=
1

2

∥

∥

√
u−√

v
∥

∥

2
,

= D2
H(U, V ).
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The above Corollary asserts thatthe Bhattacharyya distance
between two Poisson point processes is the squared Hellinger
distance between their intensity measures. Moreover, the
square of the Hellinger distance can be expanded as

D2
H(U, V ) =

∥

∥

∥

∥

√

dU
dλ

∥

∥

∥

∥

2

+

∥

∥

∥

∥

√

dV
dλ

∥

∥

∥

∥

2

− 2

〈

√

dU
dλ

,
√

dV
dλ

〉

2

=
U(X ) + V (X )

2
− CB(U, V ).

The intensity massesU(X ) andV (X ) are the expected num-
ber of points of the respective Poisson point processes. Thus,
Corollary 3 provides another interesting interpretation:the
Bhattacharyya distance between two Poisson point processes
is the difference between the expected number of points per
process and the Bhattacharyya coefficient of their intensity
measures.

In general, the Hellinger distance cannot be numerically
evaluated in closed form. However, for Poisson point processes
with Gaussian intensity function, using the Bhattacharyya
coefficient for Gaussians [48]

CB (N (·;µ0,Σ0),N (·;µ1,Σ1)) =
√

(2π)d
√

|Σ0| |Σ1|N
(

µ0

2
;
µ1

2
,
Σ0 +Σ1

2

)

yields an analytic expression for the Hellinger distance be-
tween the Gaussian intensity functions, stated as follows.

Corollary 4. The Bhattacharyya distance between two Poisson
point processes with Gaussian intensities:

u(x) = wuN (x;mu, Pu), (15a)

v(x) = wvN (x;mv, Pv) (15b)

(measured in units ofK−1) is given by

DB(F,G) =
wu + wv

2
−
√

(2π)dwuwv

√

|Pu| |Pv|×

N
(

mu

2
;
mv

2
,
Pu + Pv

2

)

. (16)

Remark.For point processes, the Bhattacharyya distance can
be defined by replacing the standard (Lebesque) integral with
the set integral. Again letφ andϕ denote the FISST densities
of the respective point processes. Then it follows from [29]
that the corresponding probability densities relative toµ are
given byf(X) = K |X|φ(X) andg(X) = K |X|ϕ(X). Hence,

〈

√

f,
√
g
〉

µ
=

∞
∑

i=0

1

i!Ki

∫

X i

√

Kiφ({x1, ..., xi})×
√

Kiϕ({x1, ..., xi})d(x1, ..., xi)

=

∫

√

φ(X)
√

ϕ(X)δX

and the Bhattacharyya distance can be written in terms of
FISST densities and set integral as

DB(φ, ϕ) = − ln

∫

√

φ(X)
√

ϕ(X)δX.

IV. A PPLICATION TO MULTI-TARGET SENSOR

MANAGEMENT

In this section, we present an application of our result
to a sensor management (a.k.a. sensor control) problem for
multi-target systems, where system states are modeled as point
processes or random finite sets (RFS) [16], [29], [30], [49].A
multi-target system is fundamentally different from a single-
target system in that the number of states changes with time
due to births and deaths of targets.

For the purpose of illustrating the result in the previous
section, we assume a linear Gaussian multi-target model [50],
where the hidden multi-target state at timek is a finite set
Xk, which is partially observed as another finite setZk. All
aspects of the system dynamics as well as sensor detection
and false alarms are described in details in Appendix A.

Multi-target sensor management is a stochastic control
problem which involves the following steps

1) Propagating the multi-target posterior density, or alter-
natively a tractable approximation, recursively in time;

2) At each time, determining the action of the sensor by
optimizing an objective function over a set of admissible
actions.

In step 1, propagating the full posterior is generally in-
tractable. However, for linear Gaussian multi-target systems,
the first moment of the posterior (a.k.a. the intensity func-
tion) can be propagated efficiently via the Gaussian Mixture
Probability Hypothesis Density (GM-PHD) filter [50] as docu-
mented in Appendix B. The sensor action in step2 is executed
by applying a control command/signal to the sensor, usuallyin
order to either minimize a cost or maximize a reward. In the
rest of this section, we demonstrate that the Cauchy-Schwarz
divergence is a useful reward function for multi-target sensor
management.

A. Cauchy-Schwarz divergence based reward

Denote byR(ak−1, Zk:k+p) the value of a reward function
if the control commandak−1 were applied to the sensor at time
k − 1 and subsequently the measurement sequenceZk:k+p =
[Zk, Zk+1, ..., Zk+p] is observed forp + 1 time steps in the
future. For illustration purpose, we only focus on the single
step look-ahead (i.e.p = 0) policy. Naturally, given the reward
functionR(ak−1, Zk:k+p), the optimal control commanda∗k−1

is chosen to maximize the expected rewardE
[

R(ak−1, Zk)
]

,
where the expectation is taken over all possible values of the
future measurementZk. A computationally cheaper approach
is to maximize the ideal predicted rewardR(ak−1, Z

∗
k) [26],

[51], [52], whereZ∗
k is the ideal predicted measurement from

the predicted intensityvk|k−1, that is, assuming no false alarms
(zero clutter) and perfect target measurements (unity detection
probability and negligible measurement noise). Other choices
of objective functions are discussed in [26], [51]–[53].

A common class of reward functions for sensor control is
that of information theoretic divergences between the predicted
and posterior probability densities. For example, in [26],
[52], [53] the Rényi divergence is employed to quantify the
information gain from the future measurements for a chosen
control action. The main drawback of the Rényi divergence
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based approach is that it involves computation of integralsin
infinite dimensional spaces which is generally intractable.

As an alternative to the Rényi divergence, we propose the
use of the Cauchy-Schwarz divergence for multi-target sensor
control. According to Proposition 1, computing the Cauchy-
Schwarz reward function for Poisson multi-target densities
reduces to calculating the squaredL2-distance between the
predicted and posterior intensities:

R(ak−1, Zk) =
K

2

∥

∥vk|k−1(·)− vk(·; ak−1, Zk)
∥

∥

2
(17)

This strategy effectively replaces the evaluation of the R´enyi
divergence, via integrals in the infinite dimensional space
F(X ), with the Cauchy-Schwarz divergence, which can be
computed via standard integrals on the finite dimensional
spaceX . Moreover, when the GM-PHD filter is used for the
propagation of the Gaussian mixture posterior intensity, the
reward functionR(ak−1, Zk) can be evaluated in closed form
using Corollary 1.

In this section, our control policy is to select the con-
trol commandak−1 so as to maximize the ideal reward
R(ak−1, Z

∗
k−1).

B. Numerical example

This example is based on a scenario adapted from [26]
in which a mobile robot is tracking a varying number of
moving targets. The surveillance area is a square of dimensions
1000m×1000m. Each target at timek−1 is characterized by
a single-target state of the formxk−1 = [pTk−1, ṗ

T
k−1]

T where
pk−1 is the 2D position vector anḋpk−1 is the 2D velocity
vector. If the control commandak−1 is applied at timek− 1,
the sensor will move from its current positionsk−1 to a new
positionsk(ak−1), where a target with statexk can be detected
with probability

pD,k(xk; ak−1) =
N (sk(ak);Hxk, S)

N (0; 0, S)
(18)

where

H =

[

1 0 0 0
0 1 0 0

]

, S = 106
[

3 −2.4
−2.4 3.6

]

.

The detection profile is illustrated in Fig. 3.
The single-target transition density isf(xk|xk−1) =

N (xk;Fxk−1, Q), where

F =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1









, Q = 27











T 3 0 T 2

54 0

0 T 3 0 T 2

54
T 2

54 0 T
81 0

0 T 2

54 0 T
81











with T = 1s.
Measurements are noisy position returns according to the

single-target likelihood

g(zk|xk) = N (zk;Hxk, Rk),

where

Rk = σ2
ǫ,k

[

1 0
0 1

]

with σǫ,k = 3m.
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Fig. 3. Initial positions of the sensor (♦) and targets (�). The contours
depict the sensor’s detection profile presented in (18), in which the detection
probability decreases with distance from the sensor.

Clutter is modeled by a Poisson RFS with intensityκ(z) =
λc(z) whereλ = 2×10−5m−2 and c(z) = U([0, 1000m] ×
[0, 1000m]) is the uniform density over the surveillance area.

At time k− 1, the setAk−1 contains all admissible control
command that drive the sensor from the current position

sk−1 =
[

s
(x)
k−1, s

(y)
k−1

]T

to one of the following locations

Sk=

{

[

s
(x)
k−1+j∆Rcos(ℓ∆θ), s

(y)
k−1+j∆Rsin(ℓ∆θ)

]T
}(NR,Nθ)

(j,ℓ)=(0,0)

,

where∆θ = 2π
Nθ

rad and ∆R = 50m are the angular and
radial step sizes respectively. The number of angular and radial
steps areNR = 2 and Nθ = 8. The setSk, thus, has17
options in total which discretize the angular and radial region
around the current sensor position. The sensor is always kept
inside the surveillance area by setting the value of the objective
function corresponding to positions outside the surveillance
area to−∞.

With these settings, it is expected that our control policy
should, intuitively speaking, move the sensor towards the
targets, and remain in their vicinity in order to obtain a high
detection probability. Fig. 4 depicts a typical sensor trajectory
which appears to be consistent with this intuitive expectation.

We proceed to illustrate the performance of the proposed
strategy. First, we compare the performance of the Cauchy-
Schwarz divergence based control strategy to that of an
existing Rényi divergence based control strategy proposed in
[26]. Since the Rényi divergence in general has no closed form
solution and thus must be approximated by Sequential Monte
Carlo (SMC), we also have to implement the Cauchy-Schwarz
divergence using SMC approximation in order to enable a
fair comparison. Second, the proposed GM implementation
performance is then benchmarked against that of the SMC-
based approach. When the objective function is approximated
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Sensor trajectory

Fig. 4. A typical sensor trajectory. Target start and stop positions are marked
by � and∇, respectively. The red target died atk = 19 whereas the green
target was born atk = 27. The sensor initially moved towards the targets
and remained in their vicinity, then moved again to the middle of the existing
targets and the new born target for optimal detection of all targets.

by SMC, the corresponding SMC-PHD filter [29] is used
for recursive propagation of the posterior intensity function.
All algorithms were implemented in MATLAB R2010b on a
laptop with an Intel Core i5-3360 CPU and 8GB of RAM. The
average run time for the Rényi divergence based strategy is
10.62 seconds (SMC-PHD filter implementation) while those
for the Cauchy-Schwarz based strategies are 10.68 seconds
(SMC-PHD filter implementation) and 3.21 seconds (GM-
PHD filter implementation). It is evident that the closed form
Cauchy-Schwarz divergence based strategy is the fastest.

Fig. 5 shows the Optimal SubPattern Assignment (OSPA)
metric or miss distance [54] (with parametersp = 2,
c = 100m) averaged over 200 Monte Carlo runs for each
of the considered control strategies. The OSPA curves in
Figure 5 suggest that the closed form GM-PHD filter based
strategy outperforms its approximate SMC-PHD filter based
counterparts, while the performance of the two approximate
SMC-PHD filter based strategies are virtually identical.

These numerical results suggest that the Cauchy-Schwarz
divergence can be at least as effective as the Rényi divergence
when used as a reward function for multi-target sensor control.
The results further suggest that the former has the distinct
advantage of the GM implementation which leads to superior
performance due to closed form solution and better filtering
capability.

V. CONCLUSIONS

In this paper, we have extended the notion of the Cauchy-
Schwarz divergence to point processes, and have shown that
for an appropriate choice of reference measure, the Cauchy-
Schwarz divergence between the probability densities of two
Poisson point processes is half the squared distance between
their intensity functions. We have extended this result to
mixtures of Poisson point process and derived closed form
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0

10

20

30

40

50

60

70

80

90

100

Time steps

O
S

P
A

 [m
]

 

 
Cauchy−Schwarz (GM)
Cauchy−Schwarz (SMC)
Renyi (SMC)

Fig. 5. Comparison of the averaged OSPA distance generated by different
control strategies. While SMC-PHD implementations for theRényi divergence
(dashed line) and the Cauchy-Schwarz divergence (starred line) yield similar
results, they are outperformed by the GM-PHD implementation (solid line)
due to closed form solution for the Cauchy-Schwarz divergence and better
filtering performance.

expressions for the Cauchy-Schwarz divergence when the in-
tensity functions are Gaussian mixtures. The Cauchy-Schwarz
divergence for probability densities is not necessarily invariant
to the choice of reference measure. Nonetheless the Cauchy-
Schwarz divergence for the square roots of probability den-
sities, or equivalently, the Bhattacharyya distance for prob-
ability measures, importantly is invariant to the choice of
reference measure. For Poisson point processes, our result
implies that the Bhattacharyya distance between the prob-
ability distributions is equal to the square of the Hellinger
distance between the intensity measures, which in turn is the
difference between the expected number of points per process
and the Bhattacharyya coefficient of their intensity measures.
We have illustrated an application of our result on a sensor
control problem for multi-target tracking where the system
state is modeled as a point process. Our result is an addition
to the list of interesting properties of Poisson point processes
and has important implications in the approximation of point
processes.

APPENDIX A
L INEAR GAUSSIAN SYSTEM MODEL

In a linear Gaussian multi-target model, each constituent
elementxk−1 of the multi-target stateXk−1 at time k − 1
either continues to exist at timek with probability pS,k or
dies with probability1−pS,k, and conditional on its existence
at timek, transitions fromxk−1 to xk with probability density

f(xk|xk−1) = N (xk;Fk−1xk−1, Qk−1). (19)

The surviving targets at timek is thus a Multi-Bernoulli point
process or RFS [26], [51]–[53]. New targets can arise at time
k either by spontaneous births, or by spawning from targets
at timek− 1. The set of birth targets and spawned targets are



9

modeled as Poisson point processes with respective Gaussian
mixture intensity functions

γk(x) =

Jγ,k
∑

i=1

w
(i)
γ,kN

(

x;m
(i)
γ,k, P

(i)
γ,k

)

,

βk|k−1(x|ζ) =
Jβ,k
∑

i=1

w
(i)
β,kN

(

x;F
(i)
β,k−1ζ + d

(i)
β,k−1, Q

(i)
β,k−1

)

,

The multi-target state is hidden and is partially observed by a
sensor driven by the control vectorak−1 at timek − 1. Each
target evolves and generates observations independently of one
another. A target with statexk is detected by the sensor with
probability:

pD,k(x; ak−1) =

JD,k
∑

j=0

w
(j)
D,kN

(

x;m
(j)
D,k(ak−1), P

(j)
D,k

)

(or missed with probability1 − pD,k(xk; ak−1)) and condi-
tional on detection generates a measurementzk according to
the probability density

gk(zk|xk) = N (zk;Hkxk, Rk). (20)

The detections corresponding to targets is thus a Multi-
Bernoulli point process [26], [51]–[53]. The sensor also reg-
isters a set of spurious measurements (clutter), independent
of the detections, modeled as a Poisson point process with
intensity κk. Thus, at each time step the measurement is a
collection of detectionsZk, only some of which are generated
by targets.

APPENDIX B
POSTERIOR INTENSITY PROPAGATION

In general, posterior intensity function is propagated re-
cursively in time via the Probability Hypothesis Density
(PHD) filter [16]. For the linear Gaussian multi-target system
described in Appendix A, the posterior intensity function is
propagated via the Gaussian Mixture PHD (GM-PHD) filter
[50] as follows1.

Prediction: If the posterior intensity at timek − 1 is a
Gaussian mixture of the form

vk−1(x) =

Jk−1
∑

i=1

w
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1)

then the predicted intensity at timek is also a Gaussian mixture
and is given by

vk|k−1(x) = vS,k|k−1(x) + vβ,k|k−1(x) + γk(x)

where

vS,k|k−1(x) = pS,k

Jk−1
∑

i=1

w
(i)
k−1N

(

x;m
(i)
S,k|k−1, P

(i)
S,k|k−1

)

1Here, we use a slightly different technique from that in [55], which
proposes an approximate propagation for the original GM-PHD filter in order
to mitigate computational issues involving negative Gaussian mixture weights
which arise due to a state dependent detection probability.For notational
compactness we omit the time index on the state variable and the conditioning
on the measurement history in expressions involving the posterior intensity
function.

vβ,k|k−1(x) =

Jk−1
∑

i=1

Jβ,k
∑

j=1

w
(i)
k−1w

(j)
β,kN

(

x;m
(i,j)
β,k|k−1, P

(i,j)
β,k|k−1

)

m
(i)
S,k|k−1 = Fk−1m

(i)
k−1

P
(i)
S,k|k−1 = Qk−1 + Fk−1P

(i)
k−1 [Fk−1]

T

m
(i,j)
β,k|k−1 = F

(j)
β,k−1m

(i)
k−1 + d

(j)
β,k−1

P
(i,j)
β,k|−1 = Q

(j)
β,k−1 + F

(j)
β,k−1P

(i)
β,k−1

[

F
(j)
β,k−1

]T

.

Update: If predicted intensity and detection probability are
Gaussian mixtures of the form

vk|k−1(x) =

Jk|k−1
∑

i=1

w
(i)
k|k−1N

(

x;m
(i)
k|k−1, P

(i)
k|k−1

)

,

then, the posterior intensity at timek is given by

vk(x;Zk(ak−1)) = vM,k(x; ak−1) +
∑

z∈Zk(ak−1)

vD,k(x; z)

where

vM,k(x; ak−1) =

Jk|k−1
∑

i=1

w
(i)
M,k(ak−1)N

(

x;m
(i)
k|k−1, P

(i)
k|k−1

)

w
(i)
M,k(ak−1) =

w
(i)
µ,k(ak−1)Tk(ak−1)

Jk|k−1
∑

i=1

w
(i)
µ,k(ak−1)

w
(i)
µ,k(ak−1) =

[

1− pD,k

(

m
(i)
k|k−1; ak−1

)]

w
(i)
k|k−1

Tk(ak−1) =

Jk|k−1
∑

i=1

w
(i)
k|k−1 −

Jk|k−1
∑

i=1

JD,k
∑

j=0

w
(i,j)
k|k−1(ak−1)

w
(i,j)
k|k−1(ak−1) = w

(i)
k|k−1w

(j)
D,kq

(i,j)
k|k−1(ak−1),

q
(i,j)
k|k−1(ak−1) = N

(

m
(j)
D,k(ak−1);m

(i)
k|k−1, P

(i)
k|k−1 + P

(j)
D,k

)

,

and

vD,k(x; z) =

Jk|k−1
∑

i=1

JD,k
∑

j=0

w
(i,j)
k (z)N

(

x;m
(i,j)
k|k (z), P

(i,j)
k|k

)

,

w
(i,j)
k (z) =

w
(i,j)
k|k−1(ak−1)q

(i,j)
k (z)

κk(z) +

Jk|k−1
∑

i=1

JD,k
∑

j=0

w
(i,j)
k|k−1(ak−1)q

(i,j)
k (z)

,

q
(i,j)
k (z) = N

(

z;Hkm
(i,j)
k|k−1, Rk +HkP

(i,j)
k|k−1H

T
k

)

,

m
(i,j)
k|k−1 = m

(i)
k|k−1 +K

(i,j)
k|k−1

[

m
(j)
D,k(ak−1)−m

(i)
k|k−1

]

,

P
(i,j)
k|k−1 =

[

I −K
(i,j)
k|k−1

]

P
(i)
k|k−1,

K
(i,j)
k|k−1 = P

(i)
k|k−1

[

P
(i)
k|k−1 + P

(j)
D,k

]−1

,

m
(i,j)
k|k (z) = m

(i,j)
k|k−1 +K

(i,j)
k

[

z −Hkm
(i,j)
k|k−1

]

,

P
(i,j)
k|k =

[

I −K
(i,j)
k Hk

]

P
(i,j)
k|k−1,

K
(i,j)
k = P

(i,j)
k|k−1H

T
k

(

HkP
(i,j)
k|k−1H

T
k +Rk

)−1

,
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and by conventionq(i,0)
k|k−1 = 1, m

(i,0)
k|k−1 = m

(i)
k|k−1, and

P
(i,0)
k|k−1 = P

(i)
k|k−1.
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