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Abstract

This paper addresses the detection of a low rank high-dimensional ten-
sor corrupted by an additive complex Gaussian noise. In the asymptotic
regime where all the dimensions of the tensor converge towards +∞ at
the same rate, existing results devoted to rank 1 tensors are extended. It
is proved that if a certain parameter depending on the low rank tensor
is below a threshold, then the null hypothesis and the presence of the
low rank tensor are undistinguishable hypotheses in the sense that no test
performs better than a random choice.

1 Introduction

The problem of testing whether an observed n1 × n2 matrix Y is either a zero-
mean independent identically distributed Gaussian random matrix Z with vari-
ance 1

n2
, or X0 + Z (where X0 is a low rank matrix: a useful signal, called also

spike) is a fundamental problem arising in numerous applications such as the
detection of low-rank multivariate signals or the Gaussian hidden clique prob-
lem. When the two dimensions n1, n2 converge towards∞ at the same rate, the
rank of X0 remaining fixed, the context is this of the so-called additive spiked
large random matrix models. Various results on the singular values of X0 + Z
have been established; in particular it is possible to show that the Generalized
Likelihood Ratio Test (GLRT) is consistent (i.e. both the probability of false
alarm and the probability of missed detection both converge towards 0 when
n1, n2 converge towards +∞ in such a way that n1/n2 → c > 0) if and only if
and only if the largest singular value of X0 is above the threshold c1/4 (see e.g.
[1], [2], [3]).

In a number of real life problems, the observation is not a matrix, but a
tensor Y of order d ≥ 3, i.e. a d–dimensional array Y = Yi1,i2,...,id where for
each k = 1, . . . , d, ik ∈ [1, . . . , nk]. In this context, the generalization of the
above matrix hypothesis testing problem becomes: test that the observed order
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d ≥ 3 tensor is either a zero-mean independent identically distributed Gaussian
random tensor Z, or the sum of Z and a low rank deterministic tensor X0, i.e.

X0 =

r∑
i=1

λix
(1,i)
0 ⊗ x

(2,i)
0 ⊗ . . .x(d,i)

0 (1.1)

where r is called the rank of X0. Here (λi)i=1,...,r are strictly positive real

numbers, and for each i = 1, . . . , r and k = 1, ..., d, x
(k,i)
0 is a ni × 1 unit norm

vector. Recent works (see e.g [4, 5, 6, 7] ) addressed teh detection/estimation of
X0 when r is reduced to 1 and when the dimensions n1, . . . , nd converge towards
∞ at the same rate. We also mention that [4] and [7] only considered the case
where the rank 1 tensor X0 is symmetric, i.e. n1 = n2 = . . . = nd and all

vectors (x
(1,i)
0 )i=1,...,d coincide. As the concept of singular value decomposition

cannot be extended to tensors, ad’hoc statistical strategies have been considered
to prove the (non)-existence of consistent tests: [5] and [7] established that if λ1
is larger than a certain upper bound, then consistent detection of X0 is possible.
In the other direction, [6] and [7] proved that if λ1 is less than a certain lower
bound (which is stricly less than the above upper bound), then X0 is non-
detectable in the sense that any test behaves as a random choice between the
two hypotheses. This is a remarkable phenomenon because such a behaviour is
not observed in the matrix case d = 2. In effect, if the largest eigenvalue of X0 is
below c1/4, then, [8] proved when r = 1 that there exist statistical tests having
a better performance than a random choice, a result that [6] and [7] obtained a
different way in the symetric case.

In [4], [5], [6], [7] a main assumption is that X0 is a rank 1 tensor. The
purpose of the present paper is to consider the case where r ≥ 1: we find out a
sufficient condition on the parameters of X0 under which X0 is non-detectable.
The problem of finding conditions under which the existence of a consistent
detection detection is guaranteed is not addressed here.

2 Model, notation, and background

The order-d tensors are complex-valued, and it is assumed that n1 = n2 = ... = n
in order to simplify the notations. The set �dCn is a complex vector-space
endowed with the standard scalar product

∀ X,Y ∈ �dCn 〈X,Y〉 =
∑

i1,...,id

Xi1,...,idYi1,...,id

and the Frobenius norm ‖X‖F =
√
〈X,X〉.

The spike (“the signal”) is assumed to be a tensor of fixed rank r following
(1.1). Along this contribution, n is large or, mathematically, n→∞. We hence

have for each n a set of n×1 vectors
(
x
(k,i)
0

)
k=1...d,i=1,...,r

. For each k = 1, . . . , d,

we denote by χ
(k)
0 the n × r matrix χ

(k)
0 = (x

(k,1)
0 , . . . ,x

(k,r)
0 ). We impose a
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non-erratic asymptotic behavior of the spike, and specifically, as all the vectors

x
(k,i)
0 ∈ Cn×1 have unit norm, we suppose that for all i, j,

〈
x
(k,i)
0 ,x

(k,j)
0

〉
=

(χ
(k)∗
0 χ

(k)
0 )i,j converges as n → ∞. The rate of convergence is a technical

aspect that is out of the scope of this contribution: we will simply assume that

the matrices (χ
(k)∗
0 χ

(k)
0 )k=1,...,d do not depend on n. We define the SVD of χ

(k)
0

as Uk

(
Σk

0

)
V∗k for Uk and Vk unitary matrices respectively of size n × n

and r × r and Σk a diagonal matrix with non-negative entries on the diagonal.

Vk and Σk do no depend on n because χ
(k)∗
0 χ

(k)
0 = VkΣ

2
kV
∗
k.

We denote by Z the noise tensor, and assume that its entries are NC(0, 1/n)
independent identically distributed complex circular Gaussian random variables.

In the following, we consider the alternative H0 : Y = Z versus H1 : Y =
X0 + Z. We denote by p1,n(y) the probability probability density of Y under

H1 and p0,n(y) the density of Y under H0. Λ(Y) = p1(Y)
p0(Y) is the likelihood ratio

and we denote by E0 the expectation under H0. We now recall the fundamen-
tal information geometry results used in [6] in order to address the detection
problem.The following properties are well known (see also [9] section 3):

• (i) If E0

[
Λ(Y)2

]
is bounded, then no consistent detection test exists.

• (ii) If moroever E0

[
Λ(Y)2

]
= 1 + o(1), then the total variation distance

between p0,n and p1,n converges towards 0, and no test performs better
than a decision at random.

Therefore, the computation of the second order moment of Λ(Y) under p0,n
may provide insights on the detection. We however notice that conditions (i)
and (ii) are only sufficient. In particular, if lim supn E0

[
Λ(Y)2

]
= +∞, nothing

can be inferred on the behaviour of the detection problem when n→ +∞.

3 Prior on the spike. Expression of the second-
order moment.

The density of Z, seen as a collection of nd complex-valued random variables, is

obviously p0,n(z) = κn exp
(
−n ‖z‖2F

)
where κn =

(
n
π

)nd
. On the one hand, we

notice that the second-order moment approach is not suited to the deterministic
model of the spike as presented previously. Indeed, in this case E0

[
Λ(Y)2

]
has

the simple expression exp
(

2n ‖X0‖2F
)

and always diverges. On the other hand,

the noise tensor shows an invariance property: if Θ1, ...,Θd are unitary n × n
matrices , then the density of the mode products (Θ1 ⊗Θ2...⊗Θd) Z equals
this of Z. For d = 2,the notation (Θ1 ⊗Θ2) Z simply means Θ1ZΘ2 and for a
general d, ((Θ1 ⊗Θ2...⊗Θd) Z)i1,...,id is∑

`1,...,`d

(Θ1)i1,`1 (Θ2)i2,`2 ... (Θd)id,`d Z`1,...,`d .

3



We hence modify the data according to the procedure: we pick i.i.d. complex
Haar samples Θ1, ...,Θd and change the data tensor Y into (Θ1 ⊗Θ2...⊗Θd) Y.
This does not affect the distribution of the noise, but this amounts to assume a

prior on the spike. Indeed, the vectors x
(k,i)
0 are replaced by Θkx

(k,i)
0 . They are

all uniformly distributed on the unit sphere of Cn and for k 6= l, vectors Θkx
(k,i)
0

and Θlx
(l,j)
0 are independent for each i, j. However, vectors (Θkx

(k,i)
0 )i=1,...,r

are not independent. In the following, the data and the noise tensors after this
procedure are still denoted respectively by Y and Z.

We are now in position to give a closed-form expression of the second-order
moment of Λ(Y) . We have p1,n(Y) = EX [p0,n(Y −X)] where EX is the
mathematical expectation over the distribution of the spike, or equivalently
over the Haar matrices (Θk)k=1,...,d. It holds that

E0

[
Λ(Y)2

]
= EX,X′ [exp (2nR 〈X,X′〉)] =

EX,X′

exp

2nR

r∑
i,j=1

λiλj

d∏
k=1

〈
(Θ′k)

∗
Θkx

(k,i)
0 ,x

(k,j)
0

〉
where EX,X′ is over independent copies X,X′ of the spike associated respec-
tively with (Θk)k=1,...,d and (Θ′k)k=1,...,d. R stands for the real part. As Θk

and Θ′k are Haar and independent, then (Θ′k)
∗
Θk is also Haar distributed and

E0

[
Λ(Y)2

]
= E [exp (2nη)], where the expectation is over the i.i.d. Haar ma-

trices Θ1,Θ2, ...,Θd and

η = R

r∑
i,j=1

λiλj

d∏
k=1

〈
Θkx

(k,i)
0 ,x

(k,j)
0

〉
︸ ︷︷ ︸

ξ
(i,j)
k

. (3.1)

η may be factored as η = R
[
λT
(
�d
k=1

(
χ

(k)∗
0 Θkχ

(k)
0

))
λ
]
. In the latter equa-

tion, � stands for the Hadamard product of matrices. The ultimate simplifica-

tion comes from the SVD of χ
(k)
0 :

χ
(k)∗
0 Θkχ

(k)
0 = Vk

(
Σk 0

)
U∗kΘkUk

(
Σk

0

)
ΣkV

∗
k.

Firstly, U∗kΘkUk has the same distribution as Θk; secondly, we may associate
with any Θk its upper r× r block, that we will denote Ψk. As a conclusion, we
may express η as

η = R
[
λT
(
�d
k=1 (VkΣkΨkΣV∗k)

)
λ
]
. (3.2)

4 Extending known results

When r = 1, Montanari et al. [6] found a bound on the parameter λ1 ensuring
that E0

[
Λ(Y)2

]
is bounded. In this simple case, η has a simple expression

4



since η = λ2R
∏d
k=1 ξk where the (ξk)k=1,...,d are i.i.d. distributed as the first

component of a uniform vector of the unit sphere of Cn. As in [6], we introduce

β2nd
d =

√
min
u∈[0,1]

− 1

ud
log(1− u2). (4.1)

Adapting the result of the mentionned article the complex-circular context is
straight-forward:

Theorem 1 (case r=1 (Montanari et al.)). Let ξ1, ..., ξd be i.i.d. distributed as
the first component of a vector uniformly distributed on the unit sphere of Cn.

If λ1 <
√

d
2β

2nd
d then E0

[
exp

(
2nλ21R

∏d
k=1 ξk

)]
is bounded; moreover, if

d > 2, the above expectation is 1+o(1).

This non-obvious result may be used in order to derive a condition ensuring
that hypotheses H0 and H1 are indistinguishable when r > 1. In this respect,
recall the expansion (3.1). Thanks to the Hölder inequality, E0

[
Λ(Y)2

]
is upper

bounded by (see (3.1) for the definition of ξ
(i,j)
k )

r∏
i,j=1

E1/pi,j

[
exp

(
2npi,jλiλjR

d∏
k=1

ξ
(i,j)
k

)]
(4.2)

for any non-negative numbers pi,j such that
∑
i,j

1
pi,j

= 1. For fixed i, j, we

notice that the random variables (ξ
(i,j)
k )k=1,...,d verify the condition of Theorem

1. Any of the expectations in (4.2) are hence upper-bounded when n → ∞
provided that, for all i, j: pi,jλiλj <

d
2

(
β2nd
d

)2
. Choosing eventually pi,j =

(
∑
p λp)

2

λiλj
, we deduce

Theorem 2 (case r ≥ 1 - extension of Theorem 1 ). If
∑r
i=1 λi <

√
d
2β

2nd
d then

E0

[
Λ(Y)2

]
is bounded. If moreover d > 2, we have E0

[
Λ(Y)2

]
= 1 + o(1) and

the hypotheses H0 and H1 are indistinguishable.

Remark 1. Due to the use of the Hölder inequality, Theorem 2 is suboptimum

in general. The inequality is patently an equality when ∀k, i, j, x
(k,i)
0 = x

(k,j)
0 ,

i.e. the spike has rank r = 1 and amplitude
∑r
i=1 λi.

5 A tighter bound

The main result of our contribution is the following

Theorem 3 (case r ≥ 1). We define ηmax as

ηmax = λ
(
�d
k=1χ

(k)∗
0 χ

(k)
0

)
λ. (5.1)

If
√
ηmax <

√
d
2β

2nd
d then, for d > 2, E0

[
Λ(Y)2

]
= 1 + o(1).

5



Before providing elements of the proof of the above result, we may briefly
justify why the bound in Theorem 3 is tighter than this of Theorem 2, whatever
the choice of λ. On the one hand, indeed, (

∑
i λi)

2
= λTJλ where J is the

r × r matrix having all its entries equal to 1. On the other hand, all the

vectors x
(k,i)
0 are normalized and consequently, any of the diagonal entries of

χ
(k)∗
0 χ

(k)
0 equals 1 and for any i 6= j,

∣∣∣(χ(k)∗
0 χ

(k)
0 )i,j

∣∣∣ ≤ 1. This proves that

(
∑
i λi)

2 − ηmax = λT
(
J−�d

k=1χ
(k)∗
0 χ

(k)
0

)
λ ≥ 0.

We provide the key elements of the proof of Theorem 3. Remind that we
are looking for a condition on the spike under which E [exp (2nη)] is bounded.
Evidently, the divergence may occur only when η > 0. We hence consider
E1 = E [exp (2nη) 1η>ε] and E2 = E [exp (2nη) 1η≤ε], and prove that under

the condition
√
ηmax <

√
d
2β

2nd
d , for a certain small enough ε, E1 = o(1) (for

d ≥ 2) and that E2 = 1 + o(1) (for d > 2).

The E1 term. It is clear that the boundedness of the integral E1 is achieved
when η rarely deviates from 0. As remarked in [6], the natural machinery to con-
sider to understand E1 is this of the Large Deviation Principle (LDP). In essence,
if η follows the LDP with rate n, there can be found a certain non-negative func-
tion called Good Rate Function (GRF) Iη such that for any Borel set A of R,
1
n logP (η ∈ A) converges towards supx∈A−Iη(x). The existence of a GRF al-
lows one to analyze the asymptotic behaviour of integral E1. Indeed, the Varad-
han lemma (see Theorem 4.3.1 in [10]) states that 1

n logE [exp (2nη) 1η>ε] →
supx>ε (2x− Iη(x)) and hence the E1 term converges towards 0 when supx>ε (2x− Iη(x)) <
0.

We thus justify that η follows a Large Deviation Principle with rate n, and
we compute a lower bound of its GRF. For this, we use that for each k, random
matrix Ψk defined in (3.2) follows a LDP with rate n and that its GRF at the
parameter ψ ∈ Cr×r (we may evidently take ‖ψ‖2 ≤ 1) is log det (Ir −ψ∗ψ)
(see Theorem 3-6 in [11]). η is a function of the i.i.d. matrices (Ψk)k=1,...,d.
Therefore, the contraction principle (see Theorem 4.2.1 in [10]) ensures that η
follows a LDP with rate n and GRF Iη given, for each real x in the range of η,
as the solution of the optimization problem:

max
∀k 0≤αk≤1

max
∀k ‖ψk‖ = αk

η(ψ1, ...,ψd) = x

d∑
k=1

log det (Ir −ψ∗kψk) . (5.2)

When d ≥ 3, the solution of this optimization problem cannot apparently be
expressed in closed form. We thus just provide a lower bound of Iη(x). When
d = 2, it is possible to evaluate Iη(x), but due to the lack of space, we do not
report the corresponding result in the present paper.

6



Proposition 4. For each x ∈ R, it holds that

Iη(x) ≥ −d log

(
1−

(
|x|
ηmax

)2/d
)
. (5.3)

where the right-hand side should be understood as +∞ if |x| ≥ ηmax.

In order to establish Proposition 4, we use the following algebraic result
whose proof is omitted.

Lemma 5. For any matrices (Ak)k=1,...,d ∈ Cr×r and vector λ ∈ Rr, the

supremum of
∣∣∣λT �d

k=1 (AkψkA
∗
k)λ

∣∣∣ over r × r matrices ψk such that for all

k: ||ψk||2 = αk is (
d∏
k=1

αk

)
λT
(
�d
k=1 (AkA

∗
k)
)
λ.

The immediate consequence of this lemma is that the random variable η is
bounded and |η| ≤ ηmax where ηmax is given by (5.1). Moreover, take a set of
matrices ψk such that ‖ψk‖2 = αk ∈ [0, 1]; then by Lemma 5, |η (ψ1, ...,ψd)| ≤
(
∏
k αk) ηmax hence the optimization (5.2) is to be carried out only on the set

of matrice ψk such that
∏
k αk ≥

|x|
ηmax

. On the other hand, one may use the

generous bound log det (Ir −ψ∗kψk) ≤ log
(

1− ‖ψk‖
2
2

)
and finally prove that

−Iη(x) ≤ max∏
k αk≥

|x|
ηmax

d∑
k=1

log
(
1− α2

k

)
.

The supremum of the r.h.s. of this equation is achieved for balanced αk and we
immediately obtain (5.3). This completes the proof of Proposition 4.

The E1 term. We are now in position to conclude that E1 = o(1). Varadhan’s
lemma implies that 1

n logE1 → supx≥ε [2x− Iη(x)]. Using Proposition 4 and

setting u =
(
|x|
ηmax

)1/d
, we obtain immediately that for each δ > 0, 1

n logE1 is

less than

1

n
logE1 < sup

u≥ε̃

[
2ud

(
ηmax +

d

2

1

ud
log(1− u2)

)]
+ δ

for n large enough, where ε̃ = (ε/ηmax)
1/d

. Recalling (4.1) and choosing δ small

enough, we deduce that the condition ηmax <
d
2

(
β2nd
d

)2
implies that E1 → 0.

This holds for any order d ≥ 2.

The E2 term. The Varadhan lemma may be invoked: but its conclusion,
namely 1

n logE2 → 0, says nothing on the boundedness of E2. We have, however

7



E2 =

∫ ∞
0

P (exp(2nη) ≥ t and η ≤ ε) dt

=

∫ 0

−∞
P (η ≥ u and η ≤ ε) 2n exp(2nu)du+∫ ε

0

P (η ≥ u and η ≤ ε) 2n exp(2nu)du

≤ P (η ≤ ε) +

∫ ε

0

P (η ≥ u) 2n exp(2nu)du.

A weak consequence of the LDP on η is the concentration of η around 0, namely
P(η ≤ ε) = 1−P(η > ε) = 1−o(1). We recall the expanded expression for η: see
(3.1). Notice that η ≥ u implies that at least one of the r2 terms of this expan-

sion is at least equal to u
r2 . By the union bound, and the fact that R

∏d
k=1 ξ

(i,j)
k ≤∏d

k=1

∣∣∣ξ(i,j)k

∣∣∣ we deduce that P (η ≥ u) ≤
∑r
i,j=1 P

(∏d
k=1

∣∣∣ξ(i,j)k

∣∣∣ ≥ u
r2λiλj

)
. In-

voking again the union bound and noticing that for fixed i, j,
(
ξ
(i,j)
k

)
k=1,...,d

have the same distribution, we deduce that

P (η ≥ u) ≤ d
r∑

i,j=1

P

(∣∣∣ξ(i,j)k

∣∣∣ ≥ ( u

r2λiλj

)1/d
)
.

Now, the density of ξ
(i,j)
k is in polar coordinates n−1

π

(
1− r2

)n−2
hence, choosing

ε such that ε ≤ r2 maxi,j λiλj :

P
(∣∣∣ξ(i,j)k

∣∣∣ ≥ ( u
r2λiλj

)1/d)
=

(
1−

(
u

r2λiλj

)2/d)n−1
. For any 0 ≤ x < 1,

log(1− x) ≤ −x, hence

E2 ≤ d
∑
i,j

2n

∫ ε

0

exp

(
−(n− 1)

(
u

r2λiλj

)2/d

+ 2nu

)
du.

When d > 2, it is always possible to determine ε sufficiently small such that

−(n− 1)
(

u
r2λiλj

)2/d
+ 2nu ≤ −n−12

(
u

r2λiλj

)
2/d. This implies that, for such an

ε, we have

E2 ≤ d2r2n
(

2

n− 1

)d/2∑
i,j

λiλj

∫ ∞
0

vd/2−1 exp(−v)dv.

The r.h.s. is of course o(1) since d > 2.

Remark 2. The bound
√
ηmax <

√
d
2β

2nd
d guarantees the non-detectability but

it is not tight in general because, in order to study the asymptotics of E1,
we replaced the true GRF Iη by the lower bound (5.3). Based on the loose
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inequality log det (Ir −ψ∗kψk) ≤ log det
(

1− ‖ψk‖
2
2

)
, (5.3) may not be very

accurate. It is easy to check that the equality is reached in (5.3) when all the

matrices (χ
(k)
0 )k=1,...,d are rank 1, i.e. if the rank of X0 is equal to 1. Therefore,

the lower bound (5.3) of Iη is all the better as all the matrices χ
(k)
0 are close

to being rank 1 matrices. This suggests that, conversely, the bound (5.3) is

likely to be loose when matrices (χ
(k)
0 )k=1,...,d are close to be orthogonal. As

an illustration, we would like to consider experimental results. For a given
configuration of the spike, we have chosen at random the matrices ψk with
‖ψk‖ ≤ 1. For each trial, we plot the points of coordinates x = η(ψ1, ...,ψd)

and y =
∑d
k=1 log det (Ir −ψ∗kψk) and we obtain a cloud the upper envelope

of which is a representation of the true GRF of η; for comparison, we have
plotted the graph of the function defined by the lower bound (5.3). We have
chosen r = 2, d = 3, and two configurations of the spike: in the first one, all
the matrices χk have orthogonal columns (top graph of 5.1), in the second one,
the eigenvalues of χ∗kχk are the same for k = 1, 2 equal to 1.8 and 0.2 (bottom
graph of 5.1).

−2 −1 0 1 2
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15
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10
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5
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Figure 5.1: −Iη and our upper bound
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Remark 3. In the specific case d = 2, it is possible to compute in closed-form
the exact GRF Iη of η, and to establish the following result: if µmax(X0X

∗
0) <

β2nd
2 = 1 (here, µmax denotes the largest eigenvalue), then E1 converges towards

0. The approach we used in this paper to upper-bound E2 for d > 2 is unsuc-
cesfull for d = 2. However, it is possible to adapt the technique used in [6]: if
µmax(X0X

∗
0) < 1, then E2 is bounded. From both results, it may be concluded

that under the condition µmax(X0X
∗
0) < 1, no consistent detection test can be

found.

6 Conclusion

In this paper, we have addressed the detection problem of a rank r high-
dimensional tensor X0. We have generalized the results of [6] to the case where
r > 1, and established that if parameter ηmax defined by (5.1) is less that param-
eter β2nd

2 introduced in [6], the low rank tensor is undetectable. This condition
is based on the lower bound (5.3) of the GRF Iη which is however not tight in
general. It is thus relevant to try to improve this bound in a future work.
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