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ABSTRACT

We present a new framework for online Least Squares algosith
for nonlinear modeling in RKH spaces (RKHS). Instead of iicpl
itly mapping the data to a RKHS (e.g., kernel trick), we mag th
data to a finite dimensional Euclidean space, using randatores
of the kernel's Fourier transform. The advantage is that,itimer
product of the mapped data approximates the kernel funciitre
resulting “linear” algorithm does not require any form ofssgifica-
tion, since, in contrast to all existing algorithms, theusian’s size
remains fixed and does not increase with the iteration sfepa.re-
sult, the obtained algorithms are computationally sigaifity more
efficient compared to previously derived variants, whiteha same
time, they converge at similar speeds and to similar errorslo

Index Terms— KLMS, Kernel Adaptive filter, Random Fourier
Features, Kernel Least Mean Squares, Kernel LMS, Kernel RLS

1. INTRODUCTION

Online learning in RKH spaces has attracted a lot of interest the
last years, see, e.gl.l[1,12,[3]4[ 5[ 6,17, 8]. The Kernel Liglesin
Square (KLMS) algorithm, introduced in![9,110], presentsrapie
and efficient method to address non linear adaptive filtetasgs.
Considering a sequentially arriving data of the fof(w.., y»), n =
1,2,...}, wherezx, € R4, yn € R, generated by a non-linear

small. This is due to the fact that at each iteration stepa se-
guential search over all the current dictionary elements tbabe
performed, in order to determine whether the new centgr,will
be added to the dictionary or not. Another important issuthés
dimension of the input space. If this is small (edys< 5), then the
aforementioned sparsification strategies may result itiotiaries
with a few dozens elements, without compromising Mean Sguar
Error (MSE) performance. However, if this dimension groeugér,
then these methods will inevitably give dictionaries witveral
thousands elements or more rendering KLMS prohibitiveipaed-
ing due to the sequential search over large dictionariegh&umore,
from a theoretical point of view, such approaches are ngfagie in
the sense that they build around “ad hoc” arguments, whilsio, a
complicate the corresponding theoretical analysis.

The aforementioned difficulties have limited the extensidén
KLMS to more general settings, such as in distributed legynin
this case, the exchange of dictionaries among the netwoddes
increase the network’s load significantly [14] 15] 16]. Morgor-
tantly, as each node should match its dictionary with th&atieries
of its neighbors (applying multiple sequential searchiae)réquired
computational resources become quite demanding. In treepire
work, we follow a different rationale. Instead of mapping thput
data to an infinite dimensional Reproducing Kernel Hilbgra&e,
induced by the selected kernel, and subsequently spagifige so-
lution, we map the input data to a finite (although larger ttan

model, KLMS’s mechanism can be summarized as follows: (@) mainput one) dimensional Euclidian spak& . However, this mapping

each arriving input datumg,,, to an infinite dimensional Hilbert
spaceH, using a specific kernel and (b) apply the LMS rationale
to the transformed data, i.€{(k(zn,),yn), n = 1,2,...}. Its
main drawback is that the solution is given in terms of a lireeg@an-
sion of kernel functions (centered at the input data painfs which
grows infinitely large (proportionally ta), rendering its application
prohibitive both in terms of memory and computational reses.

is done in a sensible way that cares for a gapgroximationof the
kernel evaluations. The mappingl®d’ is carried out using random
features of the kernel's Fourier transfofm|[17,/18, 19].Iéwing this
approach, the resulting algorithm, which we daindom Fourier
Features Kernel LM®r RFFKLMS for short, leads naturally to a
standard linear LMS, with fixed-sizesolution (i.e., a vector imD);
thus, no special sparsification techniques are needed. RWBKs

The centersg,,, that make up the linear expansion of the solution, computationally lighter than various variants of KLMS, vehat the

are said to constitute thdictionary. In practice, sparsification meth-
ods are applied to keep the size of the dictionary suffigjestthall
and make the algorithm computationally tractable. Thesthous
adopt a suitably selected criterion to decide whether acpdat da-
tum (i.e.,x,,) will be included in the dictionary or not. Popular vari-
ations include the quantization [11], the novelty [9], treherence
[12] and the surprise [13] criteria.

Although the aforementioned sparsification techniquesable
to reduce the size of the expansion significantly, they, tequire
significant computational resources, even when the diatiors

This research was funded by the European Union (Europedal Foad
- ESF) through the EC - FP7 FET program HANDICAMS.

same time it exhibits the same MSE performance (for suffidéege
D). Similar arguments as before hold true for the case of theXR

Section[2 briefly describes the rationale behind the stahdar
KLMS with the quantization sparsification strategy. Seui®
and[4 present the theory of approximating shift-invariagtniels
with random features of their Fourier Transform and the niew |
earized implementation of the KLMS using this approximatio
Simulations are given in sectigh 5. Sectidn 6 briefly dessrithe
“linearized” version of KRLS based on the random Fourietdess
approximation framework, while sectibh 7 concludes thegpajn
the following, matrices appear with capital letters andteecwith
small bold letters.
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2. THE QUANTIZED KLMS

Consider the sequen® = {(zn,yn), n = 1,2,...}, where
x, € R? andy, € R. The goal of the KLMS is to learn a non-
linear input-output may, so that to minimize the MSE, i.e((f) =
E[(yn — f(xn))?]. Typically, we assume thatlies in a RKHS in-

duced by the Gaussian kernel, i&,(u, v) = e~ 1*~?13/(27*) for
someos > 0. Computing the gradient of and estimating it by its
current measurement (as it is typically the case in LMS),alte the
solution at the next iteration, i.ef, = fn—1 + pens(xn, -), Where
en = Yn — fn(xn) andy is the step-size (sekl[4.113] for more).
Assuming that the initial solution is zero, the solutioreaft steps
becomesf = "7 | 6iko(xi, ). As mentioned in the introduc-
tion, this linear expansion grows indefinitely adncreases; hence
a sparsification strategy has to be adopted to keep the eéspans
size low. In this paper, we will employ a very simple and efifex
strategy, which is based on the quantization of the inputesp&l].
At each iteration. the algorithm determines whether the peint,
x,, is to be included to the list of th&/ expansion centers, i.e., the
dictionary C, or not, based on its distance frafh If this distance
is larger than a user-defined paramétéhe quantization sizge then
x,, is inserted toC, otherwise the coefficient of the center that is
closest tax., is updated. The resulting algorithm is called QKLMS:

e Setf = 0,C = (), M = 0. Select the step-sizg, the
parameter of the kernel and the quantization size

e forn=1,2,... do:

1. Compute system’s outpuy, = f(xn).

n

Compute the error, = yn — Gn.-

Computely, = ||&n — ck|*, k=1,... M.

Find dmin = min{dg,k = 1,... M} and kmin =
argmin{di, k=1,... M}.

If dmin < ethenby,, =0k ., + pen.

elseC =CU{xzn}, M =M + 1,00 = pen.

Note that, there are other sparsification strategies timatveapplied,
as it has been mentioned in the introduction. The differénaethe
different criteria used to include (or not) a specific ceritgo the
dictionary. The QKLMS is among the most effective strategiad
in the following it will be used as a representative of thesthrads.
Results with other sparsification methods follow similanis.

pow

5.
6.

min

3. APPROXIMATING THE KERNEL WITH RANDOM
FOURIER FEATURES

The standard implementations of KLMS can be viewed as a te st
procedure. Firstly, the input data,,, are mapped to an infinite di-
mensional RKHS#, using an implicit map®(x.,) K(@n, "),
and then the standard LMS rationale is applied to the tramsfd
data pairs, i.e(®(xzx ), yn), taking into account the so calléernel
trick, i.e.,k(xn, Tm) = (P(xn), P(xm))2, to evaluate the respec-
tive inner products. However, as it has been discussed ifcRER,
this leads to a solution that is expressed in terms of kecmedtions,
whose number keeps growing. Instead of relying on the irtfific
ing provided by the kernel trick, Rahimi and Recht[in/[17] posed
to map the input data to a low-dimensional Euclidean spaire @s
randomized feature map : R? — RP, so that the kernel evalua-
tions can be approximated aéx.,, €.n) ~ z(x,) T z(Tm).

As z is a finite dimensional lifting, direct fast linear methods
can be applied to the transformed data (unlike the kerriéilisg ®,

which requires special treatment). Hence, if one modelsybtem’s
output asj, = 87 z(x,,), the standard linear LMS rationale can be
applied directly to estimate the solutihe R” at each iteration.
The following theorem plays a key role in this procedure.

Theorem 1. Consider a shift-invariant positive definite kernel
k(z — y) defined onR? and its Fourier transformp(w) =

ﬁfw m(é)e*i“’T‘sdé, which (according to Bochner’s theo-
rem) it can be regarded as probability density function. Then,
definingz, »(x) = v/2 cos(w” & + b), it turns out that

K(x —y) 1)

wherew is drawn fromp and b from the uniform distribution on
[0, 27].

Following Theorenf 1, we choose to approximate:,, — )
using D random Fourier featuresy:,ws,...,wp, (drawn from
p) and D random numbers)y, bs, ..., bp (drawn uniformly from
[0, 27]) that define a sample average (a similar rationale as the one
used in Monte Carlo Methods; for Gaussian kernels such sagpl
is trivial):

B b[2e,6(2) 20, ()],

D
1
H(:En - mm) ~ B ; Rw;,b; (u)zwiabi (v) (2)
Evidently, the largeD is (up to a certain point), the better this ap-
proximation becomes. Details on the quality of this appration
can be found in[17].

4. THE RANDOM FOURIER FEATURES KERNEL LMS

In this Section, we briefly describe the proposieearizedKLMS,

which is based on the aforementioned Fourier approximatidre
main results (regarding convergence and other relatecpiep) are
given without proofs due to lack of space. Our starting p&rb

recast[(R) in terms of Euclidean inner products. To that ewel,
define the magg : R* — RP as follows:

cos(wiu + b)

/2 .
D : ’

cos(whu +bp)

®)

where is the (d + 1) x D matrix defining the random fourier
features of the respective kernel, i.e.,

wbD

bp )’

— Wi
o (%
provided thatv’s andb’s are drawn as mentioned above. Hence, the
kernel function can be approximated as

(©5)
b

(4)

Following this rationale, we propose a new variant of the Ki,M
the RFFKLMS, which is actually a simple LMS on the transfodne
data,i.e{(za(xn),yn),n = 1,2,... }. We model the input-output
relationship asj, = 87 zq(x,), for eachz, and our goal is to
evaluated € RP by minimizing the MSE, i.e.J, = El€2], at
each time instanh. For the Gaussian kernel, which is employed
throughout the paper, the respective Fourier transform is

K(n — Tm) ~ zg(mn)TzQ(a:m).

_ o2 jw)?

pw) = (o/vam) e TE, ©)

which is actually the multivariate Gaussian distributioithamean0
and covariance matri;aé—2 Ip. The proposed algorithm is given next:



e Setf = 0. Select the step-updaje the dimension of the
new spaceD and the parameter of the kernel)(

e Draw D samples fronp(w) and D numbers uniformly in
[0, 27].

e forn=1,2, ... do:

1. Compute system’s outpufy, = 87 za ().
2. Compute the erroe,, = y, — Un-

3. Oni1 =0, + penza(xn).

It is a matter of elementary algebra to conclude that after

1 steps, the algorithm will give the following solutionf =
S r—!exza(xr), which leads us to conclude that RFFKLMS
will produce approximately the same system'’s output withgtan- e e e

dard KLMS (provided thaD is sufficiently large), since (a) D = 1000 (b) D = 5000

n—1 n—1
gn=p Y exza(zr) za(@a) & Y exkio(zr,xn). (6)  Fig. 1 Simulations of REFKLMS (with various values @) ap-
k=1 k=1 plied on data pairs generated by (7). The results are aw g

However, the major difference is that RFFKLMS provides aykin 100 runs. _The horizontal dashed line in_ the_figure represents the
vectord of fixed dimensions, instead of a growing expansion of ker-aPproximation of the steady-state MSE given in thedrem 1.
nel functions.
To study the convergence properties of RFFKLMS, we will as- N
sume henceforth that the data pairs are generated by Proposition 1. For datasets generated Iff) we have:
Iy 1. If the step update parameter satisfies< u < 2/Ap, then
Y = Z A k(Cony @) + T ) RFFKLSM converges in the mean, i.B[f,, — Oop| — O.

m=1 2. The optimal MSE (which it is achieved when one repl#es
with Bopy) is given by

whereey, . . ., cas are fixed centersg,, are zero-mean i.i.d, samples
drawn from the Gaussian distribution with covariance maig I, opt 2 / / . T
. i . . Jn = En,] — E[n, n)|R.. Elnn, n
andmn, are i.i.d. noise samples drawn froM(O,a?,). In this setting o + Eln) 1m0 (@n)] [z (@n)]
it is not difficult to prove that the optimal solution is givey For large enoughD, we have/?™ ~ o2.
Oopt = argminE[e’] = Zc - a + R, E[nl, - za(z,)],  (8) 3. The excess MSE is given B = J,, — Jo" = tr (R..A,),
) . whereA,, = E[(0,, — Oopt) (01 — Oopt)T].

where Zc = (zﬂ(cl)":'r"zﬂ(c,M,)) v a = (a,...,am)", 4. If the step update parameter satisfiesc . < 1/\p, then
Re.. = Elza(zn)za(2,)" ] andn;, is the approximation error be- A,, converges. For large enough and D we can approxi-
tween the noise-free componentwf (evaluated only by the linear mateA.,’s evolution asd,, 1 ~ An—p (RezAn + ApRaz)+
kernel expansion of (7)) and the approximation of this congm 2,2R  Using this model we can approximate the steady-

: : f _ M 12 nttzz g pp y
using random Fourier features, i.g, = Y. _; amK(Cm,®n) — state MSEA tr (Ra»An) + 02).
SM_ za(em)Tza(xs). Note that this error can be made very !
small for sufficiently largeD [17]]; thus, it can be eventually dropped
out. Furthermore, sufficient conditions so that. is a strictly posi- 5 SIMULATIONS
tive definite matrix (hence invertible) have been obtairdtkese are
summarized by: In this Section, we present examples to illustrate the perdmce of
Lemma 1. Consider a selection of samples , ws, . . . ,wp, drawn the proposed algorithm and compare its behavior to the QKLUKIS

all experiments, we use the same kernel parametergi.€or both
RFFKLMS and QKLMS as well as the same step-update parameter
. The quantization parameteof the QKLMS controls the size of

It is also possible, fo, ~ A(0,0x14), to explicitly evaluate the the dictionary. If this is too large, then the dictionary Mié small

from (B)) such thatw; # wj, for any: # j. Then, the matrix®.. =
Elzq(x,)za(x,)T] is strictly positive definite.

entries ofR, . and the achieved MSE at steady state will be large. Typiclatw-
5 o ever, there is a value ferfor which the best possible MSE (almost

riy = exp (-Hwi —wjlox ) cos(bi — by) the same as the unsparsified version) is attained at steztdywhile

2 2 any smaller quantization sizes provide negligible improgats (al-

1 —|wi + w;||?0% beit at significantly increased complexity). In all expegimal set-
+ 5 &P (f) cos(bi + b;). ups, we tuned (using multiple trials) so that it takes a value close to
this “optimal”, so that to take the best possible MSE at thalkst
As expected, the eigenvalues Bf . play a pivotal role in the time. On the other hand, the performance of RFFKLMS depends
convergence’s study of the algorithm. In the case wheyeis a  largely onD, which controls the quality of the kernel approxima-
strictly positive definite matrix, its eigenvalues satiffy< \; < tion. Similar to the case of QKLMS, there is a value forso that

A2 < -+ < Ap. Applying similar assumptions as in the case of theRFFKLMS attains its lowest steady-state MSE, while largdugs
standard LMS, we can prove the following results. provide negligible improvements. Talileé 1 gives the meaimitig
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Fig. 2. Monte Carlo simulations on data pairs generated as destrib
in sectior 5.P for (a) the RFFKLMS and QKLMS, (b) the RFFKRLS
and Engel’'s KRLS. The results are averaged a@o0 runs.

times for QKLMS and RFFKLMS on a typical core i5 machine run-
ning Matlab (both algorithms were optimized for speed). \Wen
that the complexity of the RFFKLMS i©(Dd), while the complex-
ity of QKLMS is O(M d). Our experiments have shown that in order
to obtain similar error floors, the required complexity of REMS

is lower than that of QKLMS.

5.1. Example 1. A Linear Kernel Expansion

In this set-up we generaf00 data pairs usind{7). The input vec-
tors @, are drawn fromV (0, I) and the noise are i.i.d. Gaussian
samples witho,, = 0.1. The parameters of the expansion (i.e.,
ai,...,ap) are drawn from\ (0, 25), the kernel parameter is
set to5 and the step update fo= 1 (this value satisfies the require-
ments for convergence of Theor€in 1). Fidure 1 shows the twolu
of the MSE for 100 realizations of the experiment. The akiponi
reaches steady-state aroune= 2000. The attained MSE is close to
the approximation given in Theordrh 1 (dashed line in the égur

5.2. Example 2.
In this example, we adopt the following simple non-lineardsio
C)

wheren,, represent zero-mean i.i.d. Gaussian noise wjth= 0.05
and the coefficients of the vectotg,, wi € R® are i.i.d. samples
drawn fromN\ (0, 1). Similarly to Example 1, the kernel parameter

Yn = wihzn + 0.1 (Wl zn)? + 10,

FoukLMS
—— QKLMS
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Fig. 3. Monte Carlo simulation of RFFKLMS and QKLMS applied
on data pairs generated as described (a) in setfidn 5.3 and (b
sectior 5.4. The results are averaged a@8l0 runs.

Experiment | QKLMStime | RFFKLMStime | QKLMS dictionary size
Example 2 0.891 sec 0.226 sec M =100
Example 3 0.036 sec 0.006 sec M=T7
Example 4 0.057 sec 0.021 sec M = 32

Table 1. Mean training times for QKLMS and RFFKLMS.

5.4. Example 4.

The final example adopts another chaotic series model [20]:

dn =tn + 0.5v, — 0.2dn—1 + 0.35d,,—2,

dn
{ 3(20.1+O,9d$l)1/2 dn 20
—d; (1—exp(0.7dyn)) ’
———"" dy <0

wheren,, is zero-mean i.i.d. Gaussian noise with = 0.001, vy, is
also zero-mean i.i.d. Gaussian with = 0.0156 andu,, = 0.5v, +
fin, Wheref,, is also i.i.d. Gaussian with? = 0.0156. The kernel
parametew is set t00.05 and the step update o = 1. We have
also initializedds, d> to 1. Figure[3b shows the evolution of the
MSE for both QKLMS and RFFKLMS running 1000 realizations
of the experiment ovet000 samples. The parametemwas set to

e = 0.01 (leading toM = 32) andD was setD = 100.

¢(dn) ¢(dn) + nn,

Yn =

6. THE RANDOM FOURIER FEATURES KERNEL RLS

Besides the implementation of the KLMS given in the previses-
tions, the rationale of the kernel approximation via randesarier

is set to5 and the step update fo= 1. The quantization parameter features (sectiof]3) can also be applied to other onlineriahgns

of the QKLMS was set te = 5 (leading to an average dictionary Such as the RLS. One only needs to choose the random samples
size M = 100) and the number of random Fourier coefficients for b: and replace the instancesaof in the standard RLS algorithm (see
RFFKLMS was set td) = 300. Figure[2a shows the evolution of for example[[4]3]) withzq (). The resulting algorithm performs

the MSE for both QKLMS and RFFKLMS running 1000 realizations @S Well as the original KRLS provided by Engel [2], but it isnaist
of the experiment over5000 samples. twice as fast. Figurel2b compares the performances of RFFEKRL

and Engle’s KRLS on data samples created as in Example 5e2. Th
regularization parameter for the RFFKRLS was sek te 0.0001,

the forgetting factor tg3 = 0.9995, while the number of random
features was set tB = 300. The parameter for the ALD sparsifica-
tion mechanism of Engel's KRLS was setuicg= 0.0005.

5.3. Example 3.
Here we adopt the following chaotic series model [20]:

_ dn—1
T 14 d?

n—1

dn +ud g, Yn = dn + N,

7. CONCLUSIONS
wheren,, is zero-mean i.i.d. Gaussian noise with = 0.01 and
uy, is also zero-mean i.i.d. Gaussian with = 0.15. The kernel  We presented an alternative rationale for the KLMS and KR&s:ld
parametew is set t00.05 and the step update o = 1. We have  on the approximation of the kernel function with random keur
also initializedd; to 1. Figure[3a shows the evolution of the MSE Features. The proposed algorithms exhibit similar corerecg per-
for both QKLMS and RFFKLMS running 1000 realizations of the formance to the standard KLMS/KRLS algorithms, albeit they
experiment oveb00 samples. The quantization parameteras set  quire significantly lower implementation time (due to th&implic-
to e = 0.01 (leading to an average dictionary sizé = 7), while ity). Furthermore, their “linear” characteristics pave thay for gen-
D = 100. eralization to other settings (e.g., the distributed KLN2F]).
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