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Abstract

In this paper we define a new coherence index, named the global 2-coherence, of a given dictionary and study its

relationship with the traditional mutual coherence and the restricted isometry constant. By exploring this relationship,

we obtain more general results on sparse signal reconstruction using greedy algorithms in the compressive sensing

(CS) framework. In particular, we obtain an improved bound over the best known results on the restricted isometry

constant for successful recovery of sparse signals using orthogonal matching pursuit (OMP).

Index Terms

Compressive sensing, mutual coherence, global 2-coherence, restricted isometry property, weak orthogonal match-

ing pursuit (WOMP), orthogonal matching pursuit (OMP)

I. INTRODUCTION

Compressive sensing (CS) [1], [2] is a newly developed and fast growing field of research. It provides a new

sampling scheme that breaks the traditional Shannon-Nyquist sampling rate [3] given that the signal of interest is

sparse in a certain basis or tight frame. More specifically, for a vector a ∈ Rd, let ‖a‖0 denote the `0 “norm” of a,

which counts the number of nonzero entries of a. We say a is k-sparse if ‖a‖0 ≤ k. CS has established conditions

for finding the unique sparse solution of the following `0 minimization problem

min
a
‖a‖0 subject to f = Φa, (1)

where Φ ∈ Rn×d (n � d) and f ∈ Rn. To ensure that the k-sparse solution is unique, we need the following

restricted isometry property introduced by Candes and Tao in [4].

Definition I.1 (Restricted Isometry Property (RIP)). A matrix Φ satisfies the restricted isometry property of order

k with the restricted isometry constant (RIC) δk if δk ∈ (0, 1) is the smallest constant such that

(1− δk)‖a‖22 ≤ ‖Φa‖22 ≤ (1 + δk)‖a‖22 (2)

holds for all k-sparse signal a.
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It has been shown in [4] that if δ2k < 1, then the `0 minimization problem (1) has a unique k-sparse solution.

However, solving an `0 minimization problem is in general NP-hard. One solution to this problem is to relax

the `0 “norm” to the `1 norm. Candes has shown in [5] if δ2k <
√

2 − 1, then `1 minimization is equivalent to

`0 minimization. Another alternative is to use heuristic greedy algorithms to approximate the solution of the `0

minimization problem . Orthogonal matching pursuit (OMP) is one of the simplest and most popular algorithms

of this type. For the analysis of greedy algorithms, the metric chosen for the sensing matrix are usually coherence

indices rather than the RIC.

For simplicity, from now on, we always assume that the columns of the matrix (dictionary) Φ are normalized

such that for any column φ ∈ Φ, ‖φ‖2 = 1.

Definition I.2. The mutual coherence M(Φ) of a matrix Φ is defined by

M(Φ) := max
φi,φj∈Φ
i 6=j

|〈φi, φj〉|, (3)

where 〈·, ·〉 represents the usual inner product.

It has been shown that if (2k − 1)M < 1, then OMP can recover every k-sparse signal exactly in k iterations

[6]. Recently, researchers have started to investigate the performance of OMP using RIP. Davenport and Wakin [7]

have proved that δk+1 <
1

3
√
k

is sufficient for OMP to recover any k-sparse signal in k iterations. Mo and Shen

[8] improve the bound to δk+1 <
1

1+
√
k

. They also give an example that OMP fails to recover a k-sparse signal in

k steps when δk+1 = 1√
k

. This leaves a question if their bound can be further improved.

It is then natural to examine the relationship between the mutual coherence M and the RIC δk, since the bound

for M is already sharp. However, approaching this directly was not fruitful and this motivated us to define a

new coherence index, namely the global 2-coherence, and establish a bridge connecting the mutual coherence, the

global 2-coherence, and the RIC. Then by using this connection, we analyze the performance of weak orthogonal

matching pursuit (WOMP), a weak version of OMP. In particular, we extend the results given in [9] to show that

δk +
√
kδk+1 < 1 is sufficient for OMP to recover any k-sparse signal in k iterations, which provides an improved

bound over the best known result given in [8] and confirms that it is not yet optimal. As mentioned above, the

results presented in this paper is an extension of [9], where we introduced a new algorithm to CS, called orthogonal

matching pursuit with thresholding (OMPT), and showed its reconstruction stability and robustness.

II. GLOBAL 2-COHERENCE

We first define a new coherence index, the global 2-coherence, νk(Φ) for a given dictionary Φ. Then based on

this new coherence index, we establish the connections among the coherence indices and the RIC δk.

Definition II.1. Denote by [d] the index set {1, 2, . . . , d}. The global 2-coherence of a dictionary Φ ∈ Rn×d is

defined as

νk(Φ) := max
i∈[d]

max
Λ⊆[d]\{i}
|Λ|≤k

∑
j∈Λ

〈φi, φj〉2
1/2

, (4)
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where φi, φj are columns from the dictionary Φ.

The global 2-coherence νk(Φ) defined above is a generalization of the mutual coherence defined in Definition I.2

and the coherence indices defined in [10], [11]. In particular, when k = 1, ν1 is exactly the mutual coherence.

The following lemma describes the relations among the mutual coherence M , the 2-coherence νk, and the

restricted isometry constant δk.

Lemma II.2. For k > 1, we have

M ≤ νk−1 ≤ δk ≤
√
k − 1νk−1 ≤ (k − 1)M. (5)

The next lemma is needed to proceed to our main results.

Lemma II.3. Let Λ ⊂ [d] with |Λ| = k. Let f = Φa + w with supp(a) = Λ and ‖w‖2 ≤ ε. In addition, assume

that there exits Ω ⊆ Λ with |Ω| = m, such that

〈Φa, φi〉 = 0, for i ∈ Λ \ Ω.

Then

max
i∈[d]\Λ

|〈f, φi〉| ≤ νk‖a‖2 + ε,

max
i∈Λ
|〈f, φi〉| ≥

√
1− δk√
m
‖Φa‖2 − ε.

III. MAIN RESULTS

We first begin with a well known greedy algorithm, the weak orthogonal matching pursuit (WOMP), which was

defined in [12]. Here we present a simple version in Algorithm 1 where the weak parameter ρ is a constant for

each iteration. Notice that when ρ = 1, WOMP becomes standard OMP.

Let us consider the case where a sparse signal is contaminated by a perturbation. Specifically, let Λ ⊂ [d] with

|Λ| = k. We consider a signal f = Φa+ w, where a ∈ Rd with supp(a) = Λ and ‖w‖2 ≤ ε.

Theorem III.1. Denote by amin the nonzero entry of a with the least magnitude, and âwomp the recovered

representation of f in Φ by WOMP after k iterations. If

√
kνk < ρ(1− δk) (6)

and the noise level obeys

ε <
ρ(1− δk)−

√
kνk

1 + ρ
|amin|, (7)

then

a) âwomp has the correct sparsity pattern

supp(âwomp) = supp(a);
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Algorithm 1 Weak Orthogonal Matching Pursuit (WOMP)
1: Input: weak parameter ρ ∈ (0, 1], dictionary Φ, signal f , and the noise level ε.

2: Initialization: r0 := f , x0 := 0, Λ0 := ∅, s := 0.

3: while ‖rs‖2 > ε do

4: Find an index i such that

|〈rs, φi〉| ≥ ρ ·max
φ
|〈rs, φ〉|

where φ is any column of Φ;

5: Update the support:

Λs+1 = Λs ∪ {i};

6: Update the estimate:

xs+1 = arg min
z
‖f − ΦΛs+1

z‖2;

7: Update the residual:

rs+1 = f − ΦΛs+1
xs+1;

8: s = s+ 1;

9: end while

10: Output: If the algorithm is stopped after k iterations, then the output estimate â of a is âΛk
= xk and âΛC

k
= 0.

b) âwomp approximates the ideal noiseless representation

‖âwomp − a‖22 ≤
ε2

1− δk
. (8)

From Lemma II.2, it follows that

Corollary III.2. Let f = Φa with ‖a‖0 = k. If one of the following conditions is satisfied,

a)
√
kδk+1 < ρ(1− δk),

b)
√
kνk < ρ(1− νk−1

√
k − 1),

c) kM < ρ(1− (k − 1)M),

then, a is the unique sparsest representation of f and moreover, WOMP recovers a exactly in k iterations.

The performance of WOMP decreases as ρ decreases. Now if we set ρ = 1 in WOMP, then we obtain immediately

the following corollary for OMP.
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Corollary III.3. Let f = Φα with ‖a‖0 = k. If

δk +
√
kδk+1 < 1, (9)

then, a is the unique sparsest representation of f and moreover, OMP recovers a exactly in k iterations.

Remark III.4. The condition in (9) gives an improved bound on the restricted isometry constant compared to the

bound obtained in [8] for OMP for successful recovery after k iterations, where the bound was δk+1 <
1√
k+1

.

IV. CONCLUSION

In this paper, we have introduced a new generalized coherence index, the global 2-coherence, and established

two connections among the mutual coherence, the global 2-coherence, and the restricted isometry constant. Based

on these relations, we analyzed the performance of WOMP as well as OMP for their recovery ability of sparse

representations in both ideal noiseless and noisy cases. In particular, for the noiseless case, we showed an improved

bound over the best known results on the restricted isometry constant for successful recovery using OMP.

APPENDIX

Proof of Lemma II.2: It is easy to show that νk increases with k while νk√
k

decreases with k. Therefore, the

first and the last relations follow immediately.

We now prove the second inequality.

νk−1(Φ) = max
i∈[d]

max
Λ⊆[d]\{i}
|Λ|≤k−1

∑
j∈Λ

〈φi, φj〉2
 1

2

= max
Λ⊆[d]
|Λ|≤k

max
i∈Λ

 ∑
j∈Λ\{i}

〈φi, φj〉2
 1

2

= max
Λ⊆[d]
|Λ|≤k

‖ΦTΛΦΛ − I‖∞,2,

where ΦΛ ∈ Rn×|Λ| is a submatrix of Φ with columns indexed in Λ.

On the other hand, according to Proposition 2.5 in [13], one has

δk = max
Λ⊆[d]
|Λ|≤k

‖ΦTΛΦΛ − I‖2,2

≥ max
Λ⊆[d]
|Λ|≤k

‖ΦTΛΦΛ − I‖∞,2

= νk−1(Φ),

which completes the proof for the second inequality.
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Next we prove the third inequality. Consider the Gram matrix G = ΦTΛΦΛ, where its entries gij = 〈φi, φj〉.

Clearly its diagonal entries gii = 1. Then by the Gershgorin Circle Theorem, each eigenvalue λ of G is in at least

one of the disks {z : |z − 1| ≤ Ri}, where Ri =
∑
j∈Λ
j 6=i
|gij |. Equivalently, we have

1−Ri ≤ λ ≤ 1 +Ri

for some i. Therefore,

δk ≤ max
i
Ri = max

i

∑
j∈Λ
j 6=i

|gij |

≤ max
i

√
k − 1

(∑
j∈Λ
j 6=i

|gij |2
) 1

2

≤
√
k − 1νk−1.

Proof of Lemma II.3: For i ∈ [d] \ Λ, we have

|〈f, φi〉| = |〈Φa+ w, φi〉|

≤ |〈Φa, φi〉|+ |〈w, φi〉|

≤ νk‖a‖2 + ‖w‖2‖φi‖2

≤ νk‖a‖2 + ε.

Taking maximum on both sides completes the proof of the first inequality.

Now for i ∈ Λ,

max
i∈Λ
|〈f, φi〉| = max

i∈Λ
|〈Φa+ w, φi〉|

≥ max
i∈Λ
|〈Φa, φi〉| −max

i∈Λ
|〈w, φi〉|

≥
√

1− δk√
m
‖Φa‖2 −max

i∈Λ
‖w‖2‖φi‖2

≥
√

1− δk√
m
‖Φa‖2 − ε.

This completes the proof of the second inequality.

Proof of Theorem III.1: First, we show that WOMP recovers the correct support of a.

We start with the first iteration. Note that r0 = f . We need to show

max
i∈[d]\Λ

|〈f, φi〉| < ρmax
i∈Λ
|〈f, φi〉|. (10)

By Lemma II.3, we have

max
i∈[d]\Λ

|〈f, φi〉| ≤ νk‖a‖2 + ε, (11)
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and

max
i∈Λ
|〈f, φi〉| ≥

1− δk√
k
‖Φa‖2 − ε

≥ 1− δk√
k
‖a‖2 − ε. (12)

Now since ‖a‖2 ≥
√
k|amin|, by imposing conditions (6) and (7), we get

νk‖a‖2 + ε < ρ

(
1− δk√

k
‖a‖2 − ε

)
,

and relation (10) follows from the two bounds (11) and (12). Hence, WOMP only selects one atom from {φi}i∈Λ

in the first iteration.

Now we argue that by repeatedly applying the above procedure, we are able to correctly recover the support of

a. In fact, we have for the s-th iteration

rs = f − PΛs
(f)

= Φa+ w − (PΛs
(Φa) + PΛs

(w))

= (I − PΛs
)Φa+ (I − PΛs

)w

= Φas + ws

where

Φas = (I − PΛs
)Φa

and

ws = (I − PΛs
)w.

Therefore, 〈Φas, φi〉 = 0 for i ∈ Λs. Note that (k − s) components of as are the same as that of a. Then

the result follows from the inequality ‖as‖2 ≥
√
k − s|amin| and Lemma II.3 for s-th iteration. In addition,

the orthogonal projection step guarantees that the procedure will not repeat the atoms already chosen in previous

iterations. Therefore, the correct support of the noiseless representation a can be recovered exactly after k iterations.

Next, by following the idea of the proof of Theorem 5.1 in [6] and using the relation σmin ≥ 1 − δk, where

σmin denotes the smallest singular value of Φ, we are able to prove the error bound (8).
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