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ABSTRACT

A combination of the hierarchical Dirichlet process (HDP)

and the Potts model is proposed for the joint segmenta-

tion/classification of a set of images with shared classes.

Images are first divided into homogeneous regions that are

assumed to belong to the same class when sharing common

characteristics. Simultaneously, the Potts model favors con-

figurations defined by neighboring pixels belonging to the

same class. This HDP-Potts model is elected as a prior for

the images, which allows the best number of classes to be

selected automatically. A Gibbs sampler is then designed to

approximate the Bayesian estimators, under a maximum a

posteriori (MAP) paradigm. Preliminary experimental results

are finally reported using a set of synthetic images.

Index Terms— Image, segmentation, Bayesian nonpara-

metrics, hierarchical Dirichlet process, Potts model.

1. INTRODUCTION

Image segmentation is a key step for image analysis and inter-

pretation. It has numerous applications such as video surveil-

lance [1] and medical diagnosis [2], among others. Image seg-

mentation consists of dividing the observed scene in spatially

homogeneous regions. It is formalized by assigning a unique

label value to the set of pixels sharing common characteris-

tics (e.g., pixel statistics). In this paper, this set is referred to

as a class, defined by pixels within a given class distributed

according to the same probability density function.

Segmenting a collection of multiple images can be con-

ducted by resorting to a dedicated algorithm applied on each

image separately. Among popular segmentation algorithms,

the Bayesian ones exploit a prior model on the image. Within

the Bayesian framework, a standard approach consists of

resorting to the Potts model as a prior for the labels [3].

It strengthens that neighboring pixels share the same label

value. However, in this approach, the number of classes

should be set beforehand, e.g, using prior knowledge or by
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cross-validation. Selecting automatically the best number

of clusters is a challenge. It can be automatically inferred

by using estimation algorithms able to explore parameter

spaces with variable dimensions, such as reversible jump

Markov chain Monte Carlo (RJMCMC) [4] algorithms, or

by comparing the concurrent models of distinct dimensions

with an appropriate criterion (e.g., Bayesian information cri-

terion [5]). More recently, Bayesian nonparametrics (BNP)

approaches have proven their efficiency to address this issue

[6]. BNP methods allow the classes assignments and the

corresponding parameters (including the number of classes)

to be deduced by exploring the observations which can be

infinite. An other method is to combine one of the BNP, like

the Dirichlet Process, with the Potts model [7].

This paper considers the specific case of a set of images

with shared classes to be segmented jointly. For example,

when analyzing a pair of images of urban and suburban areas,

respectively, the classes ”tree” and ”house” are expected to

be shared with different proportions. In that case, it could be

relevant to take the strong shared statistical information into

account to improve the class parameter estimation. The hier-

archical Dirichlet process (HDP) [8] is a suitable extension of

the Dirichlet process (DP) to address this issue. The first stage

of the modeling identifies groups of similar pixels, or regions,

in each image. Then, in a second stage, the regions with same

characteristics among the collection of images to be analyzed

are identified as belonging to the same class. Furthermore,

in this work, we propose to combine the HDP with the Potts

model. Thanks to the use of HDP, as previously mentioned,

the number of classes can be automatically inferred while the

Potts model exploits spatially correlations within each image.

Our contribution is twofold: first, we derive a proper prior

model combining the HDP and the Potts model; secondly, a

Gibbs sampler is designed to explore the parameter space and

approximate the Bayesian estimators associated with the re-

sulting posterior distribution.

The paper is organized as follows. In section 2, the prior

model is presented. Section 3 details the posterior and the

proposed sampling algorithm. Section 4 reports preliminary

simulation results obtained on synthetic data. Section 5 gives

a synthesis and some perspectives for our model.



2. JOINT SEGMENTATION MODELING

2.1. Observation model

Let us define J as the number of images to be jointly seg-

mented. Image j (j = 1, . . . , J) is composed of Nj pixels

whose observed gray levels, denoted yjn (n = 1, . . . , Nj),
are assumed to be distributed according to a probability dis-

tribution f(·|·) parameterized by θjn

yjn|θjn ∼ f(·|θjn).

These J images are assumed to be composed of K homoge-

neous classes. Thus, all pixels (j, n) belonging to the class k
are characterized by a common statistical parameter θjn=φk,

with φk the parameter corresponding to class k. Note that the

distribution over the whole image is then a mixture of distri-

butions. In a given image, a region is defined as a set of pixels

that own the same region label value; a class k is the union of

all the regions assigned the class label k in all images. In the

sequel of this paper, the following notations are used

– cjn = t: pixel n of image j is in region labeled t

– djt = k: the region labeled t of image j is assigned the

class label k

– ψjt: parameter of the region t in image j

– νjt: number of pixels in region t in image j

– mjk: number of regions with class label k in image j

– mj· =
∑

kmjk: number of regions in image j

– m·k =
∑

jmjk: number of regions with class label k

– K: number of classes

2.2. Hierarchical Dirichlet Process

Let us define Gj as the probability distribution of the parame-

ters θjn. That probability density Gj is considered unknown.

In a Bayesian setting, it is assigned a prior distribution. Thus,

prior distributions on the space of prior distributions are re-

quired. Bayesian nonparametrics models were considered as

a solution to this issue and more particularly the DP

Gj ∼ DP (α0,G0) for j ∈ {1, . . . , J}

with Gj =
∞
∑

t=1

τjtδψjt

Within this setting, Gj is an infinite sum of Dirac measures

on ψjt (ψjt ∼ G0) with weights τjt. For classes to be shared

among the images, the base distributions should have com-

mon atoms φk. G0 is then defined as a discrete prior whose

masses are concentrated on the values of the atoms. These

atoms are independently distributed according to a defined

probability measure H with probability density function h,

φk ∼ H; the number of atoms K is supposed unknown. A

DP can be chosen as a prior for G0,

G0 ∼ DP (γ,H) for G0 =
∞
∑

k=1

πk δφk

This model has been introduced as hierarchical Dirichlet pro-

cess [8]. To better understand the model, let us introduce a

metaphor, namely the Chinese restaurant Process (CRP). The

CRP is a description of the DP model based on the Pólya urn

properties [9]. The equivalent of this metaphor for the HDP

is the Chinese restaurant franchise (CRF). A franchise of J
restaurants is considered, serving the same menu with a pos-

sibly infinite number of dishes. Here, a customer corresponds

to a pixel, a table to a region, a dish to a class and a restaurant

to an image. Thus, we have a set of images with a possibly in-

finite number of classes that can be shared among the images.

The CRF is explained directly using the analogy.

Let us consider pixel n in image j. This pixel has a

positive probability to be located in an existing region t
(t = 1, . . . ,mj·), proportional to the number νjt of pixels

in the region or to be assigned to a new one, proportional

to α0. If the pixel is associated to the region t, it will be

parameterized by ψjt of the region; indeed, all pixels in a

region are in the same class. If a new region is chosen, then

the associated class parameter must be sampled. Here also,

an existing parameter φk can be picked proportionally to the

number of regions in the set that are assigned to the class m·k
and a new one proportionally to γ. It is written:

θjn|θ
−n
j , α0,G0 ∼

mj·
∑

t=1

νjt
Nj − 1 + α0

δψjt
+

α0

Nj − 1 + α0
G0

ψjt|ψ
−jt, γ,H ∼

K
∑

k=1

m·k
m·· + γ

δφk
+

γ

m·· + γ
H

with θ−nj = {θjn′ | n′ = 1, . . . , Nj , n
′ 6= n} and

ψ−jt={ψj′t′ | j
′=1, . . . , J ; t′=1, . . . ,mj′·; (j

′, t′) 6=(j, t)}.
It clearly appears that α0 and γ tune the probability of having

a new table and a new dish, respectively. Thus they adjust the

average number of tables in the restaurants and the average

number of proposed dishes.

2.3. Prior model

The main objective of the proposed strategy consists of

segmenting a collection of images. As a consequence,

the class parameters can be considered as nuisance pa-

rameters and are marginalized out from the joint poste-

rior distribution, i.e., only inference of the label variables

c = {cjn | j = 1, . . . , J ;n = 1, . . . , Nj} and

d = {djt | j = 1, . . . , J ; t = 1, . . . ,mj·} is conducted. Fur-

thermore, to promote spatially compact regions within an

image, we propose to resort to a Markov random field prior

for these labels. The latter can be divided into two factors,

the first denoted ϕ corresponding to the terms induced by

unique cliques, where a clique is a set of pixels in the same

neighborhood. The second term ρ is defined by the cliques of

more than one elements for combining Potts-Markov model

and DP [7]
Pr(c,d) ∝ ϕ(c,d)ρ(c,d) (1)

where ϕ(c,d) is the factor corresponding to the singletons

and is defined as the prior induced by the HDP. In (1), ρ(c,d)



is set to be a Potts model on the class assignments. Thus,

ϕ(c,d) =
J
∏

j=1











Nj
∏

n=1

1

(α0 + n− 1)



α
mj·

0

[

mj·
∏

t=1

Γ(νjt)

]







[

m··
∏

t=1

1

(γ + t− 1)

]

γK

[

K
∏

k=1

Γ(m·k)

]

(2)

and

ρ(c,d) =
J
∏

j=1

exp

(

∑

n∼q

β δ(djcjn , djcjq )

)

(3)

where n ∼ q means that pixel q is a neighbor of pixel n and

δ(djcjn , djcjq ) = 1 if djcjn = djcjq and δ(djcjn , djcjq ) = 0
otherwise. The granularity parameter β tunes the spatial cor-

relation. It is assumed to be fixed in this work, but could be

included within the Bayesian model to be estimated jointly

with the parameters of interest following, e.g., the strategy

proposed in [10].

The observations are assumed to be independent condi-

tionally upon the class they belong to. Thus, the likelihood

can be factorized as:

f(y|c,d) =
K
∏

k=1

f(yAk
)

where Ak = {(j, n)|djcjn = k} is the set of pixels in class k,

yAk
= {yjn|(j, n) ∈ Ak} and

f(yAk
) =

∫





∏

(j,n)∈Ak

f(yjn|φk)



h(φk)dφk (4)

which can be calculated analytically in the conjugate case that

we choose.

3. HIERARCHICAL IMAGE SEGMENTATION

In a Bayesian setting, the estimates of the parameters of inter-

est are computed from the posterior distribution:

Pr(c,d|y) ∝ f(y|c,d)Pr(c,d). In this work, the latter

is not analytically tractable. Classically, we propose to ex-

plore it using MCMC methods. The proposed algorithm is a

single-site Gibbs sampler [11] which consists in sampling one

after the other the unknown variables conditionally upon the

observed images and all the other variables. In the considered

framework, we are only interested in the segmentation, hence

the class parameter vectors are marginalized. It should be

noted that they could be easily sampled afterwards condition-

ally upon the class assignment variables. As for the region

and class assignments, they are repeatedly sampled according

to a Chinese Restaurant Franchise [8], which is modified to

account for the Potts interaction between neighboring pixels

by including a term of the form exp(
∑

n∼q β δ(djcjq , k)), see

equations (5) to (8). An iteration of the proposed sampler is

described on Algo. 1.

Algorithm 1 Gibbs sampler

for j = 1, . . . , J do

for n = 1, . . . , Nj do

Sample cjn ∼ p(cjn |c
−jn,d,y)

end for

for t = 1, . . . ,mj· do

Sample djt ∼ p(djt |c,d
−jt,y)

end for

end for

3.1. Sampling c

The conditional distribution of cjn given all the other vari-

ables is proportional to the product of the prior over cjn as-

sociated to the likelihood of yjn. Due to the exchangeability

of the region assignments, we can consider cjn to be the last

one sampled. Therefore, either cjn = t ≤ mj· or cjn = tnew.

As defined in the previous section, cjn takes value t or tnew

proportionally to ν−jnjt and α0, respectively. In the first case,

the corresponding likelihood of yjn is f(yjn |yA−jn

djt

) where

f(yjn |yA−jn

djt

) = f(yjn,yA−jn

djt

)/f(y
A

−jn

djt

). The likelihood

of yjn corresponding to cjn = tnew, can be deduced integrat-

ing out with respect to the different possibilities of djtnew ,

p(yjn | cjn = tnew, c−jn,d,y−jn) (5)

∝

{

∑

k

m·k exp

(

∑

n∼q

βδ(djcjq , k)

)

+ γ

}−1

{

K
∑

k=1

m·k exp

(

∑

n∼q

βδ(djcjq , k)

)

f
(

yjn |yA−jn

k

)

+ γf(yjn)

}

with f(yjn) =
∫

f(yjn|φ
new)h(φnew)dφnew. Then,

Pr(cjn = t |c−jn,d,y) (6)

∝

{

ν−jnjt f(yjn |yA−jn

djt

) if t ≤ mj·

α0 p(yjn | cjn = tnew, c−jn,d,y−jn) if t = tnew

If a new region is chosen, the assigned class must be chosen,

Pr(djtnew = k |c,d−jt
new

) (7)

∝











m·k exp

(

∑

n∼q

β δ(djcjq , k)

)

f(yjn |yA−jn

k

) if k ≤ K

γ f(yjn) if k = knew

3.2. Sampling d

As for the region assignments, the probability of djt condi-

tionally to all the other variables is proportional to the prior

times the likelihood of yjt = {yjq | cjq = t}. Moreover, ei-

ther djt = k ≤ K or djt = knew. Thus, djt takes the number

of an existing class k proportionally to the number of regions

that are assigned to class k, m·k. It also depends, through

the Potts model, on the number of neighboring pixels of the



region also labeled k. Conversely, djt takes a new value pro-

portionally to γ.

Pr(djt = k |c,d−jt,y) (8)

∝











m−jt
·k exp

(

∑

n∼q

β δ(djcjq , k)

)

f(yjt |yA−jt

k

) if k ≤ K

γ f(yjt) if k = knew

4. FIRST EXPERIMENTAL RESULTS

The algorithm is tested on three (J = 3) piecewise constant

images y⋆j of size 50×50 (Nj = 2500, j = 1, . . . , J), shown

in Fig. 1. They are composed of squares with gray levels:

−50, −25, 25, 50 and the background is set to 0. The ob-

served images yj are defined as the true ones y⋆j corrupted

by an additive noise: yj = y⋆j + ǫj . The ǫj are independent

and spatially white with ǫjn ∼ N (0, σ2
y). The likelihood then

reads f(y|θ) =
∏J

j=1

∏Nj

n=1N (yjn; θjn, σ
2
y).

Fig. 1. Synthetic true images

As for the prior model, h is chosen as a Gaussian den-

sity: N (µH , σ
2
H) where µH = 0 and σH = 100 so that h

is conjugate to the likelihood. This leads to the closed-form

calculation of the integrated likelihood (4). The scalar hyper-

parameters are chosen as: γ = 1 and α0 = 1. The Potts

model parameter is set to β = 0.25.

In addition to the proposed method, two different algo-

rithms have been implemented as a comparison: 1/ the one in

[7] which does not account for shared classes, 2/ an algorithm

solely based on an HDP prior model, without interactions be-

tween the neighboring pixels.

The pixel classes are estimated based on the marginal

maximum a posteriori of each pixel. They are numerically

computed as the maximizer of the empirical histogram of the

simulated djcjn (except the ones of the burn-in period).

The results of the segmentation are represented in Fig. 2

and 3 for different values of σy . For σy = 1, the rate of correct

affectation is equal to 100% for the algorithm presented in [7]

and for the proposed one. The partition induced using an HDP

as prior is also quite similar to the true one. The observed im-

ages are not very noisy, that makes the inference easier. While

σy = 5, the partition induced for more than 99% of the pixels

is good, using the proposed algorithm or the one described in

[7]. Here, it can be seen that the method in [7] gives a cor-

rect classification for each image but does not allow the pixels

sharing same characteristics within the images to be assigned

the same class label contrary to the proposed method. Indeed,

the background and the squares with same/different gray lev-

els are well recognized but not jointly in the images. If only

a classification image-by-image is needed, the method in [7]

Fig. 2. Segmentation obtained for σy = 1. From left to right:

Observed, DP + Potts [7], HDP and HDP + Potts

Fig. 3. Segmentation obtained for σy = 5. From left to right:

Observed, DP + Potts [7], HDP and HDP + Potts

can be sufficient. On the opposite, our method is well appro-

priate for a joint classification of the set of images. When only

the HDP is put as prior, the number of classes is overestimated

since the images are noisy and the neighboring information is

not taken into account to favor compact regions. As expected,

the proposed algorithm gives a correct joint segmentation of

the set of synthetic images.

5. CONCLUSION

A new model as well as a new algorithm have been proposed

for the segmentation of a set of images with shared classes

based on the hierarchical Dirichlet Processes and the Potts

model. A first experimental validation has been done on syn-

thetic images.

Future works will consist of investigating the influence

of the various parameters inherent to the model. Images of

various types will be also considered, like textured images

or images with areas that are not piecewise constant. The

model will then be applied on real images, e.g. encoun-

tered in remote sensing applications. Using these images,

it will be possible to test the algorithm on likewise images

presented in the introduction: city, countryside... On the al-

gorithmic side, for a given configuration, the complexity is

O(
∏J

j=1[Nj(mj· +K)]), which strongly depends on the im-

ages to be segmented. Thus, we aim at developing a method

which allows to update the region label of a set of pixels

conjointly, using for example the Swendsen-Wang algorithm

[12], as for the Dirichlet Process [13].
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