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ABSTRACT
Echo-State Networks and Reservoir Computing have been
studied for more than a decade. They provide a simpler
yet powerful alternative to Recurrent Neural Networks, ev-
ery internal weight is fixed and only the last linear layer is
trained. They involve many multiplications by dense random
matrices. Very large networks are difficult to obtain, as the
complexity scales quadratically both in time and memory.
Here, we present a novel optical implementation of Echo-
State Networks using light-scattering media and a Digital
Micromirror Device. As a proof of concept, binary networks
have been successfully trained to predict the chaotic Mackey-
Glass time series. This new method is fast, power efficient
and easily scalable to very large networks.

Index Terms— Machine Learning, Echo-State Network,
Reservoir Computing, Optical Computing

1. INTRODUCTION

Since the work of Johnson and Lindenstrauss in 1984 [1], ran-
dom projections have been increasingly used in various set-
tings. Their properties as low distortion transforms that even-
tually provide computational savings have made them use-
ful in sketching high-dimensional datasets while speeding up
various operations such as regression, clustering, embedding
[2, 3]. A major issue with random projections stems in part
due to the large number of operations needed to perform a
multiplication between a random matrix and a feature vec-
tor. In order to remedy that bottleneck, a recent study has
investigated the use of randomness found in natural physical
processes to speed up these computations [4]. Our present
work explores the use of this randomness as a way to speed
up an Echo State Network (ESN), a specific type of Recurrent
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Neural Network where neurons are connected with random
weights [5, 6, 7]. Complex dynamics are created in ESNs by
the succession of random projections.

Recurrent Neural Networks are notoriously hard to train
owing to the problem of vanishing or exploding gradients. To
bypass this issue, researchers proposed Echo-State Networks
where all the internal weights are fixed randomly, so that net-
works are a lot easier to train while we still keep the complex
dynamics of Recurrent Neural Networks. The effectiveness of
this strategy comes from the properties of random projections
and this can be linked with recent works in Deep Learning
where networks with fixed random weights are still able to
perform well [8, 9].

Initially inspired by neural networks, ESNs gave birth to
Reservoir Computing (RC) [10], a more general computa-
tional paradigm which has become popular in the last decade.
An input sequence drives the complex dynamics of a reservoir
that non-linearly encodes the input. The output is obtained by
a linear combination of the reservoir state. To train such a sys-
tem, one wants to find the best set of output coefficients, this
step usually boils down to a linear regression. Such a frame-
work has proven to be useful in tasks such as speech recog-
nition, handwriting recognition, robot motor control or finan-
cial forecasting [11, 12]. Furthermore, RC is not restricted
to neural networks. Any physical dynamical system, even a
bucket of water [13], can be used for RC. Much work has
been done to perform RC using non-linear optical elements
[14, 15, 16, 17, 18], offering higher bandwidth and lower en-
ergy consumption.

Here we propose a novel hardware implementation of
Reservoir Computing using a static complex medium -such as
a layer of white paint- as a light-scattering material . Light is
first modulated by a Digital Micromirror Device (DMD), then
propagates through a multiply-scattering material, where it is
subject to a large number of scattering events, the so-called
multiple scattering regime. This simple experimental appara-
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tus enables us to compute ESN states, as propagation through
a complex medium can be modeled as a multiplication by a
random matrix [19]. Like other optical implementations, this
new approach can be very fast and only requires low power,
as the multiplication by the random matrix, the most critical
operation, is carried out ”at the speed of light” and without
power consumption. Lastly, the setup only uses off-the-shelf
devices and a simple layer of scattering material. This sim-
plicity makes it possible to replicate this approach in a lab
experiment or in an integrated device.

Compared to previous optical implementations, it can po-
tentially scale up the number of neurons very easily, the com-
putational overhead being negligible. DMDs and cameras al-
ready routinely offer several million pixels of information.
Hence, the number of neurons can potentially be increased
up to these orders of magnitude. In this first demonstration,
networks with 60,000 neurons are successfully trained for a
speedup factor of 30 over high-end CPUs. Additionally, this
optical implementation is closer to ESNs with a dense random
weight matrix, in sharp contrast with implementations based
on non-linear optical elements for which neuron connections
are local.

The DMD is a very fast programmable device that has
many small tiltable mirrors with two orientations. Depend-
ing on their orientation, pixels are turned on (light sent on
the diffusing material) or off (light sent on a beam blocker).
As a consequence, this optical implementation will only use
binary neurons. ESNs with binary neurons like in [20], or
binary ESNs, are commonly considered less powerful than
real ESNs but good results can still be obtained thanks to the
possibility of increasing the number of binary neurons, one
advantage of this implementation.

In this paper, we show the first implementation of a binary
ESN using light-scattering materials. After a general presen-
tation of ESNs in Section 2, Section 3 explains how to realize
experimentally an optical ESN. In Section 4, we present and
analyze the performance of this new implementation.

2. ECHO-STATE NETWORKS

We consider a network of N binary neurons, writing the state
x(t) = (x1(t), . . . , xN (t)) ∈ {−1; 1}N at timestep t ∈ Z.
Neuron i receives an input from neuron j with random weight
wij ∈ C following a complex gaussian distribution. All neu-
rons are interconnected and the system weights W = (wij)
is a dense random matrix. The input i(t) at time t is also fed
to every neuron with random weights V. The output of a neu-
ron is obtained by integrating the neuron inputs and applying
a non-linear function f :

x(t+ 1) = f(Wx(t) +Vi(t)) (1)

In the following, f is a binary threshold on |Wx(t) +Vi(t)|
whereas ESNs traditionally used a hyperbolic tangent. The
system is quite robust and other non-linearities are possible

[17]. However, we will show that we need more binary net-
works to achieve a performance comparable to real networks.

In a typical problem for ESNs, a time-dependent input
i(t) of length T and its corresponding output o(t) are given.
During the training session, the reservoir is arbitrarily initial-
ized and the time series i(t) is fed to the ESN. Driven by the
input, the reservoir follows non-linear dynamics and the net-
work states at every timestep are collected. The output pre-
dicted by the network at time t is a linear combination of the
state of the reservoir W′x(t) with output weights W′ that
are trained. Such a linear readout is very simple so that the
training consists in a linear regression to find W′ such that
the error

∑
t ‖o(t)−W′x(t)‖2 is minimal. This convex op-

timization problem can be solved explicitly or iteratively.
The dynamics of the reservoir needs to be finely tuned.

Depending on the magnitude of the eigenvalues of the weight
matrix, the reservoir can relax very quickly or follow a chaotic
behavior. For maximal performance, hyperparameters need
to be fixed to maximize the complexity of the ESN dynamics
while keeping the stability of the system. Additionally, the
first iterations are usually removed, as we wait for the network
to forget the arbitrary initial state.

The computational bottleneck when running an ESN con-
sists in the computation of the successive reservoir states. Eq.
(1) involves a multiplication by the large random matrix W
that needs to be repeated a large number of times. This pre-
vents users from using a large number of neurons as the com-
plexity scales quadratically with the neuron number, both in
time and space. It is important to increase the reservoir size of
an ESN because a larger reservoir can encode more subtle in-
formation on the input, and this leads to a better performance.
In some implementations, sparse weight matrices can be used
to speed up the calculation of this multiplication [10].

3. EXPERIMENTAL REALIZATION

When light propagates in a light-scattering medium, it does
not go straight but scatters on inhomogeneities present at ran-
dom and unpredictable positions. This complex propagation
is traditionally viewed as an inconvenience that one wants to
bypass, in order to image inside a thick biological sample
for example. Here, we study and exploit this phenomenon
with different point of view. Rather than trying to revert the
changes caused by the complex medium, we want to make
use of the complex image at the output called a speckle figure
[21] to perform computation. Our interest is motivated by the
speed and the scalability we can potentially obtain: we want
to perform computations ”at the speed of light”. The large
randomness of a speckle pattern has already been exploited
for kernel methods [4] or phase retrieval [22].

Fig. 1 shows the optical setup. A coherent light source
from a continuous laser is expanded to fit on the DMD. The
DMD is a programmable device that shapes the light and
sends a binary image of size M on the scattering medium.



Here, the medium is a 2mm thick opaque layer, with > 10
transport mean free path, where all light traversing the sample
has been multiply scattered, and where absorption is negligi-
ble. The resulting speckle pattern is recorded by the camera.

Fig. 1. The experimental setup. Light from a laser is ex-
panded by a telescope and arrives on a DMD. DMD pixels
that are turned on send the coherent light on a multiply scat-
tering medium. A speckle figure is collected on a camera and
determines the next reservoir state. The reservoir state is then
displayed with the input on the DMD to start a new iteration.

This simple setup is useful to perform computation ow-
ing to the transfer matrix formalism. The electric field at the
camera sensor e ∈ CN is a linear combination of the binary
image d ∈ {0; 1}M sent by the DMD:

e = Hd (2)

where H is the transfer matrix, an N × M random matrix.
Thanks to the multiple scattering process, each element of
H can be seen as an independent identically distributed ran-
dom variable, drawn from a complex gaussian distribution, as
demonstrated experimentally in [19] where this transfer ma-
trix was measured. Thus, multiplication by a large random
matrix is carried out by the scattering medium.

At every iteration, the current state of the ESN x(t) and
the current input i(t) are displayed on the DMD. Necessar-
ily binary, they are expanded and concatenated into a DMD
image d ∈ {0; 1}M which is related to the electric field at
the camera plane by (2). Cameras record a speckle intensity
s ∈ RN , equal to the modulus square of the electric field,
s = |Hd|2 = |Wx(t) + Vi(t)|2, where W and V corre-
sponds to subsets of columns of H.

From this intensity, the next ESN state x(t + 1) is com-
puted so that it satisfies (1). For this step, we consider a
number of pixels of the camera image equal to the number
of neurons. For every neuron, its new state is obtained after
a threshold operation: the neuron is activated if the measured
intensity of its corresponding pixel is greater than a threshold

A and silent otherwise. In other words, the activation function
f is a boolean function defined by f(a) = (|a|2 > A).

Once the next ESN state x(t+ 1) is obtained, a new iter-
ation can start again. In a way, the speckle image determines
what the DMD displays next. This whole process is repeated
T times where T is the length of the input.

It is important to note that only two operations are com-
puted optically. The scattering medium performs a multipli-
cation by a random matrix and camera sensors record the
modulus square of the electric field, i.e. they apply a non-
linear operation. All the other operations like computing x(t)
from s or the linear regression for training are performed on a
computer.

This setup has first been built in a lab. Here we present re-
sults that were obtained using a high-performance implemen-
tation provided by LightOn and available on the cloud. This
device is accessible for machine learning researchers to inves-
tigate problems that involve multiplications by dense random
matrices.

4. RESULTS

Echo-State Networks are designed for time-dependent tasks.
We compare the performance of the optical setup and a CPU-
based server on the Mackey-Glass time series prediction task.
This time series is obtained by discretizing the following
chaotic non-linear differential equation on u:

du

dt
= β

uτ
1 + unτ

− γu (3)

where uτ represents the value of u at time t− τ . Here we
take β = 0.2, γ = 0.1, τ = 17, n = 10 and a discretization
step h = 1. The input that is fed to the ESN is i(t) = u(t)
while the output corresponds to the prediction o(t) = u(t+1).

The input needs to be displayed as a binary image on the
DMD. Hence, we use a simple binary scheme to encode the
real-valued input u(t) in a binary vector of dimension 1000,
in which the number of 1 is proportional to the value of u(t).
This binarization scheme increases the effective dimension of
the input, but this does not affect the optical implementation.

The camera records a speckle figure in uint8 format,
with values between 0 and 255. On this camera image, we
choose a number of pixels equal to the ESN size, and we apply
on these pixels a thresholding operation with threshold 24 to
activate approximately half the neurons.

Optical computations are performed on a prototype pro-
vided by LightOn. This device is hosted in a datacenter, and
gives remote access to a high-performance and stable imple-
mentation of the optical setup described here. Equivalent
Echo-State Networks are also launched on a Microsoft Azure
server with an Intel Xeon E5-2690v3 and 56 GB of RAM for
comparison. The Mackey-Glass input is also binarized using
the same scheme. This additional step has been introduced



Method ESN size Init time Time per 1000 iter Performance

CPU (Xeon E5-2690v3) 47’315 234 720 0.995

Optical (LightOn) 10’000 0 3.2 0.971

Optical (LightOn) 100’000 0 3.2 0.985

Table 1. Results of large-scale binary ESNs on Mackey-Glass dataset. Times are in seconds.

Fig. 2. Prediction of a binary ESN of size 100’000 on
Mackey-Glass dataset. Training has been performed on 2’000
timesteps with ridge regression parameter α set to 30.

for comparison, and it has only a slight impact on the com-
putational complexity for very large reservoir sizes. All the
code is in Python using the scikit-learn syntax and training
is done with the RidgeRegression class in scikit-learn. The
performance corresponds to the score metric of regressors in
scikit-learn. Higher is better: it measures the correlation of
the prediction with the true output, the maximum is 1 for a
perfect prediction.

To optimize the I/O bandwidth of the optical devices, we
send images by batches of size between 300 and 3000. Be-
tween two batches, we collect the camera images on the com-
puter and perform a thresholding operation to obtain the next
image to be displayed on the DMD, which corresponds to the
activation function of the ESN. This operation is very fast to
compute compared to the multiplication by the weight matrix.
Therefore, every batch corresponds to one iteration of a large
number of ESNs in parallel and all the ESN states are concate-
nated for training. An even faster implementation is possible
with direct communication between DMD and camera.

As seen in Fig. 2, binary ESNs are able to learn how
to predict the Mackey-Glass time series. On the Microsoft
Azure server with 56 GB of RAM, the maximum size of an
ESN is about 50’000. Above that number, there is not enough
memory to keep the values of the random weight matrix.
Moreover, at this size this dense random matrix takes 4 min-
utes to be created, due to the generation of a large amount of
random numbers. On the other hand, with the optical imple-
mentation, there is no need to generate the weight matrix and

we can go to much higher sizes. In the current setup, ESNs
of size 100’000 are successfully trained optically.

For ESNs of size 50’000, 2’000 iterations on the Mi-
crosoft Azure server take 24 minutes. With the same amount
of time, we can perform 450’000 iterations optically (150
batches of 3000 images). Thus, the optical implementation is
more than 225 times faster at this size. This number does not
take into account the initialization of the random weight ma-
trix, that is necessary without the optical setup. To compare
performances, the linear regression for training is performed
on 2’000 iterations. For very large reservoirs, this step starts
to take more time and memory.

5. CONCLUSION

This study presents a new physical implementation of ESNs,
using light scattering to perform the fully connected random
matrix multiplication, in very high dimensions. Non-linear
time series predictions have been learned successfully by bi-
nary networks, both in experiments and simulations.

This paves the way to ESNs that could be orders of mag-
nitude faster and larger than feasible with silicon-only imple-
mentations.
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[10] Mantas LukoševičIus and Herbert Jaeger, “Reservoir
computing approaches to recurrent neural network train-
ing,” Computer Science Review, vol. 3, no. 3, pp. 127–
149, 2009.

[11] Fabian Triefenbach, Azarakhsh Jalalvand, Benjamin
Schrauwen, and Jean-Pierre Martens, “Phoneme recog-
nition with large hierarchical reservoirs,” in Advances in
neural information processing systems, 2010, pp. 2307–
2315.
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computation at the edge of chaos in recurrent neural net-
works,” Neural computation, vol. 16, no. 7, pp. 1413–
1436, 2004.

[21] Joseph W Goodman, “Statistical properties of laser
speckle patterns,” in Laser speckle and related phenom-
ena, pp. 9–75. Springer, 1975.
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