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Abstract

Existing MAP inference algorithms for determinantal
point processes (DPPs) need to calculate determinants
or conduct eigenvalue decomposition generally at the
scale of the full kernel, which presents a great chal-
lenge for real-world applications. In this paper, we in-
troduce a class of DPPs, called BwDPPs, that are char-
acterized by an almost block diagonal kernel matrix and
thus can allow efficient block-wise MAP inference. Fur-
thermore, BwDPPs are successfully applied to address
the difficulty of selecting change-points in the prob-
lem of change-point detection (CPD), which results in
a new BwDPP-based CPD method, named BwDppCpd.
In BwDppCpd, a preliminary set of change-point can-
didates is first created based on existing well-studied
metrics. Then, these change-point candidates are treated
as DPP items, and DPP-based subset selection is con-
ducted to give the final estimate of the change-points
that favours both quality and diversity. The effective-
ness of BwDppCpd is demonstrated through extensive
experiments on five real-world datasets.

Introduction
The determinantal point processes (DPPs) are elegant prob-
abilistic models for subset selection problems where both
quality and diversity are considered. Formally, given a set of
items Y = {1, · · · , N}, a DPP defines a probability mea-
sure P on 2Y , the set of all subsets of Y . For every subset
Y ⊆ Y we have

PL(Y ) ∝ det(LY ), (1)
where the L-ensemble kernel L is an N by N positive semi-
definite matrix. By writing L = BTB as a Gram matrix,
det(LY ) could be viewed as the squared volume spanned by
the column vectors Bi for i ∈ Y . By defining Bi = qiφi, a
popular decomposition of the kernel is given as

Lij = qiφ
T
i φjqj , (2)

where qi ∈ R+ measures the quality (magnitude) of item i in
Y , and φi ∈ Rk, ‖φi‖ = 1 can be viewed as the angle vector
of diversity features so that φTi φj measures the similarity
between items i and j. It can be shown that the probability
of including i and j increases with the quality of i and j
and diversity between i and j. As a result, a DPP assigns
high probability to subsets that are both of good quality and
diverse (Kulesza and Taskar 2012).
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Figure 1: (a) A 10-sec part of a 2-min speech recording,
shown with change-point candidates. Segments of different
speakers or noises are plotted in different colors. (b) BwDPP
kernel constructed for the whole 2-min recording, with the
112 change-point candidates as BwDPP items. The white
denotes non-zero entries while the black indicates zero.

For DPPs, the maximum a posteriori (MAP) problem
argmaxY⊆Y det(LY ), aiming at finding the subset with
highest probability, has attracted much attention due to its
broad range for potential applications. Noting that this is an
NP-hard problem (Ko, Lee, and Queyranne 1995), a number
of approximate inference methods have been purposed, in-
cluding the greedy methods for optimizing the submodular
function log det(LY ) (Buchbinder et al. 2012; Nemhauser,
Wolsey, and Fisher 1978), optimization via continuous re-
laxation (Gillenwater, Kulesza, and Taskar 2012), and min-
imum Bayes risk decoding that minimizes the application-
specific loss function (Kulesza and Taskar 2012).

These existing methods need to calculate determinants or
conduct eigenvalue decomposition. Both computations are
taken at the scale of the kernel size N and with the cost
of around O(N3) time that become intolerably high when
N become large, e.g. thousands. Nevertheless, we find that
for a class of DPPs where the kernel is almost block diag-
onal (Fig. 1 (b)), the MAP inference with the whole kernel
could be replaced by a series of sub-inferences with its sub-
kernels. Since the sizes of the sub-kernels become smaller,
the overall computational cost can be significantly reduced.
Such DPPs are often defined over a line where items are only
similar to their neighbourhoods on the line and significantly
different from those far away. Since the MAP inference for
such DPPs is conducted in a block-wise manner, we refer to
them as BwDPPs (block-wise DPPs) in the rest of the paper.

The above observation is mainly motivated by the prob-
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lem of change-point detection (CPD) that aims at detecting
abrupt changes in time-series data (Gustafsson and Gustafs-
son 2000). In CPD, the period of time between two consecu-
tive change-points, often referred to as a segment or a state,
is with homogeneous properties of interest (e.g. the same
speaker in a speech (Chen and Gopalakrishnan 1998) or the
same behaviour in human activity data (Liu et al. 2013)). Af-
ter choosing a number of change-point candidates without
much difficulty, we can treat these change-point candidates
as DPP items, and select a subset from them to be our final
estimate of the change-points. Each change-point candidate
has its own quality of being a change-point. Moreover, the
true locations of change-points along the timeline tend to be
diverse, since states (e.g. speakers in Fig. 1 (a)) would not
change rapidly. Therefore, it is preferred to conduct change-
point selection that incorporates both quality and diversity.
DPP-based subset selection clearly suits this purpose well.
Meanwhile, the corresponding kernel will then become al-
most block diagonal (e.g. Fig. 1 (b)), as neighbouring items
are less diversified, and items far apart more diversified, In
this case, the DPP becomes BwDPP.

The problem of CPD have been actively studied for
decades, where various CPD methods could be broadly clas-
sified into Bayesian or frequentist approach. In Bayesian
approach, the CPD problem is reduced to estimating the
posterior distribution of the change-point locations given
the time-series data (Green 1995). Other posteriors to be
estimated include the 0/1 indicator sequence (Lavielle and
Lebarbier 2001), and the “run length” (Adams and MacKay
2007). Although many improvements were made, e.g. using
advanced Monte Carlo method, the efficiency for estimating
these posteriors is still a big challenge for real-world tasks.

In frequentist approach, the core idea is hypothesis test-
ing and the general strategy is to first define a metric
(test statistic) by considering the observations over past
and present windows. As both windows move forward,
change-points are selected when the metric value exceeds
a threshold. Some widely-used metrics include the cumula-
tive sum (Basseville, Nikiforov, and others 1993), the gener-
alized likelihood-ratio (Gustafsson 1996), the Bayesian in-
formation criterion (BIC) (Chen and Gopalakrishnan 1998),
the Kullback Leibler divergence (Delacourt and Wellekens
2000), and more recently, subspace-based metrics (Idé
and Tsuda 2007; Kawahara, Yairi, and Machida 2007),
kernel-based metrics (Desobry, Davy, and Doncarli 2005),
and density-ratio (Kanamori, Suzuki, and Sugiyama 2010;
Kawahara and Sugiyama 2012). While various metrics
have been explored, how to choose thresholds and per-
form change-point selection, which is also a determining
factor for detection performance, is relatively less studied.
Heuristic-based rules or procedures are dominant and not
well-performed, e.g. selecting local peaks above a threshold
(Kawahara, Yairi, and Machida 2007), discarding the lower
one if two peaks are close (Liu et al. 2013), or requiring the
metric differences between change-points and their neigh-
bouring valleys above a threshold (Delacourt and Wellekens
2000).

In this paper, we propose to apply DPP to address the dif-
ficulty of selecting change-points. Based on existing well-

studied metrics, we can create a preliminary set of change-
point candidates without much difficulty. Then, we treat
these change-point candidates as DPP items, and conduct
DPP-based subset selection to obtain the final estimate of
the change-points that favours both quality and diversity.

The contribution of this paper is two-fold. First, we intro-
duce a class of DPP, called BwDPPs, that are characterized
by an almost block diagonal kernel matrix and thus can al-
low efficient block-wise MAP inference. Second, BwDPPs
are successfully applied to address the difficult problem of
selecting change-points, which results in a new BwDPP-
based CPD method, named BwDppCpd.

The rest of the paper is organized as follows. After de-
scribing brief preliminaries, we introduce BwDPPs and give
our theoretical result on the BwDPP-MAP method. Next, we
introduce BwDppCpd and present evaluation experiment re-
sults on a number of real-world datasets. Finally, we con-
clude the paper with a discussion on potential future direc-
tions.

Preliminaries
Throughout the paper, we are interested in MAP infer-
ence for BwDPPs, a particular class of DPP where the L-
ensemble kernel L is almost block diagonal1, namely

L ,


L1 A1 · · · 0
AT

1 L2 A2

. . . . . . . . .
...

AT
m−2 Lm−1 Am−1

0 · · · AT
m−1 Lm

 , (3)

where the diagonal sub-matrices Li ∈ Rli×li are sub-
kernels containing DPP items that are mutually similar, and
the off-diagonal sub-matrices Ai ∈ Rli×li+1 are sparse sub-
matrices with non-zero entries only at the bottom left, repre-
senting the connections between adjacent sub-kernels. Fig.
2 (a) gives a good example of such matrices.

Let Y be the set of all indices of L and let Y1, · · · ,Ym be
that of L1, · · · ,Lm correspondingly. For any set of indices
Ci, Cj ⊆ Y , we use LCi to denote the square sub-matrix
indexed by Ci and LCi,Cj the |Ci| × |Cj | sub-matrix with
rows indexed by Ci and columns by Cj . Following general
notations, by L = diag(L1, ...,Lm) we mean the block di-
agonal matrix L consisting of sub-matrices L1, ...,Lm and
L � 0 means that L is positive semi-definite.

MAP Inference for BwDPPs
Strictly Block Diagonal Kernel
We first consider the motivating case where the kernel is
strictly block diagonal, i.e. all elements in the off-diagonal
sub-matrices Ai are zero. It can be easily seen that the fol-
lowing divide-and-conquer theorem holds.

Theorem 1 For the DPP with a block diagonal kernel L =
diag(L1, · · · ,Lm) over ground set Y =

⋃m
i=1 Yi which is

1Such matrices could also be defined as a particular class of
block tridiagonal matrices, where the off-diagonal sub-matrices Ai

only have a few non-zeros entries at the bottom left.



partitioned correspondingly, the MAP solution can be ob-
tained as:

Ĉ = Ĉ1 ∪ · · · ∪ Ĉm, (4)

where Ĉ = argmax
C⊆Y

det(LC), and Ĉi = argmax
Ci⊆Yi

det(LCi
).

Theorem 1 tells us that the MAP inference with a strictly
block diagonal kernel can be decomposed into a series of
sub-inferences with its sub-kernels. In this way, the overall
computation cost can be largely reduced. Noting that no ex-
act DPP-MAP algorithms are available so far, any approxi-
mate DPP-MAP algorithms could be used in a plug-and-play
way for the sub-inferences.

Almost Block Diagonal Kernel
Now we analyze the MAP inference for BwDPP with an al-
most block diagonal kernel as defined in (3). Let C ⊆ Y
be the hypothesized subset to be selected from L and let
C1 ⊆ Y1, · · · , Cm ⊆ Ym be that from L1, · · · ,Lm corre-
spondingly, where Ci = C ∩ Yi. Without loss of generality,
we assume LCi is invertible2 for i = 1, · · · ,m. By defining
L̃Ci

recursively as L̃Ci
,{

LCi i = 1,

LCi
− LTCi−1,Ci

L̃−1
Ci−1

LCi−1,Ci
i = 2, · · · ,m (5)

one could rewrite the MAP objective function: det(LC)

= det(LC1
) det(L∪m

i=2C2
− LTC1,∪m

i=2Ci
L−1
C1

LC1,∪m
i=2Ci

)

= det(L̃C1
) det(

[
L̃C2 [LC2,C3 0]

[LC2,C3
0]T L∪m

i=3Ci

]
),

(6)
where 0 represents zero matrix of appropriate size that fill
the corresponding area with zeros. The key to the second
equation above is LC1,Ci = 0 for i ≥ 3, since L is an almost
block diagonal kernel. Continuing this recursion,

det(LC) = · · · =
∏m
i=1 det(L̃Ci

). (7)
Hence, the MAP objective function is reduced to:
argmax
C∈Y

det(LC) = argmax
C1∈Y1,··· ,Cm∈Ym

∏m
i=1 det(L̃Ci). (8)

As L̃Ci
depends on C1, · · · , Ci, we cannot opti-

mize det(L̃C1
), · · · ,det(L̃Cm

) separately. Alternatively,
we provide an approximate method that optimize over
C1, · · · , Cm sequentially, named the BwDPP-MAP method,
which is a depth-first greedy search method in essence.
The BwDPP-MAP is described in Table 1, where
argmaxCi;Cj=Ĉj ,j=1,··· ,i−1 denotes optimizing over Ci

with the value ofCj fixed as Ĉj for j = 1, · · · , i−1, and the
sub-kernel3 L̃Yi is given similarly as L̃Ci , namely L̃Yi ,{

Li i = 1,

Li − LTCi−1,Yi
L̃−1
Ci−1

LCi−1,Yi
i = 2, · · · ,m (9)

One may notice that (L̃Yi
)Ci

is equivalent to L̃Ci
.

2That simply assumes that we only consider the non-trivial sub-
sets selected with a DPP kernel L, i.e. det(LCi) > 0.

3Both LYi and L̃Yi are called sub-kernels.

Table 1: BwDPP-MAP Algorithm
Input: L as defined in (3);
Output: Subset of items Ĉ.
For: i = 1, · · · ,m

Compute L̃Yi
via (9);

Perform sub-inference over Ci via
Ĉi = argmaxCi∈Yi;Cj=Ĉj ,j=1,··· ,i−1 det((L̃Yi)Ci);

Return: Ĉ =
⋃m
i=1 Ĉi.

In conclusion, similar to the MAP inference with a strictly
block diagonal kernel, by using BwDPP-MAP, the MAP in-
ference for an almost block diagonal kernel can be decom-
posed into a series of sub-inferences for the sub-kernels as
well. There are four comments for this conclusion.

First, it should be noted that the above BwDPP-MAP
method is an approximate optimization method, even if each
sub-inference step is conducted exactly. This is because L̃Ci

depends on C1, · · · , Ci. We provide an empirical evaluation
later, showing that through block-wise operation, the greedy
search in BwDPP-MAP can achieve computation speed-up
with marginal sacrifice of the accuracy.

Second, by the following Lemma 1, we show that each
sub-kernel L̃Yi

is positive semi-definite, so that it is theo-
retically guaranteed that we can conduct each sub-inference
via existing DPP-MAP algorithms, e.g. the greedy DPP-
MAP algorithm (Table 2) (Gillenwater, Kulesza, and Taskar
2012). One may find the proof of Lemma 1 in the appendix.

Lemma 1 L̃Yi � 0, for i = 1, · · · ,m.

Third, in order to apply BwDPP-MAP, we need to first
partition a given DPP kernel into the form of an almost block
diagonal matrix as defined in (3). The partition is not unique.
A trivial partition for an arbitrary DPP kernel is no partition,
i.e., regarding the whole matrix as a single block. We leave
the study of finding the optimal partition for further work.
Here we provide a heuristic rule for partition, which is called
γ-partition and performs well in our experiments.
Definition 1 (γ-partition) A γ-partition is defined by parti-
tioning a DPP kernel L into the almost block diagonal form
as defined in (3) with the maximum number of blocks (i.e.
the largest possible m)4, where for every off-diagonal ma-
trix Ai, the size of its non-zero area is only at the bottom left
and does not exceed γ × γ.

A heuristic way to obtain γ-partition for a kernel L is to
first identify a series of non-overlapping dense square sub-
matrices along the main diagonal as many as possible. Next,
two adjacent square sub-matrices in the main diagonal are
merged if the size of the non-zero area in their corresponding
off-diagonal sub-matrix exceeds γ × γ.

It should be noted that a kernel could be subject to γ-
partition in one or more ways with different values of γ.
By taking γ-partition for a kernel with different values of γ,
we can obtain a balance between computation cost and op-
timization accuracy. A smaller γ implies smaller m achiev-

4Generally speaking, a partition of a kernel of size N into m
sub-kernels will approximately reduce the computational complex-
ity m2 times. A larger m implies larger computation reduction.



able in γ-partition, and thus smaller computation reduction.
On the other hand, a smaller γ means smaller degree of in-
teraction between adjacent sub-inferences, and thus better
optimization accuracy.

Fourth, an empirical illustration of BwDPP-MAP is given
in Fig. 2, where the greedy MAP algorithm (Table 2)
(Gillenwater, Kulesza, and Taskar 2012) is used for the
sub-inferences in BwDPP-MAP. The synthetic kernel size
is fixed as 500. For each realization, the area of non-zero
entries in the kernel is first specified by uniformly ran-
domly choosing the size of sub-kernels from [10, 30] and the
size of the non-zero areas in off-diagonal sub-matrices from
{0, 2, 4, 6}. Next, a vector Bi is generated for each item i
separately, following standard normal distribution. Finally,
for all non-zero entries (Lij 6= 0) specified in the previous
step, the entry value is given by Lij = BT

i Bj . Fig. 2 (a)
provides an example for such synthetic kernel.

We generate 1000 synthetic kernels as described above.
For each synthetic kernel, we take γ-partition with γ =
0, 2, 4, 6, and then run BwDPP-MAP. The performance of
directly applying the greedy MAP algorithm on the origi-
nal unpartitioned kernel is used as baseline. The results in
Fig. 2 (b) show that BwDPP-MAP runs much faster than the
baseline. With the increase of γ, the runtime drops while the
inference accuracy degrades within a tolerable range.

Connection between BwDPP-MAP and its
Sub-inference Algorithm
Any DPP-MAP inference algorithm can be used in a plug-
and-play fashion for the sub-inference procedure of BwDPP.
It is natural to ask the connection between BwDPP-MAP
and its corresponding DPP-MAP algorithm. The relation is
given by the following result.

Theorem 2 Let f be any DPP-MAP algorithm for BwDPP-
MAP sub-inference, where f maps a positive semi-definite
matrix to a subset of its indices, i.e. f : L ∈ S+ 7→ Y ⊆ Y .
BwDPP-MAP (table 1) is equivalent to applying the follow-
ing steps successively to the almost block diagonal kernel as
defined in (3):

Ĉ1 = f(LY1), (10)

and for i = 2, ...,m,

Ĉi = f(L∪i
j=1Yj

|Ĉ1:i−1 ⊆ Y, ¯̂
C1:i−1 ∩ Y = ∅). (11)

where Ĉ1:i−1 = ∪i−1
j=1Ĉj ,

¯̂
C1:i−1 = ∪i−1

j=1(Yi/Ĉj), and the
input of f is the conditional kernel5.

The proof of Theorem 2 is in the appendix. Theorem 2
states that BwDPP-MAP is essentially a series of Bayesian
belief updates, where in each update a conditional kernel is
fed into f that contains the information of previous selection

5The conditional distribution (over set Y −Ain −Aout) of the
DPP defined by L,

PL(Y = Ain ∪B|Ain ⊆ Y,Aout ∩ Y = ∅), (12)
is also a DPP (Kulesza and Taskar 2012), and the corresponding
kernel,

(
L|Ain ⊆ Y,Aout ∩ Y = ∅

)
, is called the conditional ker-

nel.
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Figure 2: (a) The top-left 100×100 entries from a 500×500
synthetic kernel. (b) The log-probability ratio log(p/pref)
and runtime ratio t/tref , obtained from using BwDPP-MAP
on the same kernel with different γ-partition, where pref and
tref are the baseline performance of directly applying the
greedy MAP algorithm on the original unpartitioned kernel.
Results are averaged over 1000 kernels. The error bar repre-
sents 99.7% confidence level.

Table 2: Greedy DPP-MAP Algorithm

Input: L; Output: Ĉ.
Initialization: Set Ĉ ← ∅, U ← Y;
While U is not empty;

i∗ ← argmaxi∈U Lii; Ĉ ← Ĉ ∪ {i∗};
Compute L∗ =

([
(L + I ¯̂

C
)−1
]

¯̂
C

)−1

− I;

L← L∗; U ← {i|i /∈ Ĉ,Lii > 1};
Return: Ĉ.

result. The equivalent form allows us to compare BwDPP-
MAP directly with the method of applying f on the entire
kernel. The latter does inference on the entire set Y for one
time, while the former does the inference on a sequence of
smaller subsets Y1, ...,Ym. Concretely, in the i-th update, a
subset Yi is added to have the kernel L∪i

j=1Yj
. Then the in-

formation of previous selection result is incorporated into
the kernel to generate the conditional kernel. Finally, the
DPP-MAP inference is performed on the conditional kernel
to select Ĉi from Yi.

BwDPP-based Change-Point Detection
Let x1, · · · ,xT be the time-series observations, where xt ∈
RD represents the D-dimensional observation at time t =
1, · · · , T , and let xτ :t denote the segment of observations
in the time interval [τ, t]. We further use X1, X2 to repre-
sent different segments of observations at different intervals,
when explicitly denoting the beginning and ending times of
the intervals are not necessary. The new CPD method will
build on existing metrics. A dissimilarity metric is denoted
as d : (X1,X2) 7→ R, which measures the dissimilarity be-
tween two arbitrary segments X1 and X2.

Quality-Diversity Decomposition of Kernel
Given a set of items Y = {1, · · · , N}, the DPP kernel L
can be written as a Gram matrix L = BTB, where Bi, the
columns of B, are vectors representing items in Y .

A popular decomposition of the kernel is to define Bi =
qiφi, where qi ∈ R+ measures the quality (magnitude) of
item i in Y , and φi ∈ Rk, ‖φi‖ = 1 can be viewed as the



angle vector of diversity features so that φTi φj measures the
similarity between items i and j. Therefore, L is defined as

L = diag(q) ∗ S ∗ diag(q), (13)
where q is the quality vector consisting of qi, and S is the
similarity matrix consisting of Sij = φTi φj . The quality-
diversity decomposition allows us to construct q and S sep-
arately to address different concerns, which is utilized below
to construct the kernel for CPD.

BwDppCpd
BwDppCpd is a two-step CPD method, described as follows.

Step 1: Based on a dissimilarity metric d, a preliminary
set of change-point candidates is created. Consider mov-
ing a pair of adjacent windows, xt−w+1:t and xt+1:t+w,
along t = w, · · · , T − w, where w is the size of local
windows. Then, a large d value for the adjacent windows,
i.e. d(xt−w+1:t,xt+1:t+w), suggests that a change-point is
likely to occur at time t. After we obtain the series of d val-
ues, local peaks above the mean of the d values are marked
and the corresponding locations, say t1, · · · , tN , are se-
lected to form the preliminary set of change-point candidates
Y = {1, · · · , N}.

Step 2: Treat the change-point candidates Y =
{1, · · · , N} as BwDPP items, and select a subset from them
to be our final estimate of the change-points.

The BwDPP kernel is built via quality-diversity decom-
position. We use the similarity metric d once more to mea-
sure the quality of a candidate change-point to be a true one.
Specifically, we define

qi = d(xti−1:ti ,xti:ti+1
), (14)

The higher the value qi is, the sharper contrast around the
change-point candidate i, and the better quality of i.

Next, the BwDPP similarity matrix is defined to address
the fact that the true locations of change-points along the
timeline tend to be diverse, since states would not change
rapidly. This is done by assigning high similarity score to
items being close to each other. Specifically, we define

Sij = exp(−(ti − tj)2/σ2), (15)
where σ is a parameter representing the position diversity
level. Finally, after taking γ-partition of the kernel L into the
almost block diagonal form, BwDPP-MAP is used to select
a set of change-points that favours both quality and diversity
(Fig. 3 (b)).

Discussion
There is a rich studies of metrics for CPD problem. The
choice of the dissimilarity metric d(X1,X2) is flexible and
could be well-tailored to the characteristics of the data. We
present two examples that are used in our experiments.

• Symmetric Kullback-Leibler Divergence (SymKL):
If the two segments X1,X2 to be compared are assumed
to follow Gaussian processes, the SymKL metric is given:

SymKL(X1,X2) = tr(Σ1Σ
−1
2 ) + tr(Σ2Σ

−1
1 )−

2D + tr((Σ−1
1 + Σ−1

2 )(µ1 − µ2)(µ1 − µ2)T ),
(16)

where µ and Σ are corresponding sample mean and co-
variance.

0 20 40 60 80 100 120
0

5

10

Time /s

 d
 s

co
re

 

 

Reference

(a)

0 20 40 60 80 100 120
0

5

10

Time /s

 d
 s

co
re

 

 

Reference

(b)

Figure 3: An BwDppCpd example from Hasc. (a) Change-
point candidates selected in Step 1 with their d scores (green
cross). (b) Final estimate of change-points in step 2 with
their d scores (green cross).
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Figure 4: BwDppCpd results for Well-Log (a), Coal Mine
Disaster (b), and DJIA (c). Green lines are detected changes.

• Generalized Likelihood Ratio (GLR):
Generally, the GLR metric is given by the likelihood ratio:

GLR(X1,X2) =
L(X1|λ1)L(X2|λ2)

L(X1,2|λ1,2)
. (17)

The numerator is the likelihood that the two segments fol-
lows two different models λ1 and λ2 respectively, while
the denominator is that two segments together (denoted
as X1,2) follows a single model λ1,2. In practice, we plug
the maximium likelihood estimates (MLE) for the param-
eters λ1, λ2, and λ1,2. E.g. if we assume that the time-
series segment X , {x1, · · · , xM} follows a homoge-
neous Poisson process, where xi is the occurring time of
the i-th event, i = 1, · · · ,M . The log-likehood of X is

L(X|λ) = (M − 1) log λ− (xM − x1)λ (18)
where the MLE of λ is used, λ = (M − 1)/(xM − x1).

Experiments
The BwDppCpd method are evaluated on five real-world
time-series data. Firstly, three classic datasets are exam-
ined for CPD, namely Well-Log data, Coal Mine Disaster
data, and Dow Jones Industrial Average Return (DJIA) data,
where we set γ = 0 due to the small data size.

Next, we experiment with human activity detection and
speech segmentation, where the data size becomes larger



PRC% RCL% F1

BwDppCpd 93.05 87.88 0.9039
RuLSIF 86.36 83.84 0.8508

Table 3: CPD result on human activity detection data HASC.
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Figure 5: The ROC curve of BwDppCpd and RuLISF.

and there is no accurate model to characterize the data, mak-
ing the CPD task harder. In both experiments, the numbers
of DPP items varies from hundreds to thousands, where, ex-
cept BwDPP-MAP, no other algorithms can perform MAP
inference within a reasonable cost of time due to the large
kernel scale. We set γ = 3 for human activity detection and
γ = 0, 2 for speech segmentation to provide a comparison.

As for the dissimilarity metric d, Poisson processes and
GLR are used in Coal Mine Disaster and for other experi-
ments, Gaussian models and SymKL are used.

Well-Log Data
Well-Log contains 4050 measurements of nuclear magnetic
response taken during the drilling of a well. It is an example
of varying Gaussian mean and the changes reflect the strati-
fication of the earth’s crust (Adams and MacKay 2007). Out-
liers are removed prior to the experiment. As shown in Fig.
4 (a), all changes are detected by BwDppCpd.

Coal Mine Disaster Data
Coal Mine Disaster (Jarrett 1979), a standard dataset for
testing CPD method, consists of 191 accidents from 1851
to 1962. The occurring rates of accidents are believed to
have changed a few times and the task is to detect them. The
BwDppCpd detection result, as shown in Fig. 4 (b), agrees
with that in (Green 1995).

1972-75 Dow Jones Industrial Average Return
DJIA contains daily return rates of Dow Jones Industrial Av-
erage from 1972 to 1975. It is an example of varying Gaus-
sian variance, where the changes are caused by big events
that have potential macroeconomic effects. Four changes in
the data are detected by BwDppCpd, which are matched
well with important events (Fig. 4 (c)). Compared to (Adams
and MacKay 2007), one more change is detected (the right-
most), which corresponds to the date that 73-74 stock mar-
ket crash ended6. This shows that the BwDppCpd discovers
more information from the data.

Human Activity Detection
HASC7 contains human activity data collected by portable
three-axis accelerometers and the task is to segment the data
according to human behaviour changes. Fig. 3 (b) shows an
example of Hasc. The performance of the best algorithm

6http://en.wikipedia.org/wiki/1973-74 stock market crash
7http://hasc.jp/hc2011/

in (Liu et al. 2013), RuLSIF, is used for comparison and
the precision (PRC), recall (RCL), and F1 measure (Kotti,
Moschou, and Kotropoulos 2008) are used for evaluation:

PRC = CFC/DET, RCL = CFC/GT, (19)
F1 = 2 PRC RCL/(PRC + RCL), (20)

where CFC is the number of correctly found changes, DET
is the number of detected changes, and GT is the number of
ground-truth changes. F1 score could be viewed as a overall
score that balances PRL and RCL. The CPD result is shown
in Table 3, where the parameters are set to attain the best F1

results for both algorithms.
The receiver operating characteristic (ROC) curve is often

used to evaluate performance under different precision and
recall, where true positive rate (TPR) and false positive rate
(FPR) are given by TPR = RCL and FPR = 1−PRC. For
BwDppCpd, different levels of TPR and FPR are obtained
by tuning the position diversity parameter σ and for RuLSIF
by tuning the threshold η (Liu et al. 2013).

As shown in Table 3 and Fig. 5, BwDppCpd outperforms
RuLISF on HASC when the FPR is low. RuLISF has a bet-
ter performance only when FPR exceeds 0.3, which is less
useful.

Speech Segmentation
We tested two datasets for speech segmentation. The first
dataset, called Hub4m97, is a subset (around 5 hours) from
1997 Mandarin Broadcast News Speech (HUB4-NE) re-
leased by LDC8. The second dataset, called TelRecord, con-
sists of 216 telephone conversations, each around 2-min
long, collected from real-world call centres. Acoustic fea-
tures of 12-order MFCCs (mel-frequency cepstral coeffi-
cients) are extracted as the time-series data.

Speech segmentation is to segment the audio data into
acoustically homogeneous segments, e.g. utterances from a
single speaker or non-speech portions. The two datasets con-
tain utterances with hesitations and a variety of changing
background noises, presenting a great challenge for CPD.

The BwDppCpd method with different γ for kernel par-
tition (denoted as Bw-γ in Table 4) is tested and two clas-
sic segmentation methods BIC (Chen and Gopalakrishnan
1998) and DISTBIC (Delacourt and Wellekens 2000) are
used for comparison. As the same as in (Delacourt and
Wellekens 2000), a post-processing step based on BIC val-
ues is also taken to reduce the false alarms for BwDppCpd.

The experiment results in Table 4 shows that BwDppCpd
outperforms BIC and DISTBIC for both datasets. In addi-
tion, comparing the results obtained with γ = 0 and γ = 2,
using γ = 2 is found to be faster but has a slightly worse per-
formance. This agrees with our analysis of BwDPP-MAP for
using different γ-partition to tradeoff speed and accuracy.

Conclusion
In this paper, we introduced BwDPPs, a class of DPPs where
the kernel is almost block diagonal and thus can allow ef-
ficient block-wise MAP inference. Moreover, BwDPPs are

8http://catalog.ldc.upenn.edu/LDC98S73



BIC DistBIC Bw-0 Bw-2
Hub4m97

PRC% 59.40 64.29 65.29 65.12
RCL% 78.24 74.98 78.49 78.39
F1 0.6753 0.6922 0.7128 0.7114

TelRecord
PRC% 54.05 61.39 66.54 66.47
RCL% 79.97 81.72 85.47 84.83
F1 0.6451 0.7011 0.7483 0.7454

Table 4: Segmentation results on Hub4m97 and TelRecord.

demonstrated to be useful in change-point detection prob-
lem. The BwDPP-based change-point detection method,
BwDppCpd, shows superior performance in experiments
with several real-world datasets.

The almost block diagonal kernels suit the change-point
detection problem well, but BwDPPs may achieve more than
that. Theoretically, BwDPP-MAP could be applied to any
block tridiagonal matrices without modification. It remains
to be studied the theoretical issues regarding exact or ap-
proximate partition of a DPP kernel into the form of an al-
most block diagonal matrix (Acer, Kayaaslan, and Aykanat
2013). Other potential BwDPP applications are also worth
further exploration.

Appendix: Proof of Lemma 1
PROOF Define

Si =


L i = 0[

L̃Yi+1
[LYi+1,Yi+2

0]
[LYi+1,Yi+2 0]T L∪m

j=i+2Yj

]
i = 1, · · · ,m− 2

L̃Yi+1
i = m− 1

.

(21)
For i = 1, · · · ,m−1, Si is the Schur complement of L̃Ci in
Si−1
Ci∪(∪m

j=i+1Yj), the sub-matrix of Si−1. We next prove the
lemma using the first principle of mathematical induction.
State the predicate as:

• P (i): Si−1 and L̃Yi are positive semi-definite (PSD).

P (1) trivially holds as L̃Y1
= L1 and S0 = L are PSD.

Assuming P (i) holds. Si−1
Ci∪(∪m

j=i+1Yj) is PSD because

Si−1 is PSD. Since L̃Ci � 0 (footnote 2) and Si is the Schur
complement of L̃Ci in Si−1

Ci∪(∪m
j=i+1Yj), Si is PSD. Being

sub-matrix of Si, L̃Yi+1
is also PSD. Hence, P (i+ 1) holds.

Therefore, for i = 1, · · · ,m, L̃Yi
is PSD.

Appendix: Proof of Theorem 2
For preparation, first I need to quote a result from (Kulesza
and Taskar 2012): the conditional kernel(
L|Ain ⊆ Y,Aout ∩ Y = ∅

)
=
([

(LĀout + IĀin)−1
]
Āin

)−1−I.
(22)

Next I need to use the following lemma:

Lemma 2 (L−1

Ĉ1:i
)Ĉi

= L̃−1

Ĉi
, for i = 1, ...,m, where L̃Ĉi

is
defined by (5).

PROOF The proof is given by mathematical induction.
When n = 1, the result trivially holds:

(L−1

Ĉ1
)Ĉ1

= LĈ1
= L̃−1

Ĉ1
. (23)

Assume the result holds for n = i− 1, i.e.,
(L−1

Ĉ1:i−1
)Ĉi−1

= L̃−1

Ĉi−1
. (24)

Consider the case when n = i. One has
(L−1

Ĉ1:i
)Ĉi

= (LĈi
− LT

Ĉ1:i−1,Ĉi
L−1

Ĉ1:i−1
LĈ1:i−1,Ĉi

)−1

= (LĈi
− LT

Ĉi−1,Ĉi
(L−1

Ĉ1:i−1
)Ĉi−1

LĈi−1,Ĉi
)−1

= (LĈi
− LT

Ĉi−1,Ĉi
L̃−1

Ĉi−1
LĈi−1,Ĉi

)−1 = L̃−1

Ĉi
.

(25)
Therefore the result holds for i = 1, ...,m.

To prove Theorem 2, it suffices to show that

L̃Yi
=
(
L∪i

j=1Yj
|Ĉ1:i−1 ⊆ Y, ¯̂

C1:i−1 ∩ Y = ∅
)
. (26)

Using (22) one has(
L∪i

j=1Yj
|Ĉ1:i−1 ⊆ Y, ¯̂

C1:i−1 ∩ Y = ∅
)

=

([
(LĈ1:i−1∪Yi

+ IYi
)−1
]
Yi

)−1

− I

= LYi
− LT

Ĉ1:i−1,Yi
L−1

Ĉ1:i−1
LĈ1:i−1,Yi

= LYi − LT
Ĉi−1,Yi

(L−1

Ĉ1:i−1
)Ĉi−1

LĈi−1,Yi
.

(27)

Following Lemma 2 to complete the proof
RHS = LYi

− LT
Ĉi−1,Yi

L̃−1

Ĉi−1
LĈi−1,Yi

= L̃Yi
. (28)
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