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ABSTRACT

This paper considers the problem of constant envelope
(CE) precoder designs for multiuser massive MISO down-
link channels. The use of CE signals allows one to employ
low-cost radio frequency chains and thereby facilitates the
implementation of massive MIMO. However, the subsequent
CE precoder designs are usually challenging owing to the
non-convex CE constraints. The existing CE precoder de-
signs consider minimization of some measures on the dis-
tortion levels of the received symbols, and they usually aim
at improving the symbol-error rate (SER) performances. In
this paper we formulate a minimum SER-based design for
CE precoding. The design formulation is non-convex and we
propose two low-complexity first-order algorithms using gra-
dient projection. Curiously, our simulation results show that
the proposed designs can achieve bit-error rate performance
close to that of zero-forcing beamforming without CE signal-
ing restrictions.

Index Terms— massive MIMO, constant envelope, sym-
bol error rate, non-convex projected gradient

1. INTRODUCTION

Massive MIMO, as one of the core physical-layer techniques
for the fifth generation mobile system, can provide sub-
stantial spectral efficiency gains [1, 2]. In order to fully
harness the benefits of massive MIMO, high-performance
radio-frequency (RF) chains with large linear dynamic range
are desired. However, this would push up the hardware
cost tremendously as the number of antennas scales to hun-
dreds or even more. To circumvent this difficulty, a signal
processing-based constant envelope (CE) precoding solution
was proposed [3], where the amplitudes of the transmit sig-
nals are fixed and only the phases are changed from symbol to
symbol. Due to the low peak-to-average power ratio (PAPR)
of CE signals, one can use very cheap RF chains (with lim-
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ited dynamic range) to amplify the signals without incurring
much distortion.

While CE precoding can be easily implemented with
phase shifters, the design of CE precoder itself is a chal-
lenging task, owing to the non-convex nature of the CE
constraints. In light of this, a great deal of efforts have been
devoted to CE precoder designs under various constellations
and user settings. In [3] and [4], a full study for the feasibility
of CE precoding in single-user MISO channels was done and
an optimal phase recovery algorithm for CE precoding was
proposed in [4]. Subsequently, the concept of CE precoding
was extended for multiuser MISO [5–9] and point-to-point
MIMO [10]. In particular, the works [5, 6] and [7] stud-
ied the multiuser interference (MUI) power minimization by
CE precoding under frequency-flat channel and frequency-
selective channel, respectively. In addition to MUI reduction,
the concept of constructive interference using CE precoding
is investigated in [8] for PSK modulations; cross-entropy
and convex relaxation methods are proposed to handle the
CE problem. The joint optimization of CE precoding and
receive beamforming is considered for a single-user MIMO
system in [10]. Except for the single-user MISO case, the
vast majority of the aforementioned works adopt some sym-
bol distortion measures as their guidelines for CE precoder
designs. In those studies it is usually anticipated that min-
imizing those symbol distortion measures should lead to
improved symbol-error rate (SER) performance.

In this work we consider a minimum SER-based design
for CE precoding in multiuser massive MISO downlink sys-
tems. Our minimum SER-based design formulation follows
that of our very recent work for one-bit MIMO precoding [11]
— which, by nature, is even more difficult than CE precoding
and we handled it via a sophisticated alternating minimization
algorithm. For self-containedness we will describe the for-
mulation in Section 2. In the present paper, we will propose a
simple non-convex projected gradient (PG) algorithm for the
CE precoder design problem. To further speed up the conver-
gence of the non-convex PG, we also consider the FISTA-type
acceleration [12]. Our simulation results show that the bit-
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error rate (BER) performance of our CE design for 16-QAM
and 64-QAM is about 1−3dB away from that of zero-forcing
beamforming without stringent CE constraints; and the accel-
eration is helpful in reducing the running times.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

2.1. System Model

Consider a multiuser MISO downlink scenario where the base
station (BS) equipped with N antennas unicasts K informa-
tion symbol streams to K single-antenna users. Assuming
block fading channel and perfect channel state information
(CSI) at the BS, the received signal at user i during the tth
time slot of fading block ` is given by

yi,t = hTi,`xt + ni,t, i = 1, . . . ,K,

t ∈ ((`− 1)T, `T ]
(1)

for ` = 1, 2, . . ., where T is the block length; hTi,` is the down-
link channel for user i during fading block `; ni,t is additive
white Gaussian noise with mean 0 and variance σ2

n; xt ∈ CN
is the transmit signal at the BS. As mentioned before, CE
precoding is employed for facilitating massive MIMO imple-
mentation. In CE precoding, xt conforms to the following
constraint:

xt ∈ X ,
{
x ∈ CN | |xi|2 = P/N, i = 1, . . . , N

}
,

where P is the total transmission power at the BS; here we
assume that each antenna has equal transmit power. In the
following derivations, we focus on one fading block and drop
the fading block index ` for notational simplicity. Similarly,
the time slot index t will be suppressed when there is no am-
biguity.

The basic idea of CE precoding is to design the transmit
signal x so that the noise-free receive signal at the ith user,
given by hTi x, is close to user i’s desired symbol si, i.e.,

hTi x ≈ d · si, ∀ i = 1, . . . ,K. (2)

Herein, d ≥ 0 is a symbol shaping gain factor, which depends
on x and needs to be optimized; si’s are drawn from a QAM
constellation S, viz.

S = {sR + jsI | sR, sI ∈ {±1,±3, . . . ,±(2L− 1)}}

with L being the order of the QAM constellation. From
Eqns. (1) and (2), the symbol detection at users is easily
performed as

ŝi = dec(yi/d),

where dec(·) is a decision function, mapping yi/d to the near-
est constellation symbol in S. For simplicity, we assume that
all the users know d a priori, say, by estimating d from the
training symbols before data block transmission or by broad-
casting d from the BS to users via a side channel.

2.2. Problem Statement

Our goal is to minimize the worst SER among all the users.
To proceed, let us first characterize user i’s SER as

SERi = Pr(ŝi 6= si|si).

Notice that

SERi ≤ SERRi + SERIi ≤ 2 max{SERRi ,SERIi }, (3)

where SERRi , Pr(R{ŝi} 6= R{si}|si) and SERIi ,
Pr(I{ŝi} 6= I{si}|si) correspond to the error probabilities
of the in-phase and the quadrature components, respectively.
Moreover, a straightforward calculation gives

SERRi ≤ 2Q

(
d− |R{hTi x} − dR{si}|

σn/
√

2

)
,MR

i ,

SERIi ≤ 2Q

(
d− |I{hTi x} − dI{si}|

σn/
√

2

)
,M I

i ,

(4)

where Q(x) =
∫∞
x

1√
2π
e−z

2/2dz, R{·} and I{·} denote the
real part and the imaginary part, respectively. Using (3) and
(4), user i’s SER can be upper bounded by

SERi ≤ 2 max{MR
i ,M

I
i }, ∀ i = 1, . . . ,K. (5)

From (5), we consider the following worst SER-based CE
precoding problem:

min
x,d

max
i=1,...,K

max{MR
i , M

I
i }

s.t. x ∈ X , d ≥ 0,
(6)

which can be equivalently written as the following concise
form by exploiting the monotonicity of the Q function:

min
x̄,d

max
i
|h̄Ti x̄− ds̄i| − d,

s.t. x̄ ∈ XR, d ≥ 0,
(7)

where

XR , {x ∈ R2N | |xj |2+|xj+N |2 = P/N, j = 1, . . . , N},
x̄ = [R{x}T , I{x}T ]T , s̄ = [R{s}T , I{s}T ]T ,

H = [h1,h2, . . . ,hK ]T ,

H̄ = [h̄1, . . . , h̄2K ]T =

[
R{H} −I{H}
I{H} R{H}

]
.

Problem (7) is derived under a single time slot. The same
formulation can be derived for the case of one fading block.
Letting {x̄t}Tt=1 be the equivalent real-valued transmit sig-
nals within one fading block and following the derivations
above, the worst SER-based CE precoding for block trans-
mission can be shown to be

min
{x̄t}Tt=1,d

max
i=1,...,K,
t=1,...,T

|h̄Ti x̄t − ds̄i,t| − d

s.t. x̄t ∈ XR, d ≥ 0, t = 1, . . . , T.

(8)



Remark 1 Problem (8) is physically sound. Specifically, the
objective consists of two parts — One is the distortions of
the noise-free received symbols; the other is the symbol shap-
ing gaining factor d. Intuitively, small distortion and large
symbol shaping gain factor would make the CE design robust
against noise. By jointly optimizing {x̄t}Tt=1 and d, prob-
lem (8) can provide a better balance between the two met-
rics, as compared with most existing CE literatures where d
is fixed [3, 5, 6].

The resulting CE precoding problem (8) is a non-smooth
non-convex problem. In the following section, we will de-
velop a non-convex projected gradient-based algorithm for
problem (8).

3. PROPOSED CE PRECODING ALGORITHM

Our development consists of two steps: First, we tackle the
non-smooth objective in (8) by a smooth approximation. Sec-
ond, a non-convex projected gradient-based method is applied
to handle the smoothed problem.

3.1. Smooth Approximation of (8)

We apply the well-known log-sum-exp inequality to smoothen
the objective. Specifically, note the following fact [13]:

Fact 1 Given a1 . . . , aK ∈ R, it holds for any σ > 0 that

max
i=1,...,K

ai ≤ σ log

K∑
i=1

e
ai
σ ≤ max

i=1,...,K
ai + σ logK. (9)

Moreover, the inequalities become tight as σ → 0.

Utilizing (9), the CE precoding problem (8) is smoothly ap-
proximated as

min
x̄t,d

f(d, {x̄t}Tt=1)

s.t. x̄t ∈ XR, d ≥ 0, t = 1, . . . , T.
(10)

where

f(d, {x̄t}Tt=1) ,σlog
∑
i,t

[
e

h̄Ti x̄t−ds̄i,t−d
σ + e

−h̄Ti x̄t+ds̄i,t−d
σ

]
.

3.2. Non-convex Gradient Projection Algorithm for (10)

For ease of exposition, we define

D , {(d, x̄1, . . . , x̄T ) | d ≥ 0, x̄t ∈ XR, t = 1, . . . , T}

to be the feasible set of problem (10). Let z , (d, x̄1, . . . , x̄T ).
The proposed gradient projection method recursively updates
z according to the following equation

zl+1 = ΠD
(
zl−γl∇f(zl)

)
, (11)

where the superscript l denotes the iteration number, and γl >
0 is the stepsize, which can be determined by backtracking
line search [12]; ΠD(x) denotes the projection of x onto the
set D. While D is non-convex, the projection can be easily
computed in closed form. Specifically, let

z̃l =
(
d̃l, x̃l1, . . . , x̃

l
T

)
= zl−γl∇f(zl).

Then,
dl+1 = max{0, d̃l},
[x̄l+1
t ]j =

√
P
N

[x̃lt]j√
|[x̃lt]j |2+|[x̃lt]j+N |2

, j = 1, . . . , N, ∀ t,

[x̄l+1
t ]j=

√
P
N

[x̃lt]j√
|[x̃lt]j−N |2+|[x̃lt]j |2

, j=N+ 1, . . . , 2N, ∀ t,
(12)

where [x]j denotes the jth element of x. The detailed algo-
rithm is summarized in Algorithm 1.

By adapting the proof in [14], it can be shown that every
limit point, denoted as z?, generated by Algorithm 1 is a sta-
tionary point of problem (10). We omit the proof due to the
page limit and will present it in the journal version.

Algorithm 1 : Projected Gradient for CE Precoding

1: Initialize z0 = (x̄0, d0), σ and l = 0
2: repeat
3: Calculate∇f(zl) as

∂f(zl)

∂x̄t
=

∑
i

(
WP
i,t −WN

i,t

)
h̄i∑

i,t

(
WP
i,t +WN

i,t

) , t = 1, . . . , T,

∂f(zl)

∂d
=

∑
i,t

(
−WP

i,t(s̄i,t + 1) +WN
i,t(s̄i,t − 1)

)
∑
i,t

(
WP
i,t +WN

i,t

) ,

where WP
i,t = exp

(
h̄Ti x̄

l
t−d

ls̄i,t−dl
σ

)
and WN

i,t =

exp
(
−h̄Ti x̄

l
t+d

ls̄i,t−dl
σ

)
;

4: Update dl+1 and {x̄l+1
t }Tt=1 according to Eqn. (11) and

Eqn. (12);
5: l = l + 1;
6: until some stopping criterion is satisfied.

3.3. Fast Non-convex Gradient Projection for (10)

In this section, we introduce an acceleration scheme to further
speed up the convergence of Algorithm 1. The idea is similar
to the FISTA algorithm [12] or Nesterov’s accelerated gradi-
ent method [15], though FISTA was originally developed for
convex problems. Specifically, we modify Eqn. (11) as

zl+1 = ΠD
(
wl−γl∇f(wl)

)
,



where wl is an extrapolated point of zl and zl−1, i.e.,

wl = zl +
βl − 1

βl+1
(zl − zl−1),

βl+1 =
1 +

√
1 + 4β2

l

2
,

with z0 = z−1 and β0 = 1.
It has been shown in [12] that this acceleration can im-

prove the convergence rate of the projected gradient method
from O(1/l) to O(1/l2) for convex problems. While our
considered problem is non-convex, our numerical experience
suggests that this acceleration scheme is still very effective,
as illustrated in the ensuing section.

4. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
algorithms by Monte-Carlo simulations. Three schemes
are compared, namely, zero-forcing (ZF) without CE con-
straints, named “ZF”; ZF with naive projection onto the CE
set, named “CE ZF”; and the total MUI power minimization
algorithm [5], named “MUImin”. We will use “PG” and
“FPG” to represent Algorithm 1 and its accelerated version.
BER is used as the performance metric.

The simulation setting is as follows: A block Rayleigh
fading channel is assumed with transmission block length
T = 10. The total transmit power is P = 1. The elements of
channel {hi}Ki=1 are i.i.d. generated according to CN (0, 1).
Both 16-QAM and 64-QAM modulations are considered. For
both Algorithm 1 and its accelerated variant, the smoothing
parameter is set to σ = 0.05, and the algorithms stop when
the improvement of successive iterations is less than 10−4, or
the maximum number of iterations 5, 000 is reached. All the
results were averaged over 104 independent channel trials.
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Fig. 1: Average BER performance versus P/σ2
n; 16-QAM.
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Fig. 2: Average BER performance versus P/σ2
n; 64-QAM.

In Fig. 1, we compare the BER performance under 16-
QAM modulation scheme; the number of transmit antennas
is N = 128 and the number of users is K = 16. It is seen
that both PG and FPG achieve much better BER performance
than CE ZF and MUImin. Notice that the performance gap
between ZF (without CE constraints) and FPG is only about
2.5dB at BER= 10−3. Fig. 2 shows the simulation result
under the same setting as Fig. 1, except that 64-QAM is used.
The figure shows similar performance behaviors.

While PG and FPG have similar BER performances, FPG
is much more computationally efficient than PG. To verify
this, we compared the runtime of PG and FPG under different
number of antennas with fixed number of users and modula-
tion scheme. The results are shown in Table 1. As seen, FPG
can achieve significant runtime reduction, especially for large
problem sizes.

Table 1: Average runtime (in Sec.) for each transmission
block (K = 16, 64-QAM)

N 50 100 150 200

PG 0.531 0.701 1.053 1.29
FPG 0.415 0.436 0.545 0.607

5. CONCLUSION

In this paper, we have considered the CE precoder design
for multiuser massive MISO downlink channels. A worst
SER-based CE formulation is employed. By exploiting the
problem structure of the CE precoding, a simple and efficient
non-convex projected gradient algorithm and its accelerated
variant were derived. Simulation results showed that our pro-
posed algorithms can achieve better BER performance than
the existing CE precoder designs.
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