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Abstract—The Software-defined networking (SDN)
paradigm centralizes control decisions to improve
programmability and simplify network management.
However, this centralization turns the network vulnerable
to denial of service (DoS) attacks, and in the case of
resource constrained networks, the vulnerabilities escalate.
The main shortcoming in current security solutions is
the tradeoff between detection rate and complexity. In
this work, we propose a DoS attack detection algorithm
for SDN resource constrained networks, based on recent
results on non-parametric real-time change point detection,
and lightweight enough to run on individual resource
constrained devices. Our experiment results show detection
rates and attacker identification probabilities equal or over
0.93.

Index Terms—Software-defined networking, intrusion de-
tection, wireless sensor networks

I. INTRODUCTION

Software-defined networking (SDN) is a paradigm that

centralizes network control decisions and enables the

network to be intelligently and centrally programmed.

These characteristics simplify network management and

provide tools for infrastructure sharing [1].

SDN centralization provides advantages and disadvan-

tages in terms of network security: on one side, the

controller’s global view has been used to develop new

security strategies [2], on the other side, the controller is

a single point of failure, which turns SDN-based networks

prone to DoS attacks [3] [4]. In the case of resource

constrained networks, as wireless sensor networks for

Internet of things, SDN vulnerabilities are critical since

there are less resources to detect and mitigate attacks.

Consequently, current standard SDN security solutions

adaptation is not trivial.

Since SDN centralizes the control logic of the net-

work, most of works in the literature propose centralized

security solutions. This has benefits, such as a global

view of the network and high processing power, but

it also requires a constant communication between the

network devices and the controller. This means more

energy and communication resources consumption. To

address this issue, we propose a lightweight DoS attack

detection algorithm using change point (CP) analysis to

detect anomalies in the network behavior. We execute

our proposal using a distributed approach, running the

detection algorithm on individual resource constrained

nodes, avoiding the packets overhead caused by the

centralization.

We simulate grid topologies of 100 nodes, where 10%

of nodes are attackers. Our main results show that individ-

ual nodes can detect a DoS attack and identify the attacker

itself with a probability equal or over 0.93, when being

close to the attacker. In addition, we investigate trade-offs

between a fully decentralized and a hybrid approach.

II. RELATED WORK

In this section, we analyze recent works that propose

DoS attacks detection solutions for SDN-based networks.

We compare our proposal and the state mainly based on

detection performance and resources limitations.

Machine learning is a popular approach used for se-

curity in SDN since the controller has access to traffic

information that could be used to train the algorithms.

Bhunia and Gurusamy [5], Ravi and Shalinie [6], and

Jia et al. [7] proposals have in common that all of

them obtained high detection rate results, i.e., higher

than 90%, using machine learning techniques. On the

other hand, none of these three proposals considered

resource constraints. The main reason is because these

are OpenFlow-based or require high traffic of packets to

monitor the network.

Some proposals focused on resource limitations. Yin

et al. [8], Miranda et al. [9], and Wang et al. [10]

proposed more lightweight security solutions, but at the

cost of detection rates below 90%. However, these works

proposed multiple types of attack detection and attacker

identification algorithms.

Commonly, security in SDN is centralized, but nev-

ertheless, there are distributed-based proposals in the

literature. One reason to use distributed approaches is to

avoid control overhead that could saturate vital control

links. To address this shortcoming, Fawcett et al. [11]

proposed Tennison, a framework for scalable network

security based on multi-level flow monitoring. Distributed

approaches have been used also to detect anomalies in

local sub-networks [12]
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The main shortcoming in the state of the art is the

tradeoff between detection rate and solution complexity.

The proposals that attained high detection rate were not

suited for resource constrained networks, and proposals

that considered resource limitations did not attain high

detection rates. In this work we propose a DoS attack

detection algorithm for SDN resource constrained net-

works, lightweight enough to run on individual resource

constrained devices. Results show a detection probability

comparable to centralized proposals, but reducing packets

traffic, a key shortcoming in centralized solutions.

III. SDN SECURITY VULNERABILITIES

As explained in Section I, network control centraliza-

tion and planes separation are fundamental enablers of

SDN programmability. On the other hand, these traits turn

the network vulnerable to denial of service (DoS) attacks,

In SDNs, the attackers can reach the control plane

directly through the controller(s) or through network

devices. Control packets flooding attacks are common

since these packets have to reach the controller to be

processed, which can lead to processing and communi-

cation resources exhaustion. The attackers are also able

to mislead other network devices and induce them to flood

the network.

The SDN controller needs topology information to op-

erate. To this end, the network devices send neighborhood

information to the controller for configuration and control

decisions. In the case of wireless SDN networks, attackers

may hear this information and use it to mislead the

controller to take wrong routing decisions.

In the case of SDN resource constrained networks,

these attacks target specific characteristics. Attackers can

launch control plane attacks to saturate flow tables and

buffers of devices with low storage capacity. A saturated

node may not have space to forward new packets or

receive new routing rules. This will trigger a series

of packets retransmissions, which means more energy,

processing and communication resources consumption.

Since the network operation depends on the controller, if

this do not take actions, the network devices can exhaust

all their resources.

In a previous work [13], we analyzed the impact of DoS

attacks in SDWSNs. One of these attacks was the false

data flow forwarding (FDFF) attack.The FDFF attack

targets the controller via network’s devices. First, the

attacker sends data packets with unknown flow identifiers

to its neighbors. The neighbors receive the packet and

check the flow table to determine the action required,

without success, thus they ask a rule to the controller

by sending a flow rule request packet. The controller

receives this packet, calculates the rule and replies sending

a flow setup packet. This attack increases the control

overhead and the processing overhead on the nodes in the

neighborhood and on the controller. Also, after several

repetitions, this attack can saturate the neighbors’ flow

tables.

IV. DISTRIBUTED DOS ATTACK DETECTION

From [14] and [15] we know that our CP detection

algorithm, based on [16] [17], is able to detect FDFF

attacks with a probability over 0.96, and identify the type

of attack with a probability exceeding 0.89. In this work,

we go further and execute the CP detector in a distributed

approach, this means, running on individual nodes. Our

objectives are: first, to evaluate the performance of the

CP detector in resource constrained devices, and second,

study the tradeoff when running the detectors on every

node in the network and running it in clusters.

A. Change point detection

The problem formulation exploits recent results [16],

[17] on non-parametric real-time CP detection. We

adapted the hybrid offline-online proposal to an entirely

online detector [18].

To outline the online CP algorithm, let {Xn : n ∈ N}
be the time series of the metric monitored. Using Wold’s

theorem we can assume that, for X1, ..., XN , each sample

is expressed as Xn = µn+Yn, where {µn, n ∈ N} is the

mean of the time series and {Yn : n ∈ N} is a random

zero mean term, so that we can rewrite Xn as:

Xn =

{
µ+ Yn, n = 1, . . . ,m+ k∗ − 1

µ+ Yn + I, n = m+ k∗, . . .
(1)

where µ, I ∈ R
r, represent the mean parameters before

and after the unknown time of possible change k∗ ∈ N
∗

respectively. The term m denotes the length of an initial

period assuming no change on the mean value, i.e, µ1 =
· · · = µm. During this period, our detector “learns” in

real-time the statistics of the observed time series, and, the

mean value in particular. Finally, the statistical hypothesis

test is articulated as: H0 : I = 0, H1 : I 6= 0.

The online analysis is a stopping time stochastic pro-

cess defined as:

τ(m) =

{
min{l ∈ N : TSon(m, l)> F (m, l)},
∞, if TSon(m, l)< F (m, l) ∀l ∈ N,

(2)

where TSon(m, l) is the detector, calculated online for

every l, and F (m, l) is the given threshold; with prop-

erties limm→∞ Pr{τ(m) < ∞|H0} = α, ensuring that

the probability of false alarm is asymptotically bounded

by α ∈ (0, 1), and, limm→∞ Pr{τ(m) < ∞|H1} = 1,

ensuring that under H1 the asymptotic power is unity.

Under these conditions, F (m, l) = cvon,αg(m, l), where

the critical value cvon,α is determined from the asymptotic

distribution of the detector under H0 and the asymptotic

behavior achieved by letting m → ∞. The weight

function is defined as,

g(m, l) =
√
m

(
1 +

l

m

)(
l

l+m

)γ

(3)

where the sensitivity parameter γ ∈ [0, 1/2).
The online algorithm uses the standard CUSUM de-

tector [19], with test statistic denoted by TSct
on. Its cor-

responding critical value is denoted by cvcton,α and the



stopping rule by τct(m). The sequential CUSUM detector

is denoted by E(m, l) =
(
Xm+1,m+l −X1,m

)
.

The standard CUSUM test is expressed as:

TSct
on(m, l) = lΩ̂

−
1

2

m E(m, l), (4)

where Ω̂m is the estimated long-run covariance, defined as

in (4), that captures the dependence between observations.

Then, the stopping rule τct(m), is defined as:

τct(m) = min{l ∈ N : ‖TSct
on(m, l)‖1 ≥ cvcton,αg(m, l)},

(5)

where the ℓ1 norm is involved to modify TSct
on so that it

can be compared to a one dimensional threshold function.

The critical value, cvcton,α, is derived from the asymptotic

behavior of the stopping rule under H0:

lim
m→∞

Pr{τ(m) < ∞} (6)

= lim
m→∞

Pr

{
sup

16l6∞

‖TSct
on(m, l)‖1
g(m, l)

> cvcton,α

}
= α

(7)

B. DoS attack detection: implementation

In our distributed proposal, every node is able to

monitor a time series using its own metrics and execute

the CP detector algorithm, and also, each node is able to

send metrics samples to a cluster head (CH). In the second

case, the CH is in charge of constructing the time series

of the cluster and execute the detection algorithm. Such

approaches, in which hardware behavior is monitored to

identify anomalies, hints to further integration with other

approaches for the domain of physical layer security [20]

and introducing security controls at all layers.

A security application was programmed in every node.

This application manages the sampling and the detection

algorithm execution. The algorithm initiates constructing

a time series of 200 samples (m = 200), from where

it extracts the statistical information that will use during

the online CP detection. When the online phase starts,

the algorithm continues storing samples. In the case no

CP is detected during the first 50 samples (l = 50),

these samples are added to the 200 samples taken before

to extract new statistical information. This, process is

iterated every 50 samples, but, if a CP is detected, the

application rises an alarm and informs the controller about

the situation.

Since the FDFF attack increases the message exchange

activity, we decided to monitor the transmitting time on

every node, i.e, the number of ticks the radio module

remained turned on transmitting packets. From previous

results [15], we learned that γ = 0 and m = 200
maximize the detection rate. In this work we used these

values as well.

The security module was implemented in C language

using Contiki-3.0 [21], an operating system for WSN and

IoT, and IT-SDN [22], an SDWSN framework developed

by our reserch group. For transmitting time sampling

(a) FDFF detection: individual nodes

(b) FDFF detection: clusters

Fig. 1: Distributed FDFF attack detection

we used Energest [23], a power management module for

Contiki. For control packets sampling we implemented a

counter for this specific type of packets.

V. RESULTS AND ANALYSIS

Our analysis follows two approaches: detection perfor-

mance and implementation overhead. For detection per-

formance we analyzed the attack detection probability and

attacker identification probability. For implementation,

we analyzed the packets overhead and memory usage.

Both scenarios were simulated on Cooja [24], simulating

grid topologies of 100 nodes, where 10% of nodes are

attackers and emulating sky motes.

A. Detection performance

Fig. 1 shows the detection probability heatmap for both

the distributed and hybrid approaches. For the case where

each individual node is running the detector (Fig. 1a) the

attackers’ position is represented with an “A”. For the

case where the detector is running on clusters (Fig. 1b),

the heatmap shows also the number of attackers in each

cluster.

In Fig. 1a we observed that the detection probability

is higher around the attackers and around the controller,

with values between 0.93 and 1.00. This is the behavior

we expected since the FDFF attack targets the control

plane through the attackers’ neighbors, thus the attack

has a direct impact on the transmitting time mean value of

these nodes. The CPs detected on the nodes at two or more

hops from the attackers reflect the impact of this attack in



the whole network. The increase in the transmitting time

of these nodes is caused mainly by the increase in the

control packets forwarding.

The detection probability results for the clustering case

in Fig. 1b showed that in the clusters where there are one

or two attackers, the detection probability was equal or

above 0.97. In the clusters without attackers, the detection

probability was between 0.63 and 1.00. Similar to the case

running the detector on individual nodes, high detection

probability results in clusters without attackers mean that

this attack impacts on the whole network.

The detection probability results provided two impor-

tant insights: (i) we were able to detect an FDFF attack

when monitoring the transmitting time in either individual

nodes or clusters, and (ii) the detection probability was

lower on the nodes at two or more hops from the attackers.

Based on (ii), we implemented an attacker identification

algorithm for the case running on individual nodes. First,

every time a node receives a data packet with an unknown

flow, it saves the identification address of the sender in

a vector for suspects. Then, if a node detects a CP on

the transmitting time, it sends an alarm to the centralized

security module and informs the address of a suspect.

To determine the suspect, the node checks the last ten

addresses saved in the vector and choose the one with

the highest frequency. We chose ten samples because,

according to [15], the slower detection when γ = 0 takes

around ten samples. When the security module receives

the alarm, sets a counter for every suspect. If the counter

is equal to the number of neighbors of the corresponding

suspect, the suspect is declared as attacker.

The heatmap in Fig. 2 showed that using this algorithm

we were able to correctly identified all the attackers with

a probability equal or above 0.93. In addition, the false

positives were equal to zero. On the other hand, this was

possible only running the detector on every individual

node. In the clustering approach, groups without attackers

inside also obtained high detection rates, which excluded

the possibility of tracking the attacker based only on the

alarm received from the cluster.

B. Implementation comparison

In the clustering approach, the cluster head is in charge

of constructing the time series for the whole cluster and

execute the CP detector. To accomplish this, all nodes

have to monitor their transmitting time and send a sample

to the cluster head, periodically. The cluster head sums

up all the samples received per period and the result is

a new sample of the cluster’s time series. Conversely,

when the CP detector is running on individual nodes, each

one constructs its own transmitting time time series and

executes the CP detector.

The clustering approach has the benefit that it reduces

the memory and the processing overhead of the network,

since the detector is running on the cluster heads only. On

the other hand, it increases the packets traffic, since all

nodes now have to periodically send a transmitting time

Fig. 2: Attacker identification probability:

sample to the cluster head. In terms of memory, the time

series construction and the CP detector implementation,

for one metric, represents 5956 B. In our specific case

using sky motes, this value represents 12.40% of the total

memory.

One security risk when using clustering approaches, is

the possibility of the cluster head to be an attacker. One

way to solve this is using secure cluster head selection al-

gorithms [25], but this requires more memory, processing,

and communication resources, which are already scarce

in our case. One benefit of running the detector on every

node is that we avoid this risk since the attack detection

does not depend on one or few nodes only.

VI. CONCLUSION

In this work we propose a distributed DoS attack

detection for software-defined resource constrained wire-

less networks, based on CP detection. Our proposal is

lightweight enough to run on very limited devices and

detect FDFF attacks with a probability between 0.93
and 1.00, comparable to detection results in centralized

proposals.

This proposal was evaluated running the detector on

every node and running the detector in clusters. Results

showed that both approaches obtained high detection

rate. Additionally, we were able to identify the attackers

without increasing the packets traffic when running the

detector on every node. Comparing the implementations

of both approaches, the clustering approach requires less

memory on every node, while running the detector on

every node reduced the packets traffic.

As future work, we envisage to develop a full imple-

mentation of distributed and centralized approaches and

compare their performance based on security and network

performance metrics.
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