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In a One-Bit Rush: Low-Latency Wireless

Spectrum Monitoring with Binary Sensor Arrays
Manuel S. Stein and Michael Fauß

Abstract—Detecting the presence of a random wireless source
with minimum latency utilizing an array of radio sensors is
considered. The problem is studied under the constraint that
the analog-to-digital conversion at each sensor is restricted to
reading the sign of the analog received signal. We formulate the
resulting digital signal processing task as a sequential hypothesis
test in simple form. To circumvent the intractable probabilistic
model of the multivariate binary array data, a reduced model
representation within the exponential family in conjunction
with a log-likelihood ratio approximation is employed. This
approach allows us to design a likelihood-based sequential test
and to analyze its analytic performance along Wald’s classical
arguments. In the context of wireless spectrum monitoring for
satellite-based navigation and synchronization systems, we study
the achievable processing latency, characterized by the average
sample number, as a function of the binary sensors in use. The
practical feasibility and potential of the discussed low-complexity
sensing and decision-making technology is demonstrated via
simulations.

Index Terms—1-bit ADC, array processing, cognitive radio, ex-
ponential family, GNSS, sequential analysis, quantization, signal
detection, hypothesis test, spectrum monitoring, wireless systems

I. INTRODUCTION

In the Internet of Things (IoT) and for upcoming standards

like 5th Generation Wireless Systems (5G), instant connectivity

between a massive number of wireless devices is intended.

This requires to further push radio technology towards ultra-

low power consumption, production cost, and circuit size while

preserving the capability to quickly solve processing tasks

under strict reliability requirements.

In particular, digitalization performed by modern sensor

systems has been identified as a bottleneck for ultra-low

complexity [1]–[3]. During this step, referred to as analog-

to-digital (A/D) conversion, the physically measured analog

sensor signals are translated to a representation which is

interpretable by digital computers. As, depending on the

circuit architecture, the number of A/D operations required

per sample can grow exponentially O(2b) with the output

bits b, determining the appropriate amount bits required for

a specific sensing application is crucial for the system design

specification [2].

This work was supported by the German Academic Exchange Service
(DAAD) with funds from the German Federal Ministry of Education and
Research (BMBF) and the People Program (Marie Skłodowska-Curie Actions)
of the European Union’s Seventh Framework Program (FP7) under REA grant
agreement no. 605728 (P.R.I.M.E. - Postdoctoral Researchers International
Mobility Experience).

M. S. Stein is with the Mathematics Department, Vrije Universiteit Brussel,
Belgium, and with the Chair for Stochastics, Universität Bayreuth, Germany
(e-mails: manuel.stein@vub.ac.be, manuel.stein@uni-bayreuth.de). M. Fauß
is with the Signal Processing Group, TU Darmstadt, Germany (e-mail:
michael.fauss@spg.tu-darmstadt.de).

A promising approach is to reduce the A/D resolution to a

single bit [4]–[9] and compensate the nonlinear effect by con-

cise probabilistic modeling and powerful algorithmic concepts

which rest upon results in statistical analysis, see e.g., [10]

and references therein. Employing such an analog-to-binary

(A/B) conversion scheme has various advantages. On the one

hand, it reduces the digitalization complexity to its minimum

by activating a single comparator per sample. On the other

hand, the size of the digital sensor data is minimized enabling

efficient storage, transmission, and low-level processing. For

sensing systems, sampling with low A/D resolution is often

well-motivated since in several applications the digital system

behind the analog sensors aims at performing algorithmic tasks

which, per se, do not require perfect reconstruction of the

received analog signals.

In wireless sensor networks, a processing task of specific

interest is reliable decision-making [11], [12], i.e., distinguish-

ing between different scenarios by using noisy radio measure-

ments. For example, the increasing dependency of critical in-

frastructure (e.g., financial markets, power networks, commu-

nication infrastructure) on low-power synchronization signals

provided by global navigation satellite systems (GNSS), makes

it inevitable to permanently monitor the associated radio fre-

quency bands for interference [13], [14]. Similarly, cognitive

radio communication involves detecting active primary users

within the licensed wireless spectrum [15]. Such monitoring

problems can be formulated as statistical tests, where one

searches for the optimal processing rule which decides for the

underlying data-generating model. In its simple form, testing

is restricted to two fully specified models. Under a reliability

constraint, the task then is to decide which of the models

has generated the observed sensor data. When the decision

is to be made with low latency, i.e., ensuring a required error

level while minimizing the number of samples, the problem

statement is identified as a sequential test [16], [17].

Note that quantized sequential detection has been studied

predominantly for sensor networks, where distributed nodes

forward compressed statistics of their observations to minimize

the communication overhead [18]–[24]. In such a setup, it

is usually assumed that the detector initially has access to

the exact observations and subsequently compresses them, for

example, by quantizing the likelihood ratio. Here we discuss

a sequential procedure with collocated antennas featuring A/B

front-ends. Therefore, the detector does not have access to the

exact observations and has to base its decision exclusively on

hard-limited sensor data [25], [26]. For sequential tests, this

case is less well studied and the focus of existing works is

on the design of optimal quantizers [27]–[29]. In contrast,

we investigate the design and analysis of sequential tests
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assuming that the quantizers are fixed, symmetric, and of

minimum complexity. Moreover, the sensing model before the

hard-limiting step is assumed to feature correlation, which is

included and exploited in the test design.

First, we specify the signal model for the considered wire-

less spectrum monitoring problem and outline the resulting

array data model under ideal A/D conversion with ∞-bit

output resolution. Then we review the sequential probability

ratio test (SPRT) and its average sample number (ASN). Using

an approximation for the log-likelihood ratio (LLR) in the

exponential family, we derive the average detection latency

which can be achieved with low-complexity sensing devices

featuring A/B conversion. Finally, we discuss our theoretic

findings in the context of system design for reliable low-

latency GNSS spectrum monitoring and verify the practical

feasibility of the presented radio technology via Monte-Carlo

simulations.

II. PROBLEM FORMULATION

A. System Model - Ideal Receiver

We assume a single narrow-band wireless signal of un-

known structure, impinging on a uniform linear array (ULA)

with S antennas

y = γAx+ η. (1)

The array elements are placed at half carrier-wavelength

distance. The radio front-end of each sensor exhibits two real-

valued analog outputs (in-phase and quadrature), such that

a digitized array snapshot can be summarized by the vector

y ∈ R
M , M = 2S, where

y =
[

yT
I yT

Q

]T
(2)

with yI,yQ ∈ R
S . The wireless source x ∈ R

2 is composed

of two independent Gaussian random variables (in-phase and

quadrature)

x =
[

xI xQ

]T
, (3)

which are here assumed to feature

µx = Ex [x] = 0 and Rx = Ex

[

xxT
]

= I, (4)

where Eu [·] denotes the expectation with respect to the

distribution of the random variable u and I symbolizes the

identity matrix. For a narrow-band wireless signal arriving

under the angle ζ ∈ R, the array response of the ULA is

characterized by the steering matrix

A =
[

AT
I AT

Q

]T
, (5)

where the sub-matrices AI,AQ ∈ R
S×2 have the structure

[31]

AI =











cos
(

0
)

sin
(

0
)

cos
(

π sin (ζ)
)

sin
(

π sin (ζ)
)

...
...

cos
(

(S − 1)π sin (ζ)
)

sin
(

(S − 1)π sin (ζ)
)











(6)

and

AQ =











− sin
(

0
)

cos
(

0
)

− sin
(

π sin (ζ)
)

cos
(

π sin (ζ)
)

...
...

− sin
(

(S − 1)π sin (ζ)
)

cos
(

(S − 1)π sin (ζ)
)











.

(7)

The additive array sensor noise η ∈ R
M feature

µη = Eη [η] = 0 and Rη = Eη

[

ηηT
]

= I, (8)

and the strength of the source is denoted γ ∈ R. Therefore,

the array data (1) can be modeled as multivariate Gaussian

y ∼ py(y; γ) =
exp

(

− 1
2y

TR−1
y (γ)y

)

√

(2π)M det (Ry(γ))
, (9)

uniquely specified by its covariance matrix

Ry(γ) = Ey;γ

[

yyT
]

= γ2AAT + I. (10)

The analog radio front-end and the digitization process at

each sensor are assumed to be adjusted such that the receiver

observes temporally independent array snapshots, i.e., ideal

analog low-pass filters of two-sided bandwidth B and a

sampling rate of fs = B. We denote the samples of the n-th

array snapshot by yn ∈ R
M and summarize all digital data

gathered up to this time instance by

Y n =
[

y1 y2 . . . yn

]

∈ R
M×n . (11)

B. Processing Task - Sequential Signal Detection

After the n-th observation, the signal processing task is to

decide which of the two possible models (or hypotheses)

H0 : y ∼ py(y; γ0) or H1 : y ∼ py(y; γ1) (12)

is the true data-generating probability law. If the decision

cannot be made while ensuring the required reliability level

α =
[

α1 α2

]T
, the receiver takes an additional sample

to perform the test with n + 1 observations. Note, that the

specified reliability level α restricts

Pr {decision in favor of H0|H1} ≤ α1, (13)

Pr {decision in favor of H1|H0} ≤ α2. (14)

The sampling instant, after which the decision process is

terminated, is denoted by nD and the performance of the test

with observations drawn from py(y; γ) is characterized by the

ASN defined by

ASN(γ) = EnD;γ [nD] . (15)

C. The SPRT for Generic Data Model

A possible approach to construct a sequential detection pro-

cedure is the sequential probability ratio test (SPRT) discussed

in [16]. Given the data Y n, the log-likelihood ratio (LLR)

l(Y n) =
n
∑

i=1

l(yi) =
n
∑

i=1

ln
p(yn; γ1)

p(yn; γ0)
(16)
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is calculated and compared against two thresholds. If

l(Y n) ≤ ln
α2

1− α1
, (17)

the test is terminated with a decision in favor of H0. In case

l(Y n) ≥ ln
1− α2

α1
, (18)

the test is terminated with a decision in favor of the data model

H1. Otherwise, an additional sample is taken to continue the

test with Y n+1. The ASN of the SPRT is approximately given

by [16]

ASN(γ0) ≈
(1− α1) ln

α2

1−α1

+ α1 ln
1−α2

α1

Ey;γ0
[l(y)]

(19)

and

ASN(γ1) ≈
α2 ln

α2

1−α1

+
(

1− α2

)

ln 1−α2

α1

Ey;γ1
[l(y)]

. (20)

III. ANALOG-TO-BINARY RECEIVE MODEL

Realizing a receiver approximately following the high-

resolution model (1) requires an A/D converter (ADC) with

several bits output resolution for each sensor. To reduce the

sample complexity to its minimum, here we assume that

exclusively the sign of the analog signal at each sensor can

be converted to the digital domain. Therefore, the SPRT has

to be carried out based on the observations

z = sign (y), (21)

where sign (·) is defined such that

[z]i =

{

+1 if [y]i ≥ 0

−1 if [y]i < 0.
(22)

Note, that an ADC (flash architecture) with b bits requires

2b−1 comparators per sample, while the A/B converter (ABC)

modeled by the nonlinear operation (21) can be realized by a

single comparator per sample. However, the characterization of

the multivariate Bernoulli distribution at the quantizer output

(21) forms a challenge [26]. In general, for all 2M output

constellations the integral

pz(z; γ) =

∫

Y(z)

py(y; γ)dy (23)

needs to be calculated, where Y(z) =
{

y ∈ R
M

∣

∣ z = sign (y)
}

. Evaluating (23) also requires

the orthant probability, for which exact expressions are only

known up to M ≤ 4. So while ABCs reduce the sampling

complexity, the representation complexity of the probabilistic

model increases. Therefore, in the following we approximate

the binary data LLR required in the SPRT by a tractable

expression.

IV. LLR APPROXIMATION IN EXPONENTIAL FAMILIES

The distributions (9) and (23) are members of the exponen-

tial family

pz(z; γ) = exp
(

βT(γ)φ(z)− λ(γ) + κ(z)
)

, (24)

where β(γ) : R → R
L form the natural parameters,

φ(z) : R
M → R

L are the sufficient statistics, λ(γ) : R → R is

the log-normalizer and κ(z) : R
M → R constitutes the carrier

measure. The LLR under exponential family models (24) can,

in general, be written as

l(z) =
(

β(γ1)− β(γ0)
)T

φ(z)−
(

λ(γ1)− λ(γ0)
)

. (25)

Distributions factorizing like (24) exhibit regularity, i.e.,

Ez;γ

[

∂ ln pz(z; γ)

∂γ

]

= 0. (26)

Therefore,

∂λ(γ)

∂γ
=

∂βT(γ)

∂γ
µφ(γ), (27)

with

µφ(γ) = Ez;γ [φ(z)] . (28)

Whenever λ(γ) is intractable, by using a symmetric finite

difference approximation around γ1+γ0

2 for both derivatives

in (27) and

µ̃φ = µφ

(γ1 + γ0

2

)

, (29)

b = β(γ1)− β(γ0), (30)

one obtains the log-normalizer difference approximation

λ(γ1)− λ(γ0) ≈ bTµ̃φ. (31)

This allows to write the LLR in an approximate form

l(z) ≈ bT
(

φ(z)− µ̃φ

)

= l̃(z). (32)

Whenever the natural parameter vector β(γ) is unknown, with

Rφ(γ) = Ez;γ

[

φ(z)φT(z)
]

− µφ(γ)µ
T
φ(γ) (33)

at hand, one can approximate the natural difference (30)

b ≈ R−1
φ (γ1)µφ(γ1)−R−1

φ (γ0)µφ(γ0) (34)

by arguing that this choice maximizes the distance between the

expected values of (32) under pz(z; γ0) and pz(z; γ1) [26].

V. SEQUENTIAL TESTS IN THE EXPONENTIAL FAMILY

A. Approximate SPRT - Exponential Family Data Model

With (32), an approximate SPRT for any exponential fam-

ily model can be performed by comparing the approximate

likelihood ratio

l̃(Zn) =

n
∑

i=1

bT
(

φ(zn)− µ̃φ

)

= nbT
(

φ̂
(n)

z − µ̃φ

)

, (35)

with

φ̂
(n)

z =
1

n

n
∑

i=1

φ(zi), (36)
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to the two thresholds (17) and (18). Moreover, the ASN of

such a sequential test can be approximated along (19) and

(20) by using

Ez;γi
[l(z)] = bTµφ(γi)−

(

λ(γ1)− λ(γ0)
)

≈ bT
(

µφ(γi)− µ̃φ

)

= Ez;γi

[

l̃(z)
]

. (37)

B. Approximate SPRT - Multivariate Bernoulli Data Model

As the number of sufficient statistics for the multivariate

Bernoulli distribution (23) scales O(2M ), we base our SPRT

analysis on a pessimistic replacement model, also residing

within the exponential family [26]. This model holds a reduced

set of sufficient statistics

φ(z) = Φ vec
(

zzT
)

, (38)

with Φ being an elimination matrix canceling duplicate and

constant diagonal statistics on zzT. The replacement with (38)

is equivalent to the exact binary model (23) in the sense that

it exhibits the same mean (28) and covariance (33) on the

reduced set of statistics (38). Therefore, the achievable ASN

with hard-limited multivariate Gaussian observations (21) can

be calculated using (37) and (34), where

µφ(γ) = Φ vec (Rz(γ)) (39)

is obtained via the classical arcsine law [30, pp. 284],

Rz(θ) =
2

π
arcsin (Σy(θ)) ,

Σy(θ) = diag (Ry(θ))
−

1

2Ry(θ) diag (Ry(θ))
−

1

2 (40)

and the evaluation of (33) is accomplished [31] via the joint

application of the arcsine law and the quadrivariate orthant

probability [32].

VI. NUMERICAL RESULTS & SIMULATIONS

We discuss application of the approximate SPRT (35) with

the replacement (38) in the context of low-latency GNSS spec-

trum monitoring with sensor arrays featuring A/B conversion.

The task is to quickly detect interference from direction ζ on

the radio frequency 1.57 GHz. At each sensor, the ideal analog

pre-filter features a two-sided bandwidth of B = 2.046 MHz.

To separate radio interference from weak GNSS multi-path

propagation, we set γ0 = −24 dB and γ1 = −18 dB. Further,

we define α = α1 = α2 and always consider ζ = 15◦. Fig. 1

visualizes the average detection latency ∆(γi) = TS ·ASN(γi)
with A/B and ideal A/D conversion (∞-bits, exact LLR).

Results show that doubling the number of sensors will result

in a low-complexity sensor system with competitive latency.

We define the efficiency of the low-resolution system in

relation to a high-resolution system (exact LLR) with the same

array size by

χ(γi) =
ASN∞-bit(γi)

ASN1-bit(γi)
. (41)

Note that the system quality measure (41) is independent of

the reliability level α. Fig. 2 depicts the analytic quality results

as a function of the sensors in use. It can be seen that under
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Fig. 1. Average Latency vs. Number of Sensors (α = 10
−9)
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interference an efficiency above χ(γ1) = 0.35 is obtained with

S ≥ 8. For the interference-free case, the performance attains

its maximum χ(γ1) = 0.33 with S = 10 and decreases moder-

atly for larger arrays. However, note that the interference-free

relative latency χ(γ0) is less critical than the efficiency χ(γ1)
for the case where a radio interferer jeopardizes the integrity of

near-by GNSS receivers. Finally, we verify the analytic ASNs

(19) and (20) with the approximation (37) by simulating the

sequential test (35). Fig. 3 shows the average log-likelihood

value (35) of a low-resolution sensor system with S = 16
and of a high-resolution version (exact LLR) with S = 8
calculated from 200 independent test runs. The expected log-

likelihood values (37), as function of the test duration, are

plotted by dotted lines. We also depict the decision thresholds

for α = 10−3. The simulations show good correspondence

between the analytic results and the simulated behavior of the

approximated binary SPRT.
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VII. CONCLUSION

We have discussed the statistical processing problem of low-

latency random signal detection with measurements obtained

by an array of binary radio sensors. To circumvent the in-

tractability of the 1-bit model likelihood, we have employed

an approximate version of the LLR which is generically

valid within exponential families. The approximation enables

designing a powerful sequential test along classical arguments

and studying its performance analytically. In the application

context of GNSS spectrum monitoring, our results show that

low-cost sensing systems are capable of protecting critical

infrastructure under strict latency and reliability criteria. In

comparison to conventional architectures, these binary radio

systems provide competitive decision-making capabilities if

the hardware, power and computing resources made available

by minimizing the A/D output resolution are traded for a larger

number of sensor array elements.
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