
ar
X

iv
:1

60
6.

03
68

5v
1

 [c
s.

LG
]

12
 J

un
 2

01
6

EFFICIENT KLMS AND KRLS ALGORITHMS: A RANDOM FOURIER FEATUR E
PERSPECTIVE

Pantelis Bouboulis, Spyridon Pougkakiotis, S. Theodoridis

University of Athens
Department of Informatics and Telecomunications

Athens, Greece.
panbouboulis@gmail.com, sdi1200151@di.uoa.gr, stheodor@di.uoa.gr

ABSTRACT

We present a new framework for online Least Squares algorithms
for nonlinear modeling in RKH spaces (RKHS). Instead of implic-
itly mapping the data to a RKHS (e.g., kernel trick), we map the
data to a finite dimensional Euclidean space, using random features
of the kernel’s Fourier transform. The advantage is that, the inner
product of the mapped data approximates the kernel function. The
resulting “linear” algorithm does not require any form of sparsifica-
tion, since, in contrast to all existing algorithms, the solution’s size
remains fixed and does not increase with the iteration steps.As a re-
sult, the obtained algorithms are computationally significantly more
efficient compared to previously derived variants, while, at the same
time, they converge at similar speeds and to similar error floors.

Index Terms— KLMS, Kernel Adaptive filter, Random Fourier
Features, Kernel Least Mean Squares, Kernel LMS, Kernel RLS

1. INTRODUCTION

Online learning in RKH spaces has attracted a lot of interestover the
last years, see, e.g., [1, 2, 3, 4, 5, 6, 7, 8]. The Kernel LeastMean
Square (KLMS) algorithm, introduced in [9, 10], presents a simple
and efficient method to address non linear adaptive filteringtasks.
Considering a sequentially arriving data of the form{(xn, yn), n =
1, 2, . . . }, wherexn ∈ R

d, yn ∈ R, generated by a non-linear
model, KLMS’s mechanism can be summarized as follows: (a) map
each arriving input datum,xn, to an infinite dimensional Hilbert
spaceH, using a specific kernelκ and (b) apply the LMS rationale
to the transformed data, i.e.,{(κ(xn, ·), yn), n = 1, 2, . . . }. Its
main drawback is that the solution is given in terms of a linear expan-
sion of kernel functions (centered at the input data pointsxn), which
grows infinitely large (proportionally ton), rendering its application
prohibitive both in terms of memory and computational resources.
The centers,xn, that make up the linear expansion of the solution,
are said to constitute thedictionary. In practice, sparsification meth-
ods are applied to keep the size of the dictionary sufficiently small
and make the algorithm computationally tractable. These methods
adopt a suitably selected criterion to decide whether a particular da-
tum (i.e.,xn) will be included in the dictionary or not. Popular vari-
ations include the quantization [11], the novelty [9], the coherence
[12] and the surprise [13] criteria.

Although the aforementioned sparsification techniques areable
to reduce the size of the expansion significantly, they, too,require
significant computational resources, even when the dictionary is

This research was funded by the European Union (European Social Fund
- ESF) through the EC - FP7 FET program HANDiCAMS.

small. This is due to the fact that at each iteration step,n, a se-
quential search over all the current dictionary elements has to be
performed, in order to determine whether the new center,xn, will
be added to the dictionary or not. Another important issue isthe
dimension of the input space. If this is small (e.g.,d < 5), then the
aforementioned sparsification strategies may result in dictionaries
with a few dozens elements, without compromising Mean Square
Error (MSE) performance. However, if this dimension grows larger,
then these methods will inevitably give dictionaries with several
thousands elements or more rendering KLMS prohibitively demand-
ing due to the sequential search over large dictionaries. Furthermore,
from a theoretical point of view, such approaches are not elegant, in
the sense that they build around “ad hoc” arguments, which, also,
complicate the corresponding theoretical analysis.

The aforementioned difficulties have limited the extensionof
KLMS to more general settings, such as in distributed learning. In
this case, the exchange of dictionaries among the network’snodes
increase the network’s load significantly [14, 15, 16]. Moreimpor-
tantly, as each node should match its dictionary with the dictionaries
of its neighbors (applying multiple sequential searches) the required
computational resources become quite demanding. In the present
work, we follow a different rationale. Instead of mapping the input
data to an infinite dimensional Reproducing Kernel Hilbert Space,
induced by the selected kernel, and subsequently sparsifying the so-
lution, we map the input data to a finite (although larger thanthe
input one) dimensional Euclidian spaceRD . However, this mapping
is done in a sensible way that cares for a goodapproximationof the
kernel evaluations. The mapping toRD is carried out using random
features of the kernel’s Fourier transform [17, 18, 19]. Following this
approach, the resulting algorithm, which we callRandom Fourier
Features Kernel LMSor RFFKLMS for short, leads naturally to a
standard linear LMS, with afixed-sizesolution (i.e., a vector inRD);
thus, no special sparsification techniques are needed. RFFKLMS is
computationally lighter than various variants of KLMS, while at the
same time it exhibits the same MSE performance (for sufficient large
D). Similar arguments as before hold true for the case of the KRLS.

Section 2 briefly describes the rationale behind the standard
KLMS with the quantization sparsification strategy. Sections 3
and 4 present the theory of approximating shift-invariant kernels
with random features of their Fourier Transform and the new lin-
earized implementation of the KLMS using this approximation.
Simulations are given in section 5. Section 6 briefly describes the
“linearized” version of KRLS based on the random Fourier features
approximation framework, while section 7 concludes the paper. In
the following, matrices appear with capital letters and vectors with
small bold letters.

http://arxiv.org/abs/1606.03685v1

2. THE QUANTIZED KLMS

Consider the sequenceD = {(xn, yn), n = 1, 2, . . . }, where
xn ∈ R

d andyn ∈ R. The goal of the KLMS is to learn a non-
linear input-output mapf , so that to minimize the MSE, i.e.,L(f) =
E[(yn − f(xn))

2]. Typically, we assume thatf lies in a RKHS in-

duced by the Gaussian kernel, i.e.,κσ(u,v) = e−‖u−v‖2
2
/(2σ2), for

someσ > 0. Computing the gradient ofL and estimating it by its
current measurement (as it is typically the case in LMS), we take the
solution at the next iteration, i.e.,fn = fn−1 + µenκ(xn, ·), where
en = yn − fn(xn) andµ is the step-size (see [4, 13] for more).
Assuming that the initial solution is zero, the solution after n steps
becomesf =

∑n
i=1 θiκσ(xi, ·). As mentioned in the introduc-

tion, this linear expansion grows indefinitely asn increases; hence
a sparsification strategy has to be adopted to keep the expansion’s
size low. In this paper, we will employ a very simple and effective
strategy, which is based on the quantization of the input space [11].
At each iteration. the algorithm determines whether the newpoint,
xn, is to be included to the list of theM expansion centers, i.e., the
dictionaryC, or not, based on its distance fromC. If this distance
is larger than a user-defined parameterδ (thequantization size), then
xn is inserted toC, otherwise the coefficient of the center that is
closest toxn is updated. The resulting algorithm is called QKLMS:

• Set f = 0, C = ∅, M = 0. Select the step-sizeµ, the
parameter of the kernelσ and the quantization sizeǫ.

• for n = 1, 2, . . . do:

1. Compute system’s output:̂yn = f(xn).

2. Compute the error:en = yn − ŷn.

3. Computedk = ‖xn − ck‖2, k = 1, . . .M .

4. Find dmin = min{dk, k = 1, . . .M} and kmin =
argmin{dk, k = 1, . . .M}.

5. If dmin < ǫ thenθkmin
= θkmin

+ µen.

6. elseC = C
⋃{xn}, M = M + 1, θM = µen.

Note that, there are other sparsification strategies that can be applied,
as it has been mentioned in the introduction. The differenceis in the
different criteria used to include (or not) a specific centerinto the
dictionary. The QKLMS is among the most effective strategies and
in the following it will be used as a representative of these methods.
Results with other sparsification methods follow similar trends.

3. APPROXIMATING THE KERNEL WITH RANDOM
FOURIER FEATURES

The standard implementations of KLMS can be viewed as a two step
procedure. Firstly, the input data,xn, are mapped to an infinite di-
mensional RKHS,H, using an implicit mapΦ(xn) = κ(xn, ·),
and then the standard LMS rationale is applied to the transformed
data pairs, i.e.(Φ(xn), yn), taking into account the so calledkernel
trick, i.e.,κ(xn,xm) = 〈Φ(xn),Φ(xm)〉H, to evaluate the respec-
tive inner products. However, as it has been discussed in Section 2,
this leads to a solution that is expressed in terms of kernel functions,
whose number keeps growing. Instead of relying on the implicit lift-
ing provided by the kernel trick, Rahimi and Recht in [17] proposed
to map the input data to a low-dimensional Euclidean space using a
randomized feature mapz : Rd → R

D , so that the kernel evalua-
tions can be approximated asκ(xn,xm) ≈ z(xn)

Tz(xm).
As z is a finite dimensional lifting, direct fast linear methods

can be applied to the transformed data (unlike the kernel’s lifting Φ,

which requires special treatment). Hence, if one models thesystem’s
output aŝyn = θTz(xn), the standard linear LMS rationale can be
applied directly to estimate the solutionθ ∈ R

D at each iteration.
The following theorem plays a key role in this procedure.

Theorem 1. Consider a shift-invariant positive definite kernel
κ(x − y) defined onRd and its Fourier transformp(ω) =

1
(2π)d

∫

Rd κ(δ)e−iωT
δdδ, which (according to Bochner’s theo-

rem) it can be regarded as aprobability density function. Then,
definingzω,b(x) =

√
2 cos(ωTx+ b), it turns out that

κ(x− y) = Eω,b[zω,b(x)zω,b(y)], (1)

whereω is drawn fromp and b from the uniform distribution on
[0, 2π].

Following Theorem 1, we choose to approximateκ(xn − xm)
using D random Fourier features,ω1,ω2, . . . ,ωD, (drawn from
p) andD random numbers,b1, b2, . . . , bD (drawn uniformly from
[0, 2π]) that define a sample average (a similar rationale as the one
used in Monte Carlo Methods; for Gaussian kernels such sampling
is trivial):

κ(xn − xm) ≈ 1

D

D
∑

i=1

zωi,bi(u)zωi,bi(v). (2)

Evidently, the largerD is (up to a certain point), the better this ap-
proximation becomes. Details on the quality of this approximation
can be found in [17].

4. THE RANDOM FOURIER FEATURES KERNEL LMS

In this Section, we briefly describe the proposedlinearizedKLMS,
which is based on the aforementioned Fourier approximation. The
main results (regarding convergence and other related properties) are
given without proofs due to lack of space. Our starting pointis to
recast (2) in terms of Euclidean inner products. To that end,we
define the mapzΩ : Rd → R

D as follows:

zΩ(u) =

√

2

D







cos(ωT
1 u+ b1)

...
cos(ωT

Du+ bD)






, (3)

whereΩ is the (d + 1) × D matrix defining the random fourier
features of the respective kernel, i.e.,

Ω =

(

ω1 ω2 ... ωD

b1 b2 ... bD

)

,

provided thatω’s andb’s are drawn as mentioned above. Hence, the
kernel function can be approximated as

κ(xn − xm) ≈ zΩ(xn)
T
zΩ(xm). (4)

Following this rationale, we propose a new variant of the KLMS,
the RFFKLMS, which is actually a simple LMS on the transformed
data, i.e.{(zΩ(xn), yn), n = 1, 2, . . . }. We model the input-output
relationship aŝyn = θTzΩ(xn), for eachxn and our goal is to
evaluateθ ∈ R

D by minimizing the MSE, i.e.,Jn = E[e2n], at
each time instantn. For the Gaussian kernel, which is employed
throughout the paper, the respective Fourier transform is

p(ω) =
(

σ/
√
2π

)D

e−
σ2‖ω‖2

2 , (5)

which is actually the multivariate Gaussian distribution with mean0
and covariance matrix1

σ2 ID . The proposed algorithm is given next:

• Setθ = 0. Select the step-updateµ, the dimension of the
new space,D and the parameter of the kernel (σ).

• Draw D samples fromp(ω) andD numbers uniformly in
[0, 2π].

• for n = 1, 2, . . . do:

1. Compute system’s output:̂yn = θTzΩ(xn).

2. Compute the error:en = yn − ŷn.

3. θn+1 = θn + µenzΩ(xn).

It is a matter of elementary algebra to conclude that aftern −
1 steps, the algorithm will give the following solution:θ =
µ
∑n−1

k=1 ekzΩ(xk), which leads us to conclude that RFFKLMS
will produce approximately the same system’s output with the stan-
dard KLMS (provided thatD is sufficiently large), since

ŷn = µ

n−1
∑

k=1

ekzΩ(xk)
T
zΩ(xn) ≈ µ

n−1
∑

k=1

ekκσ(xk,xn). (6)

However, the major difference is that RFFKLMS provides a single
vectorθ of fixed dimensions, instead of a growing expansion of ker-
nel functions.

To study the convergence properties of RFFKLMS, we will as-
sume henceforth that the data pairs are generated by

yn =
M
∑

m=1

amκ(cm,xn) + ηn, (7)

wherec1, . . . , cM are fixed centers,xn are zero-mean i.i.d, samples
drawn from the Gaussian distribution with covariance matrix σ2

xId

andηn are i.i.d. noise samples drawn fromN (0, σ2
η). In this setting

it is not difficult to prove that the optimal solution is givenby

θopt = argminE[e2n] = ZC · a+R−1
zz E[η′

n · zΩ(xn)], (8)

where ZC = (zΩ(c1), . . . ,zΩ(cM))T , a = (a1, . . . , aM)T ,
Rzz = E[zΩ(xn)zΩ(xn)

T] andη′
n is the approximation error be-

tween the noise-free component ofyn (evaluated only by the linear
kernel expansion of (7)) and the approximation of this component
using random Fourier features, i.e.,ηn =

∑M
m=1 amκ(cm,xn) −

∑M
m=1 zΩ(cm)TzΩ(xn). Note that this error can be made very

small for sufficiently largeD [17]; thus, it can be eventually dropped
out. Furthermore, sufficient conditions so thatRzz is a strictly posi-
tive definite matrix (hence invertible) have been obtained.These are
summarized by:

Lemma 1. Consider a selection of samplesω1,ω2, . . . ,ωD , drawn
from (5) such thatωi 6= ωj , for anyi 6= j. Then, the matrixRzz =
E[zΩ(xn)zΩ(xn)

T] is strictly positive definite.

It is also possible, forxn ∼ N (0, σXId), to explicitly evaluate the
entries ofRzz :

ri,j =
1

2
exp

(−‖ωi − ωj‖2σ2
X

2

)

cos(bi − bj)

+
1

2
exp

(−‖ωi +ωj‖2σ2
X

2

)

cos(bi + bj).

As expected, the eigenvalues ofRzz play a pivotal role in the
convergence’s study of the algorithm. In the case whereRzz is a
strictly positive definite matrix, its eigenvalues satisfy0 < λ1 ≤
λ2 ≤ · · · ≤ λD. Applying similar assumptions as in the case of the
standard LMS, we can prove the following results.

0 1000 2000 3000 4000 5000
−20

−15

−10

−5

0

5

FouKLMS
Optimal

(a)D = 100

0 1000 2000 3000 4000 5000
−20

−15

−10

−5

0

5

FouKLMS
Optimal

(b) D = 500

0 1000 2000 3000 4000 5000
−20

−15

−10

−5

0

5

FouKLMS
Optimal

(a)D = 1000

0 1000 2000 3000 4000 5000
−20

−15

−10

−5

0

5

FouKLMS
Optimal

(b) D = 5000

Fig. 1. Simulations of RFFKLMS (with various values ofD) ap-
plied on data pairs generated by (7). The results are averaged over
100 runs. The horizontal dashed line in the figure represents the
approximation of the steady-state MSE given in theorem 1.

Proposition 1. For datasets generated by(7) we have:

1. If the step update parameter satisfies0 < µ < 2/λD , then
RFFKLSM converges in the mean, i.e.,E[θn − θopt] → 0.

2. The optimal MSE (which it is achieved when one replacesθn

with θopt) is given by

Jopt
n = σ2

η + E[η′
n]− E[η′

nzΩ(xn)]R
−1
zz E[η′

nzΩ(xn)
T].

For large enoughD, we haveJopt
n ≈ σ2

η.

3. The excess MSE is given byJex
n = Jn − Jopt

n = tr (RzzAn),
whereAn = E[(θn − θopt)(θn − θopt)

T].

4. If the step update parameter satisfies0 < µ < 1/λD , then
An converges. For large enoughn andD we can approxi-
mateAn’s evolution asAn+1 ≈ An−µ (RzzAn + AnRzz)+
µ2σ2

ηRzz . Using this model we can approximate the steady-
state MSE (≈ tr (RzzAn) + σ2

η).

5. SIMULATIONS

In this Section, we present examples to illustrate the performance of
the proposed algorithm and compare its behavior to the QKLMS. In
all experiments, we use the same kernel parameter, i.e.,σ, for both
RFFKLMS and QKLMS as well as the same step-update parameter
µ. The quantization parameterǫ of the QKLMS controls the size of
the dictionary. If this is too large, then the dictionary will be small
and the achieved MSE at steady state will be large. Typically, how-
ever, there is a value forǫ for which the best possible MSE (almost
the same as the unsparsified version) is attained at steady state, while
any smaller quantization sizes provide negligible improvements (al-
beit at significantly increased complexity). In all experimental set-
ups, we tunedǫ (using multiple trials) so that it takes a value close to
this “optimal”, so that to take the best possible MSE at the smallest
time. On the other hand, the performance of RFFKLMS depends
largely onD, which controls the quality of the kernel approxima-
tion. Similar to the case of QKLMS, there is a value forD so that
RFFKLMS attains its lowest steady-state MSE, while larger values
provide negligible improvements. Table 1 gives the mean training

2000 4000 6000 8000 10000 12000 14000

−15

−10

−5

0

5

FouKLMS
QKLMS

(a)

2000 4000 6000 8000 10000 12000 14000
−30

−25

−20

−15

−10

FouKRLS
Engel KRLS

(b)

Fig. 2. Monte Carlo simulations on data pairs generated as described
in section 5.2 for (a) the RFFKLMS and QKLMS, (b) the RFFKRLS
and Engel’s KRLS. The results are averaged over1000 runs.

times for QKLMS and RFFKLMS on a typical core i5 machine run-
ning Matlab (both algorithms were optimized for speed). We note
that the complexity of the RFFKLMS isO(Dd), while the complex-
ity of QKLMS is O(Md). Our experiments have shown that in order
to obtain similar error floors, the required complexity of RFFKLMS
is lower than that of QKLMS.

5.1. Example 1. A Linear Kernel Expansion

In this set-up we generate5000 data pairs using (7). The input vec-
torsxn are drawn fromN (0, I) and the noise are i.i.d. Gaussian
samples withση = 0.1. The parameters of the expansion (i.e.,
a1, . . . , aM) are drawn fromN (0, 25), the kernel parameterσ is
set to5 and the step update toµ = 1 (this value satisfies the require-
ments for convergence of Theorem 1). Figure 1 shows the evolution
of the MSE for 100 realizations of the experiment. The algorithm
reaches steady-state aroundn = 2000. The attained MSE is close to
the approximation given in Theorem 1 (dashed line in the figure).

5.2. Example 2.

In this example, we adopt the following simple non-linear model:

yn = w
T
0 xn + 0.1 · (wT

1 xn)
2 + ηn, (9)

whereηn represent zero-mean i.i.d. Gaussian noise withση = 0.05
and the coefficients of the vectorsw0,w1 ∈ R

5 are i.i.d. samples
drawn fromN (0, 1). Similarly to Example 1, the kernel parameterσ
is set to5 and the step update toµ = 1. The quantization parameter
of the QKLMS was set toǫ = 5 (leading to an average dictionary
sizeM = 100) and the number of random Fourier coefficients for
RFFKLMS was set toD = 300. Figure 2a shows the evolution of
the MSE for both QKLMS and RFFKLMS running 1000 realizations
of the experiment over15000 samples.

5.3. Example 3.

Here we adopt the following chaotic series model [20]:

dn =
dn−1

1 + d2n−1

+ u3
n−1, yn = dn + ηn,

whereηn is zero-mean i.i.d. Gaussian noise withση = 0.01 and
un is also zero-mean i.i.d. Gaussian withσu = 0.15. The kernel
parameterσ is set to0.05 and the step update toµ = 1. We have
also initializedd1 to 1. Figure 3a shows the evolution of the MSE
for both QKLMS and RFFKLMS running 1000 realizations of the
experiment over500 samples. The quantization parameterǫ was set
to ǫ = 0.01 (leading to an average dictionary sizeM = 7), while
D = 100.

0 100 200 300 400 500
−30

−25

−20

−15

−10

−5

0

FouKLMS
QKLMS

(a)

100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

FouKLMS
QKLMS

(b)

Fig. 3. Monte Carlo simulation of RFFKLMS and QKLMS applied
on data pairs generated as described (a) in section 5.3 and (b) in
section 5.4. The results are averaged over1000 runs.

Experiment QKLMS time RFFKLMS time QKLMS dictionary size
Example 2 0.891 sec 0.226 sec M = 100

Example 3 0.036 sec 0.006 sec M = 7

Example 4 0.057 sec 0.021 sec M = 32

Table 1. Mean training times for QKLMS and RFFKLMS.

5.4. Example 4.

The final example adopts another chaotic series model [20]:

dn =un + 0.5vn − 0.2dn−1 + 0.35dn−2 ,

φ(dn) =

{

dn
3(0.1+0.9d2n)1/2

dn ≥ 0

−d2n(1−exp(0.7dn))

3
dn < 0

, yn = φ(dn) + ηn,

whereηn is zero-mean i.i.d. Gaussian noise withση = 0.001, vn is
also zero-mean i.i.d. Gaussian withσ2

v = 0.0156 andun = 0.5vn+
η̂n, whereη̂n is also i.i.d. Gaussian withσ2 = 0.0156. The kernel
parameterσ is set to0.05 and the step update toµ = 1. We have
also initializedd1, d2 to 1. Figure 3b shows the evolution of the
MSE for both QKLMS and RFFKLMS running 1000 realizations
of the experiment over1000 samples. The parameterǫ was set to
ǫ = 0.01 (leading toM = 32) andD was setD = 100.

6. THE RANDOM FOURIER FEATURES KERNEL RLS

Besides the implementation of the KLMS given in the previoussec-
tions, the rationale of the kernel approximation via randomFourier
features (section 3) can also be applied to other online-algorithms
such as the RLS. One only needs to choose the random samplesωi,
bi and replace the instances ofxn in the standard RLS algorithm (see
for example [4, 3]) withzΩ(xn). The resulting algorithm performs
as well as the original KRLS provided by Engel [2], but it is almost
twice as fast. Figure 2b compares the performances of RFFKRLS
and Engle’s KRLS on data samples created as in Example 5.2. The
regularization parameter for the RFFKRLS was set toλ = 0.0001,
the forgetting factor toβ = 0.9995, while the number of random
features was set toD = 300. The parameter for the ALD sparsifica-
tion mechanism of Engel’s KRLS was set toν = 0.0005.

7. CONCLUSIONS

We presented an alternative rationale for the KLMS and KRLS based
on the approximation of the kernel function with random Fourier
Features. The proposed algorithms exhibit similar convergence per-
formance to the standard KLMS/KRLS algorithms, albeit theyre-
quire significantly lower implementation time (due to theirsimplic-
ity). Furthermore, their “linear” characteristics pave the way for gen-
eralization to other settings (e.g., the distributed KLMS [21]).

8. REFERENCES

[1] J. Kivinen, A. Smola, and R. C. Williamson, “Online learning
with kernels,” IEEE Transanctions on Signal Processing, vol.
52, no. 8, pp. 2165–2176, Aug. 2004.

[2] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-
squares algorithm,”IEEE Transanctions on Signal Processing,
vol. 52, no. 8, pp. 2275–2285, Aug. 2004.

[3] Sergios Theodoridis,Machine Learning: A Bayesian and Op-
timization Perspective, Academic Press, 2015.

[4] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Online learn-
ing in reproducing kernel Hilbert spaces,” inSignal Processing
Theory and Machine Learning, Rama Chellappa and Sergios
Theodoridis, Eds., Academic Press Library in Signal Process-
ing, pp. 883–987. Academic Press, 2014.

[5] K. Slavakis, S. Theodoridis, and I. Yamada, “On line kernel-
based classification using adaptive projection algorithms,”
IEEE Transactions on Signal Processing, vol. 56, no. 7, pp.
2781–2796, Jul. 2008.

[6] K. Slavakis, S. Theodoridis, and I. Yamada, “Adaptive con-
strained Learning in Reproducing Kernel Hilbert spaces: the
robust beamforming case,”IEEE Transactions on Signal Pro-
cessing, vol. 57, no. 12, pp. 4744–4764, Dec. 2009.

[7] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Adaptive mul-
tiregression in reproducing kernel Hilbert spaces: the multiac-
cess MIMO channel case,”IEEE Transactions on Neural Net-
works and Learning Systems, vol. 23(2), pp. 260–276, 2012.

[8] Vaerenbergh S. V., Lázaro-Gredilla M., and Ignacio Santa-
marı́a, “Kernel recursive least-squares tracker for time-varying
regression,” IEEE Transanctions on Neural Networks and
Learning Systems, vol. 23, no. 8, pp. 1313–1326, Aug. 2012.

[9] W. Liu, P. Pokharel, and J. C. Principe, “The kernel Least-
Mean-Square algorithm,”IEEE Transanctions on Signal Pro-
cessing, vol. 56, no. 2, pp. 543–554, Feb. 2008.

[10] P. Bouboulis and S. Theodoridis, “Extension of Wirtinger’s
calculus to Reproducing Kernel Hilbert spaces and the com-
plex kernel LMS,” IEEE Transactions on Signal Processing,
vol. 59, no. 3, pp. 964–978, March 2011.

[11] Badong Chen, Songlin Zhao, Pingping Zhu, and J.C. Principe,
“Quantized kernel least mean square algorithm,”IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 23, no.
1, pp. 22 –32, jan. 2012.

[12] C. Richard, J.C.M. Bermudez, and P. Honeine, “Online pre-
diction of time series data with kernels,”IEEE Transactions
on Signal Processing, vol. 57, no. 3, pp. 1058 –1067, march
2009.

[13] W. Liu, J. C. Principe, and S. Haykin,Kernel Adaptive Filter-
ing, Hoboken, NJ: Wiley, 2010.

[14] R. Mitra and V. Bhatia, “The diffusion-klms algorithm,” in
Information Technology (ICIT), 2014 International Conference
on, Dec 2014, pp. 256–259.

[15] Wei Gao, Jie Chen, Cedric Richard, and Jianguo Huang,
“Diffusion adaptation over networks with kernel least-mean-
square,” inComputational Advances in Multi-Sensor Adaptive
Processing (CAMSAP) 2015 International Workshop on, 2015.

[16] Chouvardas Symeon and Draief Moez, “A diffusion kernel
LMS algorithm for nonlinear adaptive networks,” inICASSP,
2016.

[17] Rahimi. A. and Recht B., “Random features for large scale ker-
nel machines,” inAdv. Neural Inf. Process. Syst.2007, vol. 20,
pp. 1177 – 1184, Vancouver, BX, Canada.

[18] Zhen Hu, Ming Lin, and Changshui Zhang, “Dependent on-
line kernel learning with constant number of random fourier
features,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no.
10, pp. 2464 – 2476, October 2015.

[19] Lázaro-Gredila M., Quinonero-Candela J., RasmussenE. C.,
and Figueiras-Vidal R. A., “Sparse spectrum gaussian process
regression,”Journal of Machine Learning Research, vol. 11,
pp. 1865–1881, 2010.

[20] W.D. Parreira, J.C.M. Bermudez, C. Richard, and J.-Y.
Tourneret, “Stochastic behavior analysis of the gaussian kernel
least-mean-square algorithm,”Signal Processing, IEEE Trans-
actions on, vol. 60, no. 5, pp. 2208–2222, May 2012.

[21] Pantelis Bouboulis, Simos Chouvardas, and Sergios Theodor-
idis, “Efficient distributed online algorithms in RKHS: A ran-
dom fourier feature perspective,”submitted.

	1 Introduction
	2 The Quantized KLMS
	3 Approximating the kernel with Random Fourier Features
	4 The Random Fourier Features Kernel LMS
	5 Simulations
	5.1 Example 1. A Linear Kernel Expansion
	5.2 Example 2.
	5.3 Example 3.
	5.4 Example 4.

	6 The Random Fourier Features Kernel RLS
	7 Conclusions
	8 References

