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ABSTRACT

Some 6G use cases include augmented reality and high-
fidelity holograms, with this information flowing through the
network. Hence, it is expected that 6G systems can feed
machine learning algorithms with such context information
to optimize communication performance. This paper focuses
on the simulation of 6G MIMO systems that rely on a 3-D
representation of the environment as captured by cameras
and eventually other sensors. We present new and improved
Raymobtime datasets, which consist of paired MIMO chan-
nels and multimodal data. We also discuss tradeoffs between
speed and accuracy when generating channels via ray-tracing.
We finally provide results of beam selection and channel es-
timation to assess the impact of the improvements in the
ray-tracing simulation methodology.

Index Terms— Ray-tracing, MIMO, 6G, channel estima-
tion, beam selection.

1. INTRODUCTION

The 6G systems are expected to support applications such as
augmented reality, multisensory communications and high-
fidelity holograms [1]. This information will flow through the
network and it is expected that 6G systems will use machine
learning (ML) and, more generally, artificial intelligence (Al),
to leverage multimodal data and context awareness to opti-
mize performance [2]. This requires a simulation environ-
ment that is capable not only of generating communication
channels, but also the corresponding sensor data, matched
to the scene. Such simulation that integrates communica-
tion networks and artificial intelligence immersed in virtual
or augmented reality can be computationally expensive, espe-
cially for time-varying digital worlds.

This paper focuses on the simulation of 6G MIMO sys-
tems that rely on a 3-D representation of the environment
as captured by cameras and, eventually, additional modali-
ties of data to make communications more efficient. This re-
quirement precludes the adoption of a class of modern chan-
nel models that are not related to any virtual world, such as

the ones presented in [3,4]. The motivations for using ray-
tracing (RT) in this work are aligned with the trends detailed
in [2]. Also, the paper discusses tradeoffs between speed and
accuracy when generating channels via RT. Controlling these
tradeoffs by tuning the simulations is important to facilitate
research in practical ML-based optimizations of the 6G phys-
ical layer. Investigations in this area still need to depart from
using relatively small datasets, to benefit from deep learn-
ing and other techniques that perform best in the large data
regime.

Due to characteristics such as large antenna arrays in 6G
ultra-massive MIMO systems and higher frequency bands,
6G measurement campaigns will require expensive equip-
ment in order to be performed. Proper simulation method-
ologies for generating communication channels are important
to generate abundant data in controlled conditions and fos-
ter the adoption of ML/AI for optimizing the 6G physical
layer. Given the availability of a virtual world representa-
tion in some 6G use cases, this paper concerns frameworks
based on RT that support Communication networks and Arti-
ficial intelligence immersed in VIrtual or Augmented Reality
(CAVIAR). The contributions of this paper are:

* Two new and improved Raymobtime datasets [5] that
maintain aligned the orientations of the MIMO antenna
array and the vehicle in which the array is installed.

* Support to automatically generate MIMO channels
without resorting to the geometric channel model,
which assumes planar wave propagation and may be
inadequate to 6G large antenna arrays.

* Source code and datasets to reproduce the results of this
paper.!

The paper is organized as follows: Section 2 describes
characteristics and requirements of CAVIAR frameworks.
Section 3 explains the improvements in the RT simulation
methodology. Section 4 presents numerical results and their
discussion. Finally, Section 5 concludes the paper.

"https://github.com/lasseufpa/SSP-Raymobtime.



2. CAVIAR SIMULATION REQUIREMENTS

There are many applications of augmented and virtual reality,
for instance, in education and gaming. We are interested in a
special class of such applications, which incorporates a com-
munication subsystem and also AI/ML. A CAVIAR frame-
work is based on the availability of a description I'; of a dig-
ital world at discrete time ¢ € Z. In this paper, we focus on
a concrete example in which the communication subsystem
is a MIMO digital transmission model and AI/ML is used for
beam selection and channel estimation. The nomenclature for
this MIMO use case is discussed in the next paragraphs.

For a given time instant (scene), multicarrier (OFDM,
etc.) MIMO systems require a set H = {Hx},k=1,..., K
of Nyx X Nix complex-valued matrices, where k is the sub-
carrier index, and N, and N, are the number of antenna
elements at the receiver and transmitter, respectively. For nar-
rowband systems, K = 1 and H = {H}. For time-varying
discrete-time channels, H, = {H,} denotes the channel
at time t. Given a sampling interval T and an episode with
S scenes, the sequence [H1,...,Hs] indicates the channel
evolution over time, as defined in the Raymobtime methodol-
ogy [5], and suffices to describe the relations among channel
inputs and outputs when conventional signal processing is
adopted.

A CAVIAR simulation requires not only the matrices
in H; but also the corresponding parameters set P, =
{©p},p = 1,...,P, with P being the number of dis-
tinct sets of parameters (or features) extracted from the scene
description I'y from one or more sensors. For instance, P = 1
was adopted in [6], which assumed the raw data from a LI-
DAR sensor was converted to features O; 1. In [7], P = 3
distinct feature modalities were adopted: ©, ; with positions
from a GNSS (GPS) receiver, ©, 2 with resampled images
from RGB cameras and ©; 3 with features from LIDAR [8].

As depicted in Fig. 1, the paired information (H;, P;) en-
ables the generation of AI/ML models based on supervised
learning applied to tasks such as power allocation or channel
estimation. Assuming the latter, during its test stage (Fig. 1b),
the trained AI/ML model estimates the channel 7:lt based on
features P, extracted from a real world representation I,.

The 6G AI/ML-based algorithms will leverage additional
context information and the CAVIAR framework must sup-
port pairing channel datasets with other data modalities.
A suitable dataset for CAVIAR follows the Raymobtime
methodology and organizes the data in E episodes, each one
with a sequence [(H1,P1), ..., (Hs, Ps)] of paired data, in
the sense that all information in (#;, P;) corresponds to the
scene at time ¢ in the virtual world. Each episode can consist
of a smooth trajectory or snapshots spaced apart in time.
The first category of dataset is useful for applications such as
channel tracking, in which previous AI/ML decisions influ-
ence the current one. For trajectories, 1" is relatively small,
the scenes are similar and the channels #; present significant
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Fig. 1. Example of CAVIAR framework for applying AI/ML
to 6G MIMO systems based on multimodal data during: a)
the training and b) test stages. For concreteness channel esti-
mation is assumed and during the test stage, the AI/ML model
generates a channel estimate ’}:{t based solely on features 751&
extracted from real-world sensors.

correlation. In contrast, datasets with snapshots are suitable
to problems such as initial channel acquisition and are often
designed with 7' large enough to have diverse scenes (and,
consequently, a variety of channels). For instance, dataset
s005 has 100K MIMO channels of trajectories, with each
episode containing 80 scenes spaced by 7" = 10 ms. On
the other hand, dataset sO08 has snapshots with each episode
containing just 1 scene. Table 1 shows some characteristics
of some Raymobtime datasets.

In order to develop CAVIAR frameworks for 6G, it is
important to address issues related to the tradeoff between
computational cost and realism of RT simulations. The next
section presents two improvements toward more realistic
datasets for AI/ML involving MIMO channels.

3. METHODOLOGY IMPROVEMENTS

Regarding the MIMO channel generation, the variety of use
cases in 5G and 6G promote a large number of deterministic
and stochastic channel models, such as: measurement-based,
map-based, point-cloud and geometry-based stochastic mod-
els [2]. By definition, the CAVIAR framework relies on a
description of a digital world I';, and ray-tracing models fit
naturally given that the MIMO channels H; are obtained from
the corresponding 3-D scene.

As applied to channel modeling, RT aims at predicting the
effect of buildings, vehicles, topographic features and other
obstacles on the propagation of electromagnetic fields. The
geometry and materials that constitute a given 3-D environ-
ment are defined prior to the simulation. Then, the transmit-
ters and receivers are positioned inside in the scene. The al-
gorithm shoots rays that realistically propagate through the
geometry using the uniform theory of diffraction (UTD) and
is able to calculate each ray paths electromagnetic fields. The
information from all ray paths is then processed to provide pa-
rameters such as received power, path loss, and MIMO chan-



Table 1. Some Raymobtime datasets and the new ones: sO11 and s012.

Frequency Number of receivers Time between Time between Number of Number of scenes Number of valid
Dataset name . . .
(GHz) and type scenes (ms) episodes (s) episodes per episode channels
s001 60 10 Mobile 100 30 116 50 41K
s005 2.8 and 5 10 Fixed 10 35 125 80 100 K
s006 28 and 60 10 Fixed 1 35 200 10 20K
s008 60 10 Mobile - 30 2086 1 11K
sO11 (new) 60 10 Mobile 500 6 76 20 13K
s012 (new) 60 10 Fixed 500 6 105 20 21K

nel matrix. In this work, Remcom’s Wireless InSite (WI) RT
software [9] was adopted given its widespread use [2].

Given a RT simulator, among many existing alterna-
tives [2], this paper discusses three procedures for generating
MIMO channels that have been used in Al applications. The
first one consists in incorporating the antenna array(s) within
the RT simulation. The second alternative uses only SISO
systems with isotropic antennas, and the geometric chan-
nel model [10, 11] is then used in a post-processing step to
convert the obtained RT information into MIMO channels.
In [12], these two alternatives are contrasted for different
scenarios, and here they are called MIMO-RT and SISO-RT-
GEO, respectively. Assuming a narrowband channel at time
t, the SISO-RT-GEO channel is obtained after the RT finishes
via the geometric channel as follows [11]:

L
H; = \/Ni Ny Y ovan(o7,0)all (67,07), (1)

{=1

where the number L of multipath components (MPCs), the
gain oy and the angles ¢ and 6 of the steering vectors ay
and ay, are all determined by RT using isotropic antennas at
transmitter and receiver, as explained e. g. in [12].

When using the WI RT simulator, creating a script repeat-
edly obtain SISO-RT-GEO channels is easier than MIMO-RT.
For SISO-RT-GEO, the RT data required by Eq. (1) is written
in ASCII text file (extension p2m) and can be conveniently
post-processed. However, when MIMO-RT is adopted in WI,
the text files are not generated due to the large amount of data
(received power, complex impulse response, angle of arrival
and departure, etc.), and SQLITE files are used instead. For
this paper, we had then to write new Python code to repeat-
edly run a simulation with antenna arrays, properly retrieve
the results from the SQLITE file and calculate the MIMO-RT
channel matrix via another post-processing step.

The third alternative addressed here is to adopt the ge-
ometric channel of Eq. (1) but obtain the parameters from
random distributions instead of RT. We call this procedure
RDM-GEO and it is used, e. g., in [13-15] to assess ML so-
lutions for channel estimation in mmWave MIMO systems.
In particular, L = 3 and 2 MPCs are used in [13] and [15],
respectively, while six clusters with L = 10 MPCs each are
used in [14].

With respect to accuracy, the geometric channel model,
and consequently both SISO-RT-GEO and RDM-GEO, as-
sume planar wave propagation [16], which may be invalid,
for instance in 6G ultra-massive MIMO [17]. MIMO-RT is
not limited by this assumption [9]. Regarding computational
complexity, SISO-RT-GEO is faster than MIMO-RT and con-
sumes less storage space. RDM-GEO is much simpler than
both, given that it does not require a RT simulation. There-
fore, in the next section, we compare the three procedures
and their impact in 6G applications that rely on the generated
MIMO channels.

Fig. 2. Illustration of maintaining the correct orientation of
the array (ULA with 4 antenna elements in this example)
when the orientation of the mobile receiver (vehicles, repre-
sented by rectangles) is changed.

Another improvement in the RT methodology was to
maintain aligned the orientations of the MIMO antenna array
and the vehicle in which the array is installed. Fig. 2 depicts
the issue. As mobile objects (vehicles, people, etc.) move in
the virtual world, previous versions of Raymobtime datasets
were not updating the orientation of the antenna array. Now,
this is done for both SISO-RT-GEO and MIMO-RT, and will
be evaluated with ML experiments.

4. NUMERICAL RESULTS

The first results concern a comparison of the computational
cost when executing MIMO-RT and SISO-RT-GEO. As de-
scribed in Table 2, we used datasets s011 and s012 assuming



Table 2. Computational cost when executing MIMO-RT and
SISO-RT-GEO.

Type of receiver Modeling Ouféﬁ gfes Si":;f:"" POSL"?:‘)mC:SSing
_ SISO-RT-GEO 1 (1.04MB) 1(1569s) 1(0355)
Fixed (s012) MIMO-RT 118 x 22x 78x
) SISORT.GEO 1(223MB) 1(2952s) 1(0.715)
Mobile (s011) MIMO-RT 77 x 1.4 x 5x

uniform linear array (ULA) with 64 antenna elements on the
base station (BS) and 8 on the user equipment. The simula-
tions were performed on NVIDIAs GeForce RTX 2070 and
RTX 2080 super, for s012 and s011, respectively. The an-
alyzed parameters were the RT simulation time and size of
each simulation snapshot. The values in Table 2 represent
an average among the simulations for each channel in the
dataset, and the MIMO-RT results are relative to the SISO-
RT-GEO results. For instance, when using s011, the RT sim-
ulation time was 1.4 longer for MIMO-RT than for SISO-RT-
GEO, with the latter one corresponding to a duration of 29.52
seconds in average.

The results in Fig. 3 are for beam selection, which is al-
ready a classical application of ML to the physical layer [2,5].
In this experiment we followed the procedure proposed in [6],
and dense neural networks (NNs) were used to select the best
beam pair among 256 possible pairs of indices of a codebook,
assuming an analog MIMO architecture. The input to this
network are features ©, ; extracted from a LIDAR simulator
for two plots. The other two plots are obtained with a distinct
NN architecture, which uses multimodal (MM) data (LIDAR,
position, and images) as inputs [7]. Each of these two ar-
chitectures were used with two distinct versions of the s008
dataset: one with the new and correct orientation (CO), while
the other antenna arrays had a fixed orientation (FO) regard-
less any vehicle rotation. The top-K accuracy was adopted as
figure of merit, and the abscissa indicates the K values. It can
be seen that correcting the orientation impacted the NN with
a multimodal input but not the one that relies on the LIDAR
only. An interesting result is that the multimodal input was
beneficial for large values of K, and allowed the NN classi-
fier to reach 100% of accuracy when K > 30. The details
about the NNs and other parameters can be found in the pro-
vided source code.

Fig. 4 depicts the results of channel estimation using
MIMO systems adopting analog to digital converters with
resolution of a single bit. For this task, we used convolu-
tional NNs as described in [18] and the companion source
code. ULAs with N, = 64 and N, = 8 antennas were
adopted. The normalized mean-squared error (NMSE) [18]
is the figure of merit. We first compared SISO-RT-GET with
(CO) and without (FO) orientation correction, and both led
to similar results. We then trained and tested a NN with data
using MIMO-RT, which led to a significantly lower NMSE.
For instance, the NN trained and tested with the MIMO-
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Fig. 3. Top-K accuracy of beam selection for NNs with dif-

ferent inputs — LIDAR or multimodal (MM) — and using
datasets with corrected orientation (Co) or not (Fo).

RT dataset outperforms the SISO-RT-GEO FO by 10 dB at
SNR = 0. Two versions of RDM-GEO were also compared.
The first version, RDM-GEO-HARD, used MIMO channels
composed by L = 2 MPCs with gains obtained from Gaus-
sian distributions and all angles from uniform distributions
with support [0,360[ degrees. The RDM-GEO-EASY had
the angles distributed with an angular spread of 3 degrees
around nominal values. Fig. 4 shows the strong impact of the
distributions on the ML result.
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Fig. 4. Channel estimation based on 1-bit MIMO systems.

The presented results and the ones in literature indicate
that the datasets must be carefully chosen when used to as-
sess ML-based approaches. For example, in [19,20] the data
from a single indoor scenario is shuffled and split into train-
ing and test sets. This leads to a situation similar to speaker
dependencies in automatic speech recognition (ASR). For in-
stance, as discussed in [21], the assessment of a ML algorithm
on the vowel dataset uses a test set with speakers that are not
part of the training set, otherwise overly optimistic results are
obtained.

5. CONCLUSIONS

This paper presented two improvements in generating datasets
for 6G MIMO systems that rely on ray-tracing and give sup-
port to multimodal paired data. It also introduced the concept
of CAVIAR simulations. The results with two distinct ap-
plications of ML, beam selection and channel estimation,
allowed to observe the impact of the improvements in the



ray-tracing simulation methodology, and the importance of
proper datasets when evaluating ML-based algorithms to
avoid unfair comparisons to conventional signal processing.
Besides, aiming at realistic simulations is the natural path to
gain better understanding on how ML/AI can make commu-
nication systems more efficient.
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