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ABSTRACT

We propose a method that combines fixed point algorithms with a

neural network to optimize jointly discrete and continuous variables

in millimeter-wave communication systems, so that the users’ rates

are allocated fairly in a well-defined sense. In more detail, the dis-

crete variables include user-access point assignments and the beam

configurations, while the continuous variables refer to the power al-

location. The beam configuration is predicted from user-related in-

formation using a neural network. Given the predicted beam config-

uration, a fixed point algorithm allocates power and assigns users to

access points so that the users achieve the maximum fraction of their

interference-free rates. The proposed method predicts the beam con-

figuration in a “one-shot” manner, which significantly reduces the

complexity of the beam search procedure. Moreover, even if the pre-

dicted beam configurations are not optimal, the fixed point algorithm

still provides the optimal power allocation and user-access point as-

signments for the given beam configuration.

Index Terms— Interference management, millimeter-wave

communication, beamforming, deep learning, fixed point algorithm

1. INTRODUCTION

Communication over millimeter-wave (mmWave) bands is a key en-

abler to support increasing data rate demands [1]. Small wavelengths

allow the exploitation of large antenna arrays in the current size

of radio chips, which results in a substantial gain in the link bud-

get using beamforming. Such a gain can largely compensate for the

high path-loss in the mmWave band, without increasing the trans-

mit power. Achieving higher gain, however, requires narrow beams

both at the user equipment (UE) and at the access point (AP). The

latter, in turn, needs to deal with difficult problems associated with

the establishment and maintenance of a robust communication links

with directional beams. Thus, resource management in mmWave

systems becomes more difficult owing to additional system param-

eters such as beam width and beam direction, in comparison with

conventional communication technologies with the omni- or semi-

directional transmission. More specifically, in addition to the power

allocation and UE-AP assignment problems in conventional com-

munication systems, the network operating with directional beams

further requires to find the optimal beam configurations to improve

system performance with respect to network coverage, spectral effi-

ciency, etc.

In practical mmWave communication systems, some transceivers

are implemented with discrete beam configurations selected from a

predefined finite set [2]. As a result, joint optimization of all discrete

and continuous variables becomes difficult. For example, existing

methods in the literature for power allocation [3, 4], beam config-

uration optimization [5, 6, 7] and UE-AP assignment [8, 9] cope

with some of the continuous or the discrete variables, but the joint

optimization of all these parameters is difficult and requires heuris-

tics. For example, in a previous study [10], a method that jointly

optimizes the transmit power of UEs, receive beam configurations

of APs, and UE-AP assignments has been proposed. In that method,

for fixed beam configurations of APs, the problem is formulated

as a weighted rate allocation problem, where each UE maximizes

the same portion of its maximum achievable rate that it would have

in interference-free conditions. The solution to the aforementioned

problem is obtained with an iterative fixed point algorithm that al-

locates power and assigns UEs to APs. However, the algorithm is

unable to include the beam configurations in the optimization frame-

work while guaranteeing optimality. As a result, the study in [10]

combines fixed point algorithms with heuristics based on simulated

annealing (SA) to cope with all optimization variables. Despite the

high performance of the method in [10], from a practicality per-

spective, one of the challenges is to alleviate the complexity of the

heuristic based on simulated annealing, which scales exponentially

with the number of discrete beam configurations and the number of

APs.

In this work, we propose a method that combines fixed point al-

gorithms with a neural network, with the intent of jointly optimizing

all discrete and continuous variables. To this end, we propose an ar-

chitecture based on a deep neural network that is able to predict the

beam configurations from UE related information. More precisely,

we use a neural network for supervised multitask learning where

each AP learns its best beam configuration in the sense of maximiz-

ing the common fraction of the maximum achievable rates of the

UEs. Given the predicted beam configurations, the fixed point algo-

rithm provides the solution for optimal transmit power allocation and

the UE-AP assignments. With such a combination of a neural net-

work with a fixed point algorithm, we have the following advantages.

First, compared to the iterative SA, the neural network can predict

the beam configuration in a “one-shot” manner, which results in a

significant complexity reduction. Second, if the beam configurations

produced by the neural network are suboptimal, then the fixed point

algorithm is still optimal in the sense of maximizing the common

fraction of interference-free rates for the given beam configurations.

Third, with the settings considered here, the neural network can pro-

duce robust predictions under environmental changes (e.g., different

distributions of UE positions).

2. SYSTEM MODEL AND PROBLEM STATEMENT

2.1. System Model

In this study, we use the following standard notations. By ‖·‖∞, we

denote the standard l − ∞ norm. Sets of non-negative and strictly
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positive reals are denoted by R+ and R++, respectively.

We consider a wireless network with a set N = {1, ..., N}
of transmitters, called UEs, and a set M = {1, ...,M} of re-

ceivers, called APs. The UE transmit beam configurations are

denoted by (∀n ∈ N ) θTx
n and βTx

n , where θTx
n and βTx

n are the

UEn transmit beam width and direction, respectively. We assume

that the transmit beam widths of UEs are identical and fixed

(∀n ∈ N ) θTx
n = θTx, while UE beam directions are uniformly

distributed with (∀n ∈ N ) βTx
n ∼ U

(
βTx

min, β
Tx
max

)
. In contrast to

the UEs, each AP beam width and direction can be adjusted by

the respective AP, i.e. θRx =
(
θRx
1 , ..., θRx

M

)
∈ D

M
θ ⊆ R

M
++ and

βRx =
(
βRx
1 , ..., βRx

M

)
∈ D

M
β ⊆ R

M are vectors to be optimized.

Note that Dθ and Dβ denote the discrete sets of receive beam widths

and directions, respectively. The transmit power vector of UEs is

defined by p := (p1, ..., pN) ∈ R
N
+ , and the elements of this vector

take values in the interval (∀n ∈ N ) 0 < pn ≤ P , where P is

the maximum allowed transmit power. In this work, we assume that

multiple UEs may simultaneously connect to an AP.

For given p,θRx, and βRx, the achievable rate of UEn in the up-

link to its best serving AP (i.e. the UE-AP assignment) is expressed

by

Rn

(
p, θRx,βRx

)
= max

m∈M
W log2

(
1 + sn

(
p,θRx,βRx,m

))
, (1)

where W is the system bandwidth, and

sn : RN
+ × R

M
++ × R

M ×M → R+

(
p, θRx,βRx,m

)
7→

pnhm,n

(
θRx,βRx

)
∑

n′∈N\{n}

pn′hm,n′

(
θ

Rx
,β

Rx
)
+ σ

2
(2)

denotes the signal-to-interference-plus-noise ratio (SINR) for UEn.

The variable σ2 > 0 is the noise power, and (∀m ∈ M) (∀n ∈ N )(
∀
(
θRx,βRx

)
∈ Q

)
hm,n

(
θRx,βRx

)
> 0 denotes the channel

power gain between UEn and serving APm given beam configu-

ration
(
θRx,βRx

)
∈ Q, as defined in [10, Sect. II.C]. By fixing

(∀n ∈ N ) pn = P , the maximum achievable rate, also called

interference-free rate, of UEn is given by

Rn = max
m∈M,(θRx,βRx)∈Q

W log2

(
1 +

Phm,n

(
θRx,βRx

)

σ2

)
. (3)

The rate Rn corresponds to the case when UEn transmits alone in

the network with full power to its best serving AP.

2.2. Problem Statement

The problem in this study is defined as fair allocation of the UE rates

(∀n ∈ N )Rn, in the sense that every UE achieves the maximum

common fraction c ∈ [0, 1] of its interference-free rates Rn. For-

mally, the optimization problem is stated as follows:

maximize
p,θRx,βRx,c

c (4)

subject to (∀n ∈ N ) cRn = Rn

(
p,θ

Rx
,β

Rx
)

(4a)

‖p‖∞ ≤ P (4b)

p ∈ R
N
+ ,
(
θ

Rx
,β

Rx
)
∈ Q, c ∈ R++, (4c)

where Q =
{(

θRx
k ,βRx

l

)}
k∈(1,...,|Dθ |

M), l∈
(

1,...,|Dβ|
M

) is a set of

all receive beam configurations of the APs. The joint optimization

of the parameters in (4) is challenging due to a mixture of discrete

and continuous parameters. However, if the tuple
(
θRx,βRx

)
is fixed

to any given beam configuration
(
θRx, βRx

)
∈ Q, the objective

reduces to the following power allocation and UE-AP assignment

problem:

maximize
p,c

c (5)

subject to (∀n ∈ N ) cRn = Rn

(
p, θ

Rx
, β

Rx
)
, (5a)

‖p‖∞ ≤ P (5b)

p ∈ R
N
+ , c ∈ R++, (5c)

and problem (5) can be solved optimally with a simple iterative fixed

point algorithm [11][10, Sect. IV.A].

The connection between (4) and (5) can be summarized as fol-

lows. Suppose that
(
θ
⋆

Rx,β
⋆

Rx
)
∈ Q is an optimal beam configuration

to problem (4). If we solve (5) by fixing θRx = θ
⋆

Rx and βRx = β
⋆

Rx,

then the solution (c⋆,p⋆) to (5) is also the optimal fraction c⋆ and

an optimal power allocation p⋆ to problem (4). Furthermore, the en-

tries of the optimal UE-AP assignment vector a⋆ = (a⋆
1, ..., a

⋆
N ) ∈

M× · · · ×M can be recovered via

a
⋆
n ∈ arg min

m∈M

Rnp
⋆
n

W log2

(
1 + sn

(
p⋆,θ

⋆
Rx,β

⋆
Rx, m

)) . (6)

Therefore, if the optimal beam configurations are known, (4) can

be solved optimally with a simple fixed point algorithm. In princi-

ple, the optimal beam configurations could be found via exhaustive

search or other iterative search methods (e.g. SA) over Q, as done

in [10]. Performing this search, however, scales exponentially with

the number of discrete beam configurations and the number of APs.

In the following, we propose a deep learning-based non-iterative

method that predicts the beam configurations in a “one-shot” manner

from UE related information.

3. BEAM CONFIGURATIONS PREDICTION WITH DEEP

NEURAL NETWORK

To find the optimal beam configuration
(
θ
⋆

Rx,β
⋆

Rx
)

in (4), we as-

sume that there exists an ideal mapping Ξ that maps the UE re-

lated information D to some output
(
[e⋆

1, .., e
⋆
M ], [f⋆1 , .., f

⋆
M ]
)

(to be

explained later) such that θ
⋆

Rx and β
⋆

Rx can be reconstructed from

[e⋆
1, .., e

⋆
M ] and [f⋆1 , .., f

⋆
M ], respectively, and the reconstructed con-

figuration
(
θ
⋆

Rx,β
⋆

Rx
)

is the optimal beam configuration to problem

(4). Formally, the ideal mapping Ξ is defined as follows

Ξ : RN×3 → R
M×|Dθ | × R

M×|Dβ | : D 7→
(
[e⋆

1, .., e
⋆
M ], [f⋆1 , .., f

⋆
M ]
)
, (7)

where D =
[
x,y,βTx

]
is the matrix that contains UE location in-

formation in a 2D Cartesian coordinate system [x,y], and βTx is the

UE beam direction. The rows of the matrix D are sorted in lexico-

graphical order.

We now proceed to explain the output of the ideal mapping Ξ,

and we also describe the reconstruction mechanism to obtain θ
⋆

Rx

and β
⋆

Rx from [e⋆
1, .., e

⋆
M ] and [f⋆1 , .., f

⋆
M ]. We assume that the ele-

ments of the vectors (∀m ∈ M) e⋆
m, f⋆m are one-hot encoded, i.e.,

(∀m ∈ M) e⋆
m ∈ {0, 1}|Dθ |, f⋆m ∈ {0, 1}|Dβ |

. In this way, the in-

dices of the vectors (∀m ∈ M) e⋆
m, f⋆m are associated with the in-

dices of the respective beam width and direction indices from the

discrete sets Dθ and Dβ . To relate the selected optimal beam indices



Fig. 1. The proposed architecture for joint optimization of the beam configurations, power allocation and UE-AP assignments. The neural

network predicts the beam configurations from UE related information D, and the fixed point algorithm optimally allocates the power and

assigns the UEs to APs given the predicted beam configurations.

(in the sense of maximizing the objective in (4)), we further assume

that the vectors (∀m ∈ M) e⋆
m, f⋆m contain the value one at the in-

dex corresponding to the selected optimal beam width and direction,

respectively, and zeros elsewhere.

With the output explained above, the reconstruction of the beam

configurations θ
⋆

Rx and β
⋆

Rx is performed as follows. Once we obtain

the output
(
[e⋆

1, .., e
⋆
M ], [f⋆1 , .., f

⋆
M ]
)

from Ξ, the vectors θ
⋆

Rx and β
⋆

Rx

are recovered via

θ
⋆

Rx =
(
θ
⋆

Rx
1 , ..., θ

⋆
Rx
M

)
, (∀m ∈ M)

θ
⋆Rx
m = γi⋆m ∈ Dθ

i⋆m ∈ arg max
i=1,...,|Dθ |

(
[e⋆

m]
i

)
(8)

and

β
⋆

Rx =
(
β
⋆

Rx
1 , ..., β

⋆
Rx
M

)
, (∀m ∈ M)

β
⋆Rx

m = δi⋆m ∈ Dβ

i⋆m ∈ arg max
i=1,...,|Dβ |

(
[f⋆m]

i

)
, (9)

where γi⋆m and δi⋆m represent the selected optimal beam configura-

tions from the finite and discrete sets Dθ and Dβ , respectively. Al-

though the ideal mapping Ξ provides optimal beam configurations

by assumption, it is challenging to analytically characterize it. There-

fore we propose a deep neural network that learns an ideal mapping

Ξ from data.

The proposed neural network architecture in combination with

the fixed point algorithm is shown in Fig. 1. With the setting that

the beam configurations are taken from the discrete and finite sets

Dθ and Dβ , we consider the beam configurations as labels, and we

pose the beam optimization problem in (4) as a multi-label classi-

fication problem [12]. The labels are constructed as follows. Given

the finite set Q consisting of all possible beam configurations, and

the UE related information D, we perform an exhaustive search by

applying fixed point iterations for every candidate beam configu-

ration
(
θRx,βRx

)
∈ Q to obtain

(
θ
⋆

Rx,β
⋆

Rx
)
. 1 Next, we retrieve

1If exhaustive search is too complex to construct the training set, the

approach can be easily adapted to use heuristics such as simulated anneal-

ing [10]. The construction of training sets can be done offline with time-

consuming heuristics because there is no real-time communication taking

place.

(m ∈ M) i⋆m by following the rules in (8) and (9). With the opti-

mal index i⋆m we construct the one-hot encoded ground truth labels(
[e⋆

1, .., e
⋆
M ], [f⋆1 , .., f

⋆
M ]
)
.

Given the input-output pair
(
D,
(
[e⋆

1, .., e
⋆
M ], [f⋆1 , .., f

⋆
M ]
))

, we

extract the features from D by utilizing two fully connected lay-

ers with the rectified linear unit (ReLU) activation as illustrated in

Fig. 1. To project the extracted features onto beam configuration la-

bels, we customize the multi-label classification layer with the soft-

max activation function so that (∀m ∈ M) êm ∈ [0, 1]|Dθ | and

f̂m ∈ [0, 1]|Dβ |
. With this design, the output of the neural network in-

dicates the beam configuration indices. In other words, the indices of

the highest values in (∀m ∈ M) êm, f̂m indicates the best predicted

beam width and direction for APm. We train the neural network by

trying to minimize the categorical cross entropy loss [13] given by

l
(
[e⋆

1, .., e
⋆
M ], [f⋆1 , .., f

⋆
M ], [ê1, .., êM ], [̂f1, .., f̂M ]

)
=

= −
M∑

m=1




|Dθ |∑

i=1

[e⋆
m]

i
log
(
[êm]

i

)
+

|Dβ |∑

i=1

[f⋆m]
i
log([̂fm]i)



.
(10)

4. NUMERICAL RESULTS

4.1. Training Parameters and Reference Methods

To train the proposed neural network, we generate 106 samples, and

we split those samples into training and test sets containing 9 · 105

and 1·105 samples, respectively. The samples are generated using the

mmWave channel model described in [14]. The channel model con-

siders an urban microcell (UMi)-line-of-sight (LoS) scenario with

high user density in open areas and street canyons. The neural net-

work has two hidden layers, each consisting of 200 fully connected

neurons. The total number of epochs and batch size for training

is 500 and 512, respectively. We train a neural network using the

Adadelta optimizer [15] with adaptive learning rates.

We compare the performance of the proposed method with ex-

haustive search and with the method in [10]. In addition, we also



introduce a method called naive learning. It simply provides to the

fixed point algorithm the beam configurations encountered most fre-

quently in the training set.

4.2. Simulation

Performing an exhaustive search over a large solution set Q is in-

feasible, so, for the simulations, we consider a small scale problem

with N = 10 UEs, M = 3 APs, discrete receive beam width config-

urations Dθ = {30◦, 45◦, 60◦} and discrete receive beam direction

configurations Dβ = {80◦, 90◦, 100◦}. The UEs are located in a

20× 30 m2 rectangle area centered at [0m, 0m]. With the given pa-

rameters, the size of the solution set is |Q| = |Dθ|
M × |Dβ |

M =
729. We set the number of fixed point iterations to 100. The heuris-

tic based on simulated annealing proposed in [10] selects the initial

beam configurations from the solution set Q uniformly at random,

without prior knowledge about the configuration of the mmWave

network. We formally define the optimal rate fraction c⋆ obtained by

exhaustive as 100 % solution efficiency, and we compare the relative

performances of other methods with the optimal solution obtained by

exhaustive search. To evaluate the robustness of the proposed neural

network against distribution changes in the input data, we consider

the following two cases:

C1: The UE positions [x,y] in D are selected randomly from a

uniform distribution within the rectangle area for both train-

ing and testing.

C2: The UE positions [x,y] in D are selected randomly from a

uniform distribution within the rectangle area only for the

training set. The UE positions [x,y] in the test set is selected

randomly from a non-uniform distribution within the rect-

angle area. More precisely, we consider two uniformly dis-

tributed random variables r ∈ [0, L] and φ ∈ [0, 2π], where

L denotes the radius of a disk, and we generate the UE coor-

dinates [x, y] in 2D Cartesian coordinate system as

x = xcenter + r cosφ and y = ycenter + r sinφ, (11)

where xcenter and ycenter denote the center of a disk on X and

Y axis, respectively. A scatter plot obtained with this distri-

bution is illustrated in Fig. 2. Note that only the UE posi-

tions within the rectangle area were used for the simulation

as shown in Fig. 2.

Fig. 2. Sample scatter plot of UE positions in the test set.

Fig. 3. Average solution efficiency as a function of the number of

fixed point iterations.

The performance of the proposed and reference methods are

given in Fig. 3. The superscripts C1 and C2 in Fig. 3 denote the perfor-

mance of the neural network and the naive learning approaches ac-

cording to the previously-mentioned cases. Since all methods other

than the simulated annealing and the exhaustive search method are

predicting the beam configurations in a “one-shot” manner, we mark

their performance with points, and we extend the dashed lines with

the respective solution efficiency values in the X-axis.

In Fig. 3, we notice a substantial gap between the performance of

the neural network and the naive learning approach under C1. This

result shows that the neural network is able to predict good beam

configurations from UE related information. The second, and very

attractive result in Fig. 3, is the similar performance of the neural

network under C2 and C1. This result indicates that the distribution

used for training is likely to provide good performance when the dis-

tribution of the test set differs. In addition, we note that the proposed

scheme requires only a single call to a fixed point algorithm (100 it-

erations are used) to achieve 80 % of the optimal rates on average. In

contrast, the approach in [10] and exaustive search require one call to

the fixed point algorithm for each configuration being probed. As a

result, the number of iterations of the fixed point algorithm required

by those heuristics are orders of magnitude larger than that required

by the propose scheme to achieve the same performance. This re-

sult indicates that the proposed scheme can be useful for real-time

operation.

5. CONCLUSION

In this work, we proposed a method that jointly optimizes the beam

configuration, UE-AP assignments, and the power allocation in

mmWave communication systems with directional transmission. We

introduced a neural network that predicts the beam configuration

from UE related information, and the fixed point algorithm solves

the UE-AP assignment and power allocation problems given the pre-

dicted beam configuration. One of the advantages of the proposed

method is that it predicts the beam configuration non-iteratively,

which is an important factor in mmWave communication systems

with low-latency requirements. Another advantage of the proposed

method is that the fixed point algorithm guarantees the optimal

power allocation and UE-AP assignments given any prediction from

the neural network. Simulations showed that the proposed method

can provide 80 % of the optimal rates on average with a single call of

the fixed point algorithm, while the reference method based on sim-

ulated annealing requires to solve fixed point problems repeatedly

to achieve the same performance.
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