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ABSTRACT

A new family of operators, coined hierarchical measurement
operators, is introduced and discussed within the well-known
hierarchical sparse recovery framework. Such operator is
a composition of block and mixing operations and notably
contains the Kronecker product as a special case. Results
on their hierarchical restricted isometry property (HiRIP)
are derived, generalizing prior work on recovery of hier-
archically sparse signals from Kronecker-structured linear
measurements. Specifically, these results show that, very
surprisingly, sparsity properties of the block and mixing part
can be traded against each other. The measurement structure
is well-motivated by a massive random access channel design
in communication engineering. Numerical evaluation of user
detection rates demonstrate the huge benefit of the theoretical
framework.

Index Terms— Structured compressed sensing, Hierar-
chically sparse signals, HiHTP, Block detection, Internet of
Things (IoT), MIMO

1. INTRODUCTION

1.1. The hierarchically sparse signal model

The paradigm of compressed sensing [1] can be boiled down
to the notion that if a vector x ∈ KN (K refers to one of
the two fields R or C) is sparse, it can be recovered from
underdetermined and noisy linear measurements y = Ax +
η ∈ KM , M � N using a plethora of algorithms.

The impact of compressed sensing on the signal process-
ing cannot be understated. In many applications however,
the signal x at hand is not only sparse, but enjoys a richer
structure. In this work, we consider hierarchically sparse (hi-
sparse) signals. Hi-sparse signals are structured into blocks
that are sparse, or may even exhibit a block structure them-
selves. Sparsity is assumed on all levels of the block structure,
i.e. in a hi-sparse signal x = (x1, . . . ,xN ), only s blocks
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xi are non-zero, and each the non-zero blocks xi contains at
most σi non-vanishing entries. Prior work on the recovery of
block-sparse signals includes [2, 3], while a hi-sparse signal
model has also been considered in [4–7]. Here, we will use
the following definition.

Definition 1. Let x = (x1, . . . ,xN ) ∈ Kn1 × · · · × KnN ,
where K is either R or C. For s and σ = (σ1, . . . , σN ), we
say that x is (s, σ)-sparse, if

• at most s blocks xi are non-zero and

• each non-zero block xi is σi-sparse.

Note that this definition can be readily generalized to
more sparsity levels with a nested tree structure [8] by allow-
ing the σi to be multi-leveled themselves, i.e. of the form
(σi, ςi), with ςi = (ςi,1, . . . , ςi,ni

) etc.
Before formally introducing the new family of operators

on hierarchically sparse signals, let us discuss a specific ex-
ample in the context of massive random access in the IoT
communication literature. For further application examples
such as, e.g., massive MIMO please refer also to [9], [10].

1.2. Grouped Random Access Model

In random access, each user that wishes to communicate with
a base station chooses a resource at random (out of ν avail-
able) and sends a pilot signal associated with that resource.
Assuming equal power transmitted from the users, and letting
bj(i) ∈ Cm,m ≤ ν, be the pilot signal that user i chooses,
the base station then receives the vector

y = Bx =

(
ν∑
i=1

xibj(i)

)
,

where xi = 0 if user i is inactive, and xi = 1 else, and
B = (b1, ...,bν). As before, it is reasonable to assume that
the user activity is sparse meaning that the vector x is sparse.

This protocol has a fundamental problem – if several
users choose the same resource (a collision occurs), sub-
sequent communication is impossible, since each resource
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Fig. 1: The standard random access (left) vs. the grouped
approach proposed here (right).

can only serve one user at a time. The probability of a col-
lision grows very fast with a growing amount of users – a
phenomenon commonly referred to as the birthday paradox.

In order to reduce the probability of collisions, we pro-
pose to distribute the users in groups. That is, randomly
subdivide the active users in N groups, and accordingly re-
place the x-vector replaced with N blocks xi. We then let the
users in each group i choose one of n resources, with n ≤ ν.
Obviously, there is then within each block a much lower prob-
ability of collision than before. Furthermore, each block is
with high probability sparse, say σi-sparse. Thus, the signal
to be recovered, (x1, . . . ,xN ) ∈ (Cn)N is no longer only
sparse, but with high probability even (N, (σ1, . . . , σN ))-
hierarchically sparse.

In order for the base station to be able to de-mix the indi-
vidual block contributions, we may let them send their pilot
signals during disjoint time intervals and recover each xi from
Bixi, for i = 1, ..., N individually. This would however be
very tedious compared to the original, one-shot scheme. In-
stead, we propose to mix the contributions Bixi over (much
smaller)M incoherent slots (say in time, frequency or space),
each time j with a different random modulation aj,i. The base
station over the course of those time slots then receives

yj =

N∑
i=1

aj,iBixi, j ∈ [M ] (1)

To further increase efficiency, we may let the Bi be subsam-
pled, meaning that we have access to an M ·m-dimensional
measurement, instead of an N · n-dimensional. It is a pri-
ori not clear that recovery still is possible. However, the strict
sparsity assumption of hierarchical sparsity still gives us some
hope of recovery. We show that this intuition is indeed true
and we bring a series of strong theoretical arguments why it
is so.

1.3. Hierarchical measurement operators

The main aim of this paper is to analyze the properties of
operators of the form (1) within the context of hierarchically

sparse recovery. Let us give them a name.

Definition 2. We call a measurement operator H from⊕N
i=1 Kni to KM ⊗ Km a hierarchical measurement op-

erator if there exists matrices Bi ∈ Km×ni and a matrix
A ∈ KM×N with

H (x1, . . . ,xN ) =

N∑
i=1

ai ⊗ (Bixi). (2)

We will refer to A as the mixing matrix and the Bi as the
block operators.

In [8], a subset of the authors proposed to use an adapted
version of the celebrated Hard Threshold Pursuit (HTP) [11]
to recover hi-sparse signals – the Hierarchical HTP (HiHTP),
which we will present in more detail in the experiment sec-
tion. The main finding of [8] was that if a measurement opera-
tor M exhibits the so called hierarchically restricted isometry
property (HiRIP), HiHTP recovers all hierarchically sparse
signals in a stable and robust fashion from linear measure-
ments y = Mx.

Definition 3. The smallest δ > 0 for which

(1− δ)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δ)‖x‖2

for all (s, σ)-sparse x is called the (s, σ)-HiRIP constant of
M, δs,σ(M).

A matrix ’having the HiRIP’ then refers to δs,σ(M) being
small enough for the correct parameters s and σ.

In this paper, we will analyse the HiRIP properties of
hierarchical measurement operators. We will give bounds
on the HiRIP constants in terms of the RIP constants of the
mixing and block matrices. These generalize prior work
on compressed sensing of hierarchically sparse signals from
Kronecker-structured measurements [12].

In the following, we will refrain from presenting any
mathematical proofs. These, along with additional results
and discussions, can instead found be found in the journal
version of this paper, of which a preprint [13] will soon be
available on arXiv.

2. HIRIP-PROPERTIES OF HIERARCHICAL
MEASUREMENT OPERATORS

As briefly mentioned in the introduction, in [12], some of the
authors of this article proved that a measurement matrix being
a Kronecker product A⊗B has the (s, σ)-RIP provided A has
the s-RIP and B has the σ-RIP. The Kronecker product A⊗B
is defined through its action on an element (x1, . . . ,xN ) ∈
(Kn)N as follows

A⊗B(x1, . . . ,xN ) =

N∑
i=1

ai ⊗ (Bxi),



where ai denotes the columns of A, and ⊗ the tensor prod-
uct. It is evident that these operators are special cases of the
hierarchical operators considered here.

The main result of [12] is that if A has the s-RIP and
B has the σ-RIP, A ⊗ B has the (s, (σ, . . . , σ))-HiRIP. The
first main result of this paper is a direct generalisation of this
result.

Theorem 2.1. Let H be a hierarchical measurement opera-
tor, as in (2). Assume that the matrices Bi all obey the σi-RIP
with constant δσi(Bi) for all i. Assume further that A obeys
the s-RIP with constant δs(A). Then H obeys the HiRIP, with

δ(s,σ)(H) ≤ δs(A) + sup
i
δσi(Bi) + δs(A) · sup

i
δσi(Bi),

where again σ = (σ1, . . . , σN ).

Remark 1. The result applies to more levels of sparsity. To be
concrete, the σi in the result may be multileveled themselves.

This result already enables us to construct an abstract hi-
erarchical measurement operator which has the (s, σ)-HiRIP
with high probability. Remembering that a Gaussian ma-
trix B ∈ Km,ni has σ-RIP with high probability already
when the number o m & σ log

(
ni

σi

)
[14, Ch.9]. In the same

manner, we can choose the matrix A ∈ KM×N as a Gaus-
sian matrix. It will have the s-RIP with high probability if
M & s log

(
N
s

)
. The above result then implies that the hier-

archical measurement operator formed by A and the (Bi)i∈N
has the (s, σ)-HiRIP. We conclude that recovery of (s, σ)-
sparse vector is possible using asymptotically no more than

M ·m & smax
i
σi · polylog(N,n)

total measurements, which is comparable to the results for
unstructured measurement operators from [8].

Remark 2. These considerations could to some extend al-
ready be derived using the Kronecker result from [15]. The
main difference is that we may use varying sparsity levels,
ambient dimensions and measurement operators.

2.1. Refining the result through block operator incoher-
ence

As for the Grouped Random Access model, Theorem 2.1 does
not bring a particularly satisfactory guarantee. Indeed, in that
model, we have to recover (N, σ)-sparse signals. In order for
the above result to be relevant, we thus need A to have the
N -RIP, which necessitates M ≥ N . This is discouraging.

Can the result however be strenghtened? In fact it can, if
the block operators are incoherent in the following sense.

Definition 4. We say that the collection of operators Bi ∈
Km×ni , i ∈ [n] are pairwise (δ, σ)-incoherent if for each i 6=
j,

sup
|vi|0≤σi,|vj |0≤σj

‖vi‖=‖vj‖=1

|〈Bivi,Bjvj〉| ≤ δ.

In fact, the Bi in the Grouped Random Access is pairwise
(δ, σ)-incoherent if they are independently subsampled and
modulated with random signs, as the following result shows.

Proposition 2.2. Let F ∈ Cn,n be the unitary Fourier matrix.
For each i, let the matrix Bi ∈ Cm,n be formed by uniformly
and independently samplingm rows from F, multiplying each
of them with a uniform random sign, and subsequently rescal-
ing the rows by m−1/2. Assuming that Bi is independent of
Bj for i 6= j and

m & σδ−2 log(n)4 log(N),

the collection is (δ, σ)-incoherent with probability higher
than 1− n− logn3

.

If (Bi)i∈[N ] is a pairwise incoherent collection, it can
to some extent separate the contributions of the individual
blocks of a hierarchically sparse vector from the measure-
ment

∑N
i=1 Bigi. Therefore, the mixing matrix A intuitively

does not need to have a full s-RIP in order for the hierarchi-
cal measurement operator H formed by A and (Bi)i∈[N ] to
have the (s, σ)-HiRIP. Put differently, if A is Gaussian, the
needed number of A does not scale as s. A formal result is as
follows.

Theorem 2.3. Let Bi ∈ Km×ni for i ∈ [N ], be a pairwise
(δ∗2σ, σ)-incoherent family. Further assume that

sup
i
δσ(Bi) ≤ δ∗σ

Assume further that (sδ∗2σ)2 ≤ N/ log(N) and that A ∈
KM×N is a Gaussian matrix. Let furthermore δ, ε > 0. Pro-
vided

M &
(sδ∗2σ)2

δ2
log

(
N(1 + δ∗σ)2

(tδ∗2σ)2

)
+ log(ε−1),

the hierarchical operator H defined by A and (Bi)i obeys
δ(s,σ)(H) ≤ δ + δ∗σ with a probability at least 1− ε.

The above result says that provided δ∗2σ is small, we need
M to be of the order (sδ∗2σ)2, rather than s, to allow for s-
sparse signals on the ’block level’. If δ∗2σ is very small, we
may hence obtain the RIP already when M is less than s – a
behaviour which cannot be explained by Theorem 2.1. Note
that we can even reach the realm of the Grouped Random
Access model, i.e. s = N .

Remark 3. The quadratic dependence on of sδ∗2σ is not sam-
ple optimal. We leave it to future work to determine whether
this only is a proof artefact, or a fundamental limit.

3. NUMERICAL SIMULATIONS

In this section we empirically verify that the hierarchical spar-
sity framework, and in particular Theorem 2.3, can be used
for user detection in the Grouped Random Access scenario.



3.1. HiHTP Algorithm

As mentioned in the introduction HiHTP is a low-complexity
algorithm for solving hierarchically sparse compressed sens-
ing problems of the form

min
x

1

2
‖y −Hx‖2 subject to x is (s, σ)-sparse, (3)

where H is a linear operator satisfying the HiRIP. Provided H
has the HiRIP for an appropriate sparsity level, it will recover
any (s, σ)-sparse vector.

The algorithm consists of iteratively performing a gradi-
ent descent step, thresholding the new iterate onto the set of
(s, σ)-sparse signals and then adjusting the non-zero values
on the obtained support by linear least squares. The algo-
rithm terminates once the support of two successive iterates
does not change or a suitable stopping criterion is reached.

Importantly, the projection onto the set of (s, σ)-sparse
signal (line 3 of Algorithm 1) can be performed in an efficient
manner. We refer to [8] for details on this.

Algorithm 1: HiHTP for hierarchical measure-
ments

input : data y, stepsizes τ [t], tolerance ε
initialization: x(0) = 0, Ω(0) = {}

1 for t = 1, 2, . . . do
2 x̂(t) = x(t−1) + τ (t)H∗(y −Hx(t−1))

3 Calculate the support Ω(t) of the best
(s, σ)-sparse approximation of x̂(t)

4 x(t) = argmin 1
2‖y −Hx‖2 subject to

supp(x) ⊂ Ω(t)

5 if Ω(t) = Ω(t−1) or ‖y−Hx
(t)‖

‖y‖ ≤ ε then
6 break
7 end
8 end

3.2. Grouped Random Access

We assume ν = n = 512 available resources and model the
measurements at the base station as y = Fx, where F ∈
Cn×n is a n × n-DFT matrix. Note that since we are aiming
for user detection, we do not necessarily need to recover x ex-
actly: we only need to determine which xi are non-zero. Our
baseline method therefore consists of computing supp(F−1y)
to obtain the selected resources.

We compare this to the Grouped Random Access model
with N subsampled Bi, which each consist of m = 256 ran-
dom rows from the n × n DFT matrix. The random mod-
ulation matrix A ∈ CM×N , where M = 16 is chosen as
complex Gaussian with variance 1√

N
. This results in the sys-

tem CMm 3 y = Hx, with measurement operator H formed
by A and the Bi as in (1).
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Fig. 2: User detection with hierarchical measurements

The HiHTP Algorithm 1 is used to recover x from the
measurements y. Figure 2 shows the average number of re-
covered users for varying sparsities σ = 16, . . . , 36 and num-
ber of blocks N = 8, . . . , 32 over 25 Monte-Carlo trials for
each configuration. Note that from N > 8 on the system
has more pre-image dimensions than measurements and the
recovery results of our paper apply. Notably, since all the
N blocks are filled, classical hierarchical CS does not apply
and particularly Theorem 2.3 must be invoked. The baseline
shown in Figure 2 is computed as the total number of users,
N · σ, minus the expected number of collisions that occur,
if these users choose randomly out of the n = 512 available
resources. As can be seen, HiHTP is able to recover much
more users compared to the baseline. For σ = 16 and σ = 32
the performance of the HiHTP algorithm for user detection is
shown, when the σ ·N users are distributed randomly over all
available slots (i.e. the block sparsities are not uniformly fixed
to σ). Even in this scenario, where the algorithm operates
with the wrong sparsity parameters, reasonable performance
is achieved.

4. CONCLUSION

We proved a number of results regarding the HiRIP for hi-
erarchical measurement operators. The results generalize
prior work on hierarchical sparse recovery with Kronecker-
structured matrices. Furthermore, we demonstrated that the
HiHTP algorithm is capable of computing hi-sparse solu-
tions under this measurement structure in a practical Grouped
Random Access design for IoT communication scenarios
exhibiting huge capacity gains.
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