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ABSTRACT

Monte Carlo (MC) methods are commonly used in
Bayesian signal processing to address complex inference
problems. The performance of any MC scheme depends on
the similarity between the proposal (chosen by the user) and
the target (which depends on the problem). In order to ad-
dress this issue, many adaptive MC approaches have been
developed to construct the proposal density iteratively. In
this paper, we focus on adaptive Markov chain MC (MCMC)
algorithms, introducing a novel class of adaptive proposal
functions that progressively “stick” to the target. This pro-
posed class of sticky MCMC methods converge very fast to
the target, thus being able to generate virtually independent
samples after a few iterations. Numerical simulations illus-
trate the excellent performance of the sticky proposals when
compared to other adaptive and non-adaptive schemes.

Index Terms— Statistical inference, Bayesian signal pro-
cessing, Monte Carlo methods, adaptive MCMC

1. INTRODUCTION

A common problem in statistical signal processing is infer-
ring some parameters of interest given a set of observations
or measurements. Bayesian inference addresses this problem
by defining a prior probability density function (pdf), that en-
compasses all the information available before performing the
experiment, and a likelihood (i.e., an input-output model), and
constructing the posterior pdf through Bayes theorem. The
optimal estimator of the parameters is then typically an inte-
gral function of the posterior pdf. In most practical applica-
tions this integral cannot be solved analytically, and Monte
Carlo (MC) methods are commonly used to approximate it
[1, 2, 3].
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MC methods can be divided into two large families [2,
4]: importance sampling (IS) and Markov chain Monte Carlo
(MCMC). In both families, samples are initially drawn from a
density chosen by the user (the proposal pdf), and then either
weighted appropriately (in IS) or checked for acceptance (in
MCMC) to guarantee that the final set of weighted samples
is distributed according to the target (which depends on the
problem). However, regardless of the family, the performance
of any MC algorithm is directly related to the similarity be-
tween the proposal and target densities. Consequently, many
adaptive IS [5, 6, 7, 8, 9] and adaptive MCMC [10, 11, 12, 13]
approaches have been developed to construct the proposal
density iteratively. Nevertheless, several issues still remain:
mixing for multi-modal targets with narrow peaks, applicabil-
ity to a large class of practical densities, scalability to high-
dimensional problems, etc.

In this paper, we address the first two issues, developing
a universal method that allows us to sample virtually from
any univariate target density. Furthermore, the proposed al-
gorithm can be easily applied within some other scheme (like
the Gibbs sampler) to sample efficiently from multivariate
pdfs. Starting from a set of support points (either selected
by the user or chosen randomly), our aim is building a non-
parametric approximation of the target iteratively using some
simple and efficient construction. This goal is achieved by
incorporating previously drawn samples to the set of support
points according to some suitable rule. As a result, the pro-
posed approach builds a sequence of proposal functions that
progressively “stick” to the target. The novel class of sticky
MCMC methods includes the recently proposed IA2RMS
scheme as a particular case [14, 15], which in turn builds
upon the well-known ARMS algorithm [16]. Sticky pro-
posals converge very fast to the target, thus allowing us to
generate virtually independent samples after a few iterations
and improving the performance of other competing (both
adaptive and non-adaptive) techniques.

The paper is structured as follows. Firstly, Section 2 states
the problem and introduces the notation. Then, adaptive MC
algorithms are briefly reviewed in Secion 3, and the novel
adaptive sticky MCMC approach proposed is described in de-
tail in Section 4. Finally, numerical simulations are provided
in Section 5, and the conclusions close the paper in Section 6.



2. PROBLEM STATEMENT

Bayesian signal processing usually requires computing some
moment of a posterior probability density function (pdf),

I =
∫
X
f(x)p(x|y)dx, (1)

where x ∈ X ⊆ RDx is the set of parameters to be in-
ferred, f(x) can be any square-integrable function, y ∈ Y ⊆
RN×Dy is the set ofN observations or measurements, and the
posterior pdf, p(x|y), is obtained through Bayes theorem:

p(x|y) =
p(y|x)p(x)

p(y)
, (2)

where p(x) is the prior density, p(y|x) is the likelihood, and
p(y) =

∫
X p(y|x)p(x)dx is the evidence. For instance, (1)

corresponds to the well-known and widely used minimum
mean squared error (MMSE) estimator when f(x) = x. Un-
fortunately, an analytical solution of (1) cannot be found in
most practical applications. In these cases, Monte Carlo (MC)
methods are commonly used to approximate I .

3. ADAPTIVE MONTE CARLO

MC methods are simulation-based techniques that provide an
approximate solution to Eq. (1). For the sake of simplicity,
let us denote the posterior or target pdf as π̄(x) = 1

Z(y)π(x),
where Z(y) = p(y). If we are able to draw samples xt ∼
π̄(x) for t = 1, . . . , T , then I can be approximated as

Î =
1
T

T∑
t=1

f(xt). (3)

However, sampling directly from the target is usually unfea-
sible. In this cases, samples are drawn from some simpler
proposal pdf, i.e., xt ∼ q(x) for t = 1, . . . , T , and then (1) is
approximated as

Î =
1
T

T∑
t=1

w(xt)f(xt), (4)

where w(xt) denotes some properly selected weights. Two
large families of MC methods exist [2, 4]:

• Importance sampling (IS) algorithms, that weight the
samples drawn from q(x) as w(xt) = π̄(xt)

q(xt) in order to
obtain unbiased and consistent estimators.1

• Markov chain Monte Carlo (MCMC) schemes, that
construct a Markov chain whose stationary distribution

1Let us remark that other weights are possible in multiple importance
sampling (MIS) schemes, where multiple proposals (q1, . . . , qM ) are used
instead of a single one. See [17] for further details.

is the target, π̄(x), by drawing samples from q(x) and
accepting or rejecting them. In this case, w(xt) ∈ Z+

is simply the number of times that each sample is used
to construct the final estimator.

In both families, as well as in the many hybrid approaches
described in the literature that combine IS and MCMC (see,
e.g., [18]), the performance of the method is directly related
to the similarity between the proposal and the target densi-
ties. For this reason, many adaptive IS and adaptive MCMC
methods have been proposed. In all cases, the goal is ex-
ploiting the information from the previously drawn samples
to construct an improved sequence of proposal densities:
q1(x), q2(x|x1), . . . , qT (x|x1:T−1).

Focusing on adaptive MCMC methods, we can distin-
guish between parametric approaches, which update some
(or all) of the parameters of some pre-defined proposal den-
sity, and non-parametric approaches, that build a proposal
incrementally by using some suitable procedure. Regarding
the first class of methods, they include the seminal work by
Haario, where he used a random walk Gaussian proposal and
adapted the covariance matrix using an empirical estimator
[10]. This work was recently extended to a mixture of Gaus-
sians, where all the parameters were updated using simple
empirical estimators [13]. Regarding the second class, the
best known example is the adaptive rejection Metropolis sam-
pling (ARMS) algorithm [16], which constructs a piecewise
linear proposal in the log-domain using a set of support points
that is built iteratively from previously rejected samples. Al-
though ARMS provides a good performance in many applica-
tions, there is a flaw in its adaptive mechanism that prevents
the full convergence of the proposal to the target, as shown
in [14, 15], where an improved method was also proposed:
independent doubly adaptive rejection Metropolis sampling
(IA2RMS). The novel class of methods described in the fol-
lowing section generalizes both IA2RMS and ARMS.

4. ADAPTIVE INDEPENDENT STICKY MCMC

Let π̄(x) ∝ π(x), with x ∈ X ⊆ R, be a bounded target pdf.
Let S0 = {s0, . . . , sm0} be the initial set of support points (ei-
ther selected by the user or chosen randomly), withm0 = |S0|
denoting the cardinality of S0, and St = {s1, . . . , smt

} be the
set of support points at the t-th iteration. An adaptive sticky
MCMC method is composed of the following three stages:

1. Construction of the proposal: Given St, build a pro-
posal function qt(x|St) using some appropriate non-
parametric procedure.

2. MCMC stage: Apply some MCMC algorithm to obtain
xt+1 given xt, employing qt(x|St) as the proposal pdf.

3. Update of the support set: Perform some suitable sta-
tistical test to decide whether a new point is added to
St in order to obtain St+1 or not.



In the following sections we describe in detail an adaptive
sticky MCMC algorithm.

4.1. Adaptive independent sticky Metropolis (AISM)

The simplest method belonging to the class of sticky MCMC
is the adaptive independent sticky Metropolis (AISM) tech-
nique. At each iteration, AISM builds a non-parametric pro-
posal function using one of the approaches described in Sec-
tion 4.2, performs a single Metropolis-Hastings (MH) step
using this proposal, and decides whether the set of support
points should be updated according to a suitable rule that ful-
fills the conditions enumerated in Section 4.3. Table 1 sum-
marizes the AISM algorithm. The key novelty of AISM is
the statistical control applied in Step 3 to decide whether the
set St should be updated or not. The point z, rejected in the
previous MH test, is added to St with probability

Pa(z) = ηt(z, dt(z)), (5)

where dt(z) denotes any valid distance function between the
target and proposal functions (like the L1 distance defined in
Eq. (6) or the distance in Eq. (7) that is used in the simu-
lations) evaluated at z, and ηt(z, dt(z)) is some suitable ac-
ceptance rule, as detailed in Section 4.3. The rationale behind
this test is to use information from the target density in order
to include in the support set only those points where the pro-
posal pdf differs substantially from the target. Note that, since
z is always different from the current state (i.e., z 6= xt for all
t), the proposal pdf is independent from the current state ac-
cording to Holden’s definition [19], and thus the theoretical
analysis of AISM is greatly simplified [20].

4.2. Construction of the sticky proposals

There are many valid alternatives for the construction of a
suitable sticky proposal (SP) pdf. Given the set of support
points St, there are three properties that an SP must satisfy:

1. The proposal function always has to be positive, i.e.,
qt(x|St) > 0 for all x ∈ X and any valid St.

2. The L1 distance between π(x) and qt(x) must tend to
zero as the number of support points increases, i.e.,

‖π(x)− qt(x|St)‖1 =
∫
X
|π(x)− qt(x|St)|dx→ 0

(6)
as mt →∞ for all x ∈ X .

3. Samples can be drawn directly and easily from qt(x|St)
using some exact sampling procedure.

All of the approaches described in [14, 15], which build a
piecewise constant or linear proposal pdf (either in the pdf’s
domain or in the log-domain) directly from the support points
with a suitable construction for the tails, fulfill these three
properties and can thus be used here. Other alternative proce-
dures can also be found in the literature [16, 21, 22].

Table 1. Adaptive Independent Sticky Metropolis (AISM)
For t = 0, . . . , T − 1:

1. Construction of the proposal: Build a proposal function
qt(x|St) via a suitable interpolation procedure using the
set of support points St (see Section 4.2).

2. MH step:

2.1 Draw x′ ∼ qt(x|St).

2.2 Set xt+1 = x′ and z = xt with probability

α = min

»
1,
π(x′)qt(xt+1|St)

π(xt+1)qt(x′|St)

–
.

Otherwise (i.e., with probability 1−α), set xt+1 =
xt and z = x′.

3. Test to update St: Let ηt(z, dt(z)) be a suitable update
rule (see Section 4.3), with dt(z) denoting some valid dis-
tance function. Set

St+1 =

(
St ∪ {z}, with prob. Pa(z) = ηt(z, dt(z)),

St, with prob. 1− Pa(z),

4.3. Update of the set of support points

A suitable choice of the function, ηt(z, d) with d = dt(z), is
required in AISM. Any valid test function ηt(z, d) must fulfill
the following properties:

1. ηt(z, d) : X × R+ → [0, 1].

2. ∂ηt(z,d)
∂d ≥ 0.

3. ηt(z, 0) = 0.

4. lim
d→∞

ηt(z, d) = 1.

Note that, for a given value of z, ηt satisfies all the proper-
ties of a continuous distribution function (cdf) associated to
a positive random variable. Therefore, any pdf for positive
random variables can be used to define a valid test function
ηt through its corresponding cdf. Note also that ηt controls
the trade-off between the performance and the computational
cost of AISM, since Pa(z) = ηt(z, dt(z)) is the probability
of incorporating z to the set of support points. Indeed, the use
of a large number of support points improves the performance
(as the proposal becomes closer to the target) at the expense
of a higher storage and computational cost. Hence, a good
adaptive strategy should only include new points in regions
where there is a large discrepancy between the proposal and
the target functions. In the following section we provide one
example of such test function.

5. NUMERICAL SIMULATIONS

In order to check the performance of AISM, we test it on a
mixture model with heavy tailed components. More specifi-



Algorithm Mean SD ACF(1) ACF(10) ACF(50) mT cT c̄T Time
Mix 1

Slice 19.5039 6.0238 0.8759 0.8230 0.6244 - 0.9934 1.0089 0.8257
ARMS 20.2803 10.3538 0.8593 0.8112 0.6848 42.5690 0.7417 1.7490 1.0000
AISM 19.1416 2.7723 0.1182 0.0951 0.0785 112.7360 0.9933 1.0085 0.4679

Mix 2 (κ = 0.1)
Slice 53.0797 14.5540 0.6835 0.3562 0.2666 - 0.9563 1.3878 0.6670
ARMS 61.1859 3.4341 0.0625 0.0219 0.0079 59.3500 0.7651 1.6203 1.0000
AISM 61.9253 1.6282 0.0283 0.0015 0.0005 121.1240 0.9575 1.1836 0.4344

Mix 2 (κ = 0.4)
Slice 33.4459 4.6767 0.6933 0.5131 0.2230 - 0.9895 1.0113 0.4557
ARMS 33.9293 1.0835 0.1451 0.0375 0.0047 57.7728 0.9622 1.0394 1.0000
AISM 33.8768 0.7482 0.0247 0.0013 0.0007 131.7785 0.9896 1.0112 0.5212

Table 2. Results of the slice sampler, ARMS and AISM for Mix1 (upper portion) and Mix2(κ) (lower portion). Each row
shows the mean, the standard deviation (SD), the autocorrelation function (ACF(k)) at lags k ∈ {1, 10, 50}, the final number
of support points (mT ), the final estimates of the normalizing constant (cT , c̄T ), and the normalized computing time.

cally, we consider the following mixtures of generalized ex-
ponential power (GEP) distributions:

1. Mixture of heavy and normal-tailed symmetric distribu-
tions (Mix 1):

π̄(x) = 0.6GEP(0, 1, 1/2, 1) + 0.4GEP(50, 1, 2, 1).

2. Mixture of heavy and normal-tailed asymmetric distri-
butions (Mix 2 (κ) with κ ∈ {0.1, 0.4}):

π̄(x) = 0.4GEP(0, 1, 1/2, 2)+0.6GEP(50, 1, 1/2, κ).

The notation GEP(µ, σ2, α, κ) indicates a GEP distribution
with location, scale, shape and asymmetry parameters µ, σ,
α and κ, respectively. The shape parameter α controls the
tails of the density function and determines whether it is flat
or peaked. The parameter κ is an inverse scale factor which
controls the asymmetry of the distribution. When α = 2
(and κ = 1) we have the Gaussian distribution, and when
α = 1 (and κ = 1) we have the Laplacian distribution. A
smaller value of α corresponds to a heavy tailed distribution,
and when α → 0 we have the Dirac mass centered at µ. The
GEP distribution has the exponential power (EP) distribution,
which has been successfully applied in many fields (see [23]
for a review), as special case for κ = 1.

In the sequel we test the performance of AISM, using a
piecewise linear proposal directly in the pdf’s domain (see
[14, 15] for further details), and a random test function:

η(z, dt(z)) = dt(z)β ,

dt(z) = 1− min{π(z), qt(z|St)}
max{π(z), qt(z|St)}

, (7)

with β = 1.2 For the sake of comparison we use ARMS [16]
and the slice sampler [24]. We generate T = 5, 000 draws
from each algorithm and compute (averaged over 2,000 in-
dependent runs without removing any burn-in samples) the
mean, the autocorrelation function, and the final number of
support points. We start ARMS and AISM with the same ini-
tial value and set of support points, S0 = {−1, 1, 20}. The
results for two different experiments are shown in Table 2. In
general, the performance of the algorithms in terms of esti-
mated mean is similar (note that the true mean is 20 in the
first case, 62 in the second, and 34 in the third). However,
AISM substantially improves the performance of the other
two methods in terms of the standard deviation of the esti-
mates and the auto-correlation of the samples generated. Fur-
thermore, AISM is also more efficient in terms of normalized
computation time than the other two algorithms.

6. CONCLUSIONS AND FUTURE LINES

In this paper, we have introduced a novel class of adaptive
MCMC methods which are based on iteratively building a
non-parametric proposal function that progressively “sticks”
to the target pdf. The AISM algorithm described in the pa-
per is able to provide virtually independent samples and an
improved performance w.r.t. other state-of-the-art adaptive
(ARMS) and non-adaptive (slice sampler) techniques in one-
dimensional problems. Future lines include exploring the use
of sticky proposals with more sophisticated MCMC schemes,
like the multiple try Metropolis (MTM) [25, 26, 27], and test-
ing the proposed approach in higher dimensional problems
by embedding it within another MCMC technique, like Gibbs
sampling or the hit-and-run algorithm.

2Note that β ∈ (0,+∞). When β < 1, the incorporation of new support
points to St is facilitated, whereas it is discouraged with β > 1.
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