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ABSTRACT
The problem of nonparametrically estimating probability
density functions (pdfs) from observed data requires posing
and solving optimization problems on the space of pdfs. We
take a geometric approach and explore this space for opti-
mization using actions of a time-warping group. One action,
termed area preserving, is transitive and is applicable to the
case of unconstrained density estimation. In this case, we
take a two-step approach that involves obtaining any initial
estimate of the pdf and then transforming it via this warp-
ing function to reach the final estimate, while maximizing
the log-likelihood function. Another action, termed mode-
preserving, is useful in situations where the pdf is constrained
in shape, i.e. the number of its modes is known. As earlier,
we initialize the estimation with an arbitrary element of the
correct shape class, and then search over all time warpings to
reach the optimal pdf within that shape class. Optimization
over warping functions is performed numerically using the
geometry of the group of warping functions. These methods
are illustrated using a number of simulated examples.

Index Terms— Density estimation, time warping, Shape-
constrained density, optimization on sphere.

1. INTRODUCTION

Estimating probability density functions (pdfs) from sampled
data is an important and well-studied field of research in sta-
tistical inference. The most basic problem in this area is that
of estimating a univariate pdf from its iid samples [1, 2, 3, 4, 5,
6, 7]. The problem gets more challenging when one imposes
additional constraints on the estimate, especially those on the
shape of the pdfs allowed. Imposition of such constraints is
motivated by the fact that if the true density is known to have
a certain shape class, say unimodal, bimodal or trimodal, then
one should be able to leverage that knowledge into improving
estimation accuracy. Also ensuring that the estimate has the
correct number of modes improves the usefulness of the esti-
mate as an exploratory tool. The difficulty also grows as one
goes to multivariate density estimation [8, 9, 11].

A majority of solutions in density estimation boil down
to formulating and optimizing an objective function over F ,
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the space of all pdfs. To keep the discussion simple, we will
assume that F is the space of all densities strictly positive on
the domain and zero elsewhere. Also, although the proposed
methodology applies to higher-dimensional domains (see a
related paper in 2D [14]), we will restrict to the univariate
case here. The objective functions for estimation can come
from different motivations, but the search space for an op-
timal solution remains to be F . Most of the past literature
has focused on the nature and formulation of these objective
functions – frequentist or Bayesian, parametric or nonpara-
metric, penalized or non-penalized – but the focus is seldom
on the nature of the space being searched [15]. We follow the
logic that if there is an efficient way to explore F , then the
associated optimization solution becomes efficient also. Tak-
ing a frequentist, nonparametric approach, we will handle the
geometry of F using actions of a time warping group. Let Γ
be the set of all positive diffeomorphisms from [0, 1] to itself,
i.e. Γ = {γ|γ is differentiable, γ−1 is differentiable, γ̇ >
0, γ(0) = 0, γ(1) = 1}. The elements of Γ play the role
of warping functions, or transformations of pdfs. There are
several actions possible and we will use two in the paper for
exploring F :

1. Area-Preserving Action: For any f ∈ F and γ ∈ Γ,
the mapping (f, γ) = (f ◦ γ)γ̇ defines an action that is
area preserving.

2. Mode-Preserving: For any f ∈ F and γ ∈ Γ, the
mapping (f, γ) = (f◦γ)∫

(f◦γ)ds
defines an action that pre-

serves the number of modes of f .

One can show that both these mappings form proper group
actions of Γ on F .

Based on these two actions, we target two estimation sce-
narios. (1) Scenario 1: Here we focus on an unconstrained
density estimation, i.e. simple estimation of a pdf from the
data without any additional constraints, via a two-step pro-
cess. The first step seeks a computationally fast, albeit sub-
optimal density estimate fp from the data. The second step
involves transforming fp using the area-preserving action of
Γ to obtain the final estimate. The second step requires solv-
ing an optimization problem on Γ under the chosen criterion
(say MLE or penalized-MLE). (2) Scenario 2: Here we study
a situation where the number of modes in underlying pdf are



known. This problem, called shape-constrained density esti-
mation, is quite challenging because ensuring both a correct
shape and the optimality of the estimate under the chosen cri-
terion is seemingly complicated. There is no known literature
on density estimation with multimodal constraints in the past.
Once again we take a two-step approach where the first step
constructs an arbitrary template that satisfies the given con-
straints. The second step uses the mode-preserving action of
Γ and transforms the template into better solutions. As before,
the second step requires solving an optimization problem over
Γ under the chosen criterion (MLE or penalized-MLE). Addi-
tionally, we search over different heights of the function at the
critical points, to reach the full space of desired shapes. This
joint search over the two unknowns – time warping and the
vector of heights – is performed using a numerical approach.
Experimental results demonstrate the success of the proposed
framework in both the scenarios.

The rest of this paper is as follows. Section 2 discusses the
proposed framework for unconstrained and constrained den-
sity estimation, and derives the objective functions. Section 3
presents the estimation procedure by optimizing over the set
of warping functions. Section 4 presents some simulation ex-
amples and Section 5 ends the paper with a short discussion.

2. METHODOLOGY

In this section we introduce our framework for density es-
timation in two scenarios: (i) unconstrained and (ii) mode-
constrained (or shape-constrained) estimation. In each case,
the estimation procedure involves making an initial guess
(from the correct constraint class when needed) and warping
it optimally to find a final estimator. We setup these estima-
tion problems first and focus on the optimization procedure
later.

2.1. Unconstrained Density Estimation

As the first problem, we focus on the problem of estimating
a univariate pdf (call it f0) from its iid samples. For simplic-
ity of exposition, we will assume that f0 > 0 although this
condition can be easily relaxed. Since we need to explore
the full pdf space, we will use the area-preserving action of
Γ on F . Let fp ∈ F be an initial estimate; this estimate
can be obtained using a parametric assumption or any other
fast nonparametric estimate. In principle, any element of F
is sufficient for the purpose but in practice the idea is to get
close to f0 while being computationally efficient. Once we
have an initial guess fp, we plug the gap between fp and the
optimal solution using the action: (fp, γ) → f̂ ≡ (fp ◦ γ)γ̇.
This action is called area-preserving because

∫ 1

0
f̂(x)dx =∫ 1

0
fp(γ(x))γ̇(x)dx =

∫ 1

0
fp(x)dx. In other words, a pdf fp

remains a pdf under this transformation. Furthermore, this ac-
tion is transitive. That is, one can go from any element of F
to any other element of F using a unique element of Γ. This

property makes this framework very powerful; this implies
that any initial guess fp is sufficient for this search.

What should be the criterion for optimization? Taking
the MLE approach, we seek an estimate f̂ the maximizes the
log-likelihood of the given data. This sets up an optimiza-
tion problem over Γ. Given sample observations {xi, i =
1, 2, · · · , n} from f0 and an initial density estimate fp ∈ F ,
the final estimate is given by f̂(t) = fp(γ̂(t)) ˙̂γ(t), t ∈ [0, 1],
where

γ̂ = argmax
γ∈Γ

(
n∑
i=1

[
log(fp (γ(xi))) + log(γ̇(xi))

])
.

The quantity in the parenthesis is exactly the log-likelihood of
the given data under the estimated density. One can also add
a regularization term involving either the estimated density f̂
or the time-warping function γ, if needed. More generally,
one can replace this cost with a Bayesian cost function also.

The next issue is the optimization over Γ. This problem is
complicated because Γ is an infinite-dimensional, nonlinear
manifold. As described later in Section 3, we use a combina-
tion of local flattening and a truncated basis expansion to rep-
resent elements of (a large subset) of Γ via finite-dimensional
vectors c ∈ Rd. Thus, we can optimize over this Euclidean
space using standard optimization tools in matlab. Let for any
c ∈ Rd, γc ∈ Γ denote the corresponding warping function
(see Section 3 for details). Then, the final solution f̂ uses
γ̂ = γĉ, where

ĉ = argmax
c∈Rd

(
n∑
i=1

[
log (fp (γc(xi)) γ̇c(xi))

])
.

All that remains is to solve this optimization problem and one
can use any convenient numerical tool for that purpose.

2.2. Mode- or Shape-Constrained Density Estimation

Next we consider the problem of estimating a pdf from data in
situation where the number of modes are pre-specified. While
there has been past work on unimodal or log-concave density
estimation [10, 12, 13], there is little work on the problem of
multimodal density estimation. We will take the time-warping
approach as earlier, but this time we use the mode-preserving
action of Γ on F . We point out that while the number of
modes is given, the heights of the function at modes, or at the
critical points, are not specified. One has to search over both
the placements and the heights of the critical points in order
to reach an optimal estimate.

To setup this estimation problem, we introduce some ex-
tra notation. Let f ∈ F be a pdf with m well-defined modes,
and let the critical points of f be located at bi ∈ [0, 1], i =
0, · · · , 2m with b0 = 0 and b1 = 1. We define the height-
ratio vector of f to be λf = (λ1, λ2, . . . , λ2m−2), where
λi = f(bi+1)/f(b1) is the ratio of the height of the (i+ 1)st

interior critical point to the height of the first (from the left)



mode. Let h1 be the (unknown) height of the left most mode
of f .

Consider the action of Γ on F given by the mapping
(f, γ) = f̃ ≡ f◦γ∫

(f◦γ)dx
. It is interesting to note that under

this action: (i) the number of modes of f̃ is same as that of
f , only the locations are changed, and (ii) the height-ratio
vector of f̃ remains same as that of f , i.e. λf̃ = λf . Then the
estimation process is as follows.

Template: Construct any pdf g with m well-defined modes.
One way to do this is to construct a g with conditions: g(0) =
g(1) = 0; the locations of the intermediate critical points
are uniformly spaced in (0, 1), with b0 = 0, and b2M = 1;
and g(b1) = 1. Let Λ = {λ ∈ R(2M−2)+ |λ1 < 1, λ1 <
λ2, λ2j+1 < λ2j , λ2j+1 < λ2j+2, j = 1, 2, · · · ,M − 2}.
Choose an arbitrary height-ratio vector λ ∈ Λ, and set the
heights of g at bis such that the height-ratio vector of g is this
λ. Obtain g at the remaining points through linear interpola-
tion. Call this g as gλ.

Optimization: Given such a gλ our estimate is given by
gλ◦γ∫ 1

0
(gλ◦γ) dt

where γ ∈ Γ = {γ : [0, 1] → [0, 1]|γ̇ >

0, γ(0) = 0, γ(1) = 1}. Thus, the two variable of interest for
optimization are γ and λ. The maximum likelihood estimate
of the underlying density, given the initial template function
g = gλ, is f̂(t) = gλ̂(γĉ(t))/(

∫ 1

0
gλ̂(γĉ(t))dt), t ∈ [0, 1],

where γĉ = H−1(c) defined in the next section, and

(ĉ, λ̂) = argmax
c∈Rd,λ∈Λ

(
n∑
i=1

[
log

(
gλ (γc(Xi))∫ 1

0
(gλ (γc(t)) dt)

)])
.

(1)
Once again, all that remains is solving this joint optimization
problem, and accomplish this using numerical tools.

3. OPTIMIZATION OVER WARPINGS GROUP

The proposed framework for density estimation, both the
shape-constrained and unconstrained cases, leads to a certain
optimization problem on Γ. This optimization is made chal-
lenging by the fact that Γ is an infinite dimensional manifold
We handle the nonlinearity by forming a bijective map from
Γ to a tangent space of the unit Hilbert sphere S∞ (the tan-
gent space is a vector space), and infinite dimensionality by
selecting a finite-dimensional subspace of this tangent space.
Together, these two steps are equivalent to finding a family
of finite-dimensional submanifolds of Γ that can be flattened
into vector spaces. This, in turn, allows for representing
any γ using elements of a Euclidean vector space and use of
standard optimization procedures.

To locally flatten Γ, we define a function q : [0, 1] → R,
q(t) =

√
γ̇(t), termed the square-root slope function (SRSF)

of γ ∈ Γ. (For a discussion on SRSFs of general functions,
please refer to Chapter 4 of [16]). For any γ ∈ Γ, its SRSF q

is an element of the positive orthant of the unit Hilbert sphere
S∞ ⊂ L2, denoted by S+

∞. The set S∞ is a smooth manifold
with known geometry under the L2 Riemannian metric [17].
Although it is not a vector space, it can be easily flattened
into a vector space (locally) due to its constant curvature. A
natural choice for flattening is the vector space tangent to S+

∞
at the point 1, which is a constant function with value 1. (1
is the SRSF corresponding to γ = γid(t) = t.) The tangent
space of S+

∞ at 1 is an infinite-dimensional vector space given
by: T1(S+

∞) = {v ∈ L2([0, 1],R)|
∫ 1

0
v(t)dt = 〈v,1〉 = 0}.

Next, we define a mapping that takes an arbitrary element of
S+
∞ to this tangent space. For this retraction, we will use the

inverse exponential map which takes any q ∈ S+
∞ to T1(S+

∞)
according to:

exp−1
1 (q) : S+

∞ → T1(S+
∞), v =

θ

sin(θ)
(q − 1 cos(θ)) ,

(2)
where θ = cos−1(〈1, q〉) is the arc-length from q to 1.

We impose a natural Hilbert structure on T1(S+
∞) us-

ing the standard inner product: 〈v1, v2〉 =
∫ 1

0
v1(t)v2(t)dt.

Further, we can select any orthogonal basis B = {bj , j =
1, 2, . . . } of the Hilbert space T1(S+

∞) to express its ele-
ments v by their corresponding coefficients; that is, v(t) =∑∞
j=1 cjbj(t), where cj = 〈v, bj〉. The only restriction on

the basis elements bj’s is that they must be orthogonal to 1,
that is, 〈bj ,1〉 = 0. In order to map points back from the
tangent space to the Hilbert sphere, we use the exponential
map, given by:

exp(v) : T1(S+
∞)→ S∞, exp(v) = cos(‖v‖)1+

sin(‖v‖)
‖v‖ .

(3)
In practice, we restrict the range and the domain of the ex-
ponential map (and its inverse) to be able go back and forth
between S+

∞ and T1(S+
∞) . Using these two steps, we specify

the finite-dimensional, and therefore approximate, represen-
tation of warpings. We define a composite map H : Γ→ RJ ,
illustrated in Figure 1, as follows.

γ ∈ Γ
√
γ̇−−→ S+

∞
exp−1

1−−−−→ v ∈ T 0
1 (S+
∞)

{bj}−−−→ {cj = 〈v, bj〉} .
(4)

Let V Jπ = {c ∈ RJ : ‖∑J
j=1 cjbj‖ < π/4} ⊂ RJ . For any

c ∈ V Jπ , let γc denote the diffeomorphism H−1(c). For any
fixed J , the set H−1(V Jπ ) is a J-dimensional submanifold of
Γ,and we pose the estimation problem on this submanifold.
As J goes to infinity, this submanifold converges to the full
group Γ.

With this representation, any optimization problem on Γ
can be transferred to the set V Jπ using H and its inverse.
We solve this Euclidean optimization problem using function
fminsearch in matlab. One can make the choice of J adap-
tive to data but that is left for future work.



{v
composed of two steps as follows. First, we utilize the fact that if
then q =

√
γ̇, called its square-root velocity function (SRVF), is a point on the unit Hilbert

sphere S ⊂

|)1

Fig. 1. Finite dimensional representation of Γ .

4. EXPERIMENTAL RESULTS

In this section we present some illustrative experimental re-
sults on estimating pdfs in the two scenarios laid out earlier.

4.1. Unconstrained Density Estimation

For Scenario 1, we present an illustration using two examples
with true underlying densities being: (1) f0 ∝ 0.75 exp 3 +
0.25N (0.75, 22), truncated to the unit interval [0, 1] (shown
in Fig. 2), and (2) f0 = 1

2N (0, 1)+
∑4
l=0

1
10N ( l2−1, (0.1)

2
),

a claw density shown in Fig. 3. We generate n = 100 inde-
pendent samples and apply our framework for density estima-
tion with the initial guess coming from a Gaussian family. For
comparison, we use a standard kernel estimate (kernel(ucv))
and a Bayesian estimate (DPDensity). As these two figures
show, our estimates provide better estimates than these state
of the art estimators.

Fig. 2. The left panel compares the warped estimate f̂ with
other estimates when fp is parametric. The right figure com-
pares the warped estimate with others when fp is ksdensity.

4.2. Mode- or Shape-Constrained Density Estimation

For Scenario 2, we assume that the number of modes in
the underlying density is known. We present some ex-
perimental results using unimodal, bimodal, trimodal and
monotonic densities. We take 100 simulations of sample
size n = 100 each (except the monotone example, where
we take sample size 500) and present the best, median and

Fig. 3. The left panel shows the improvement over initial ks-
density estimate. Both kernel(ucv) and warped estimate have
a good performance here. The right panel shows that all
the methods fail to capture all the peaks. Kernel(ucv) per-
formance is very similar to the warped estimate.

worst performance from these simulations in Fig. 4. The
examples from top left to bottom right are for densities:
(1) f0 = 4/5N (0, 4) + 1/5N (0, 0.5) - a symmetric uni-
modal example; (2) f0 = 1/3N (−1, 1) + 2/3N (1, 0.3)- a
asymmetric bimodal example; (3) f0 = 1/3N (−1, 0.25) +
1/3N (0, 0.25) + 1/3N (2, 0.3) - a asymmetric trimodal ex-
ample; and, (4) N (0, 0.4)I[0,1], a monotonically decreasing
example. These results underscore the success of our method.

Fig. 4. The figures show the true density (solid), best
(dashed), median (dotted) and worst (dashed-dotted) perfor-
mance among the 100 samples.

5. CONCLUSION

The paper presents a geometric approach to density estima-
tion in two specific scenarios. The basic idea is to use the
actions of the time warping group to explore the space of pdfs
and find the MLE. We introduce two groups actions, one for
each scenario, each leading to an optimization problem on the
warping group. We solve these optimization problems using
the geometry of the warping group and posing a correspond-
ing problem in a finite-dimensional Euclidean space.
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