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Abstract—Differentiable particle filters are an emerging class
of particle filtering methods that use neural networks to con-
struct and learn parametric state-space models. In real-world
applications, both the state dynamics and measurements can
switch between a set of candidate models. For instance, in target
tracking, vehicles can idle, move through traffic, or cruise on
motorways, and measurements are collected in different geo-
graphical or weather conditions. This paper proposes a new dif-
ferentiable particle filter for regime-switching state-space models.
The method can learn a set of unknown candidate dynamic and
measurement models and track the state posteriors. We evaluate
the performance of the novel algorithm in relevant models,
showing its great performance compared to other competitive
algorithms.

Index Terms—Sequential Monte Carlo, differentiable particle
filters, regime switching systems.

I. INTRODUCTION

Inferring unknown quantities based on sequential observa-
tions is an important task in many real-world data analysis
problems. One common example is Bayesian filtering, which
aims to sequentially estimate posterior distributions of hidden
states given observations in a state-space model [1]]. Sequential
Monte Carlo methods [2]], [3]], a.k.a. particle filters (PFs), are
a class of Monte Carlo algorithms where the posteriors are
recursively updated and approximated by a set of particles,
i.e. weighted Monte Carlo samples. Since the seminal work
on the bootstrap particle filter (BPF) [4], many variants of
particle filters have been proposed, such as the auxiliary
particle filter (APF) [5]-[8]], the Gaussian sum particle filter
(GSPF) [9], [10], and the Rao-Blackwellised particle filter
(RBPF) [11], [12f]. They are designed for non-linear non-
Gaussian filtering tasks where the posteriors are analytically
intractable and have been widely used in various real-world
applications including geoscience [[13[], robotics [14], control
systems [[15]], and machine learning [16].

Particle filters require the knowledge of state evolution (de-
scribed by a dynamic model) and the link between the hidden
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state and an observation (via a measurement model). It is often
non-trivial to specify these models in real-world applications
where complex dynamic patterns and high-dimensional obser-
vations exist [17]. An added layer of complexity is that both
the state dynamics and observations can switch between a set
of candidate models [18[]-[24]. For example, a manoeuvring
vehicle can exhibit a mixture of dynamic patterns ranging from
moving through city traffic to cruising on motorways. Camera
observations in autonomous vehicles are affected by light and
weather conditions. This poses an interesting question on how
to construct state-space models and perform particle filtering
that account for a mixture of switching sub-models.

One class of solutions is to employ a bank of particle filters,
one for each candidate model, before fusing the results of each
filter [20]—-[23]]. They can incur high computational complexity
when the number of candidate models is high. Another direc-
tion is to construct regime-switching particle filters [24]] that
augment the state space with the regime index while allowing
for a flexible regime index proposal distributiorﬂ Both classes
of methods commonly assume that candidate models either
are pre-defined [20]-[24]] or follow specific model structures
so that model parameters can be estimated analytically [25],
[26]. This restricts their applicability and effectiveness in real-
world filtering tasks.

Differentiable particle filters (DPFs) are a family of re-
cently emerging particle filtering approaches characterised
by building and learning components of particle filters with
neural networks through automatic differentiation [27]-[32].
Several variants [27], [28] adopt Gaussian dynamic models
due to the simplicity of their differentiable implementations
via the reparameterisation trick [33]]. Normalising flows [34]]
have been adopted to construct more complicated dynamic
models [31]]. For measurement models, the conditional like-

INote that we use the terms “regime”, “pattern”, “candidate model”, and
“sub-model” interchangeably throughout the paper.



lihood of an observation can be obtained as a direct neural
network output [27]], [28]], feature similarity [35], or derived
using a conditional normalising flow [36]]. To the best of
our knowledge, existing differentiable particle filters have not
considered dynamic and measurement models with switching
regimes. While generative models such as normalising flows
are expressive in theory, it is unclear whether they are effective
in practice when coupled with differentiable particle filters in
filtering tasks with a set of candidate models.

In this paper, we propose a new differentiable particle
filter algorithm able to learn the models that govern the
state dynamics and the observations in regime-switching state-
space models. The resulted regime-switching differentiable
bootstrap particle filter combines the best of both worlds —
it inherits the desired properties of regime-switching particle
filters including the flexibility to switch between candidate
models without running separate filters, with the added benefit
to learn unknown candidate models via the optimisation of
neural networks. We demonstrate its effectiveness in non-linear
filtering simulations with switching regimes.

The rest of the paper is organised as follows. Section |II| for-
mulates the problem. Related work including regime switching
particle filters and differentiable particle filters is introduced
in Section We present the regime-switching differentiable
bootstrap particle filters in Section Section |V| provides
simulation results and we conclude the paper in Section

II. PROBLEM FORMULATION

We consider nonlinear filtering tasks with switching dy-
namic and measurement models defined as follows [24]:

mo ~ m(mg), (D
my ~ ¢(mt|m1:t71) » 2
so ~ f1(s0) 3
st ~ fo,,, (St|st—1) (4)
Ot ~ 96,,, (0¢lse) o)

where t € Nt represents the time index, 6,,, € ©
is the parameter set of the m;-th regime of the dynamic
system. The regime indices {m;};>1 take values from a
discrete space M := {1,---,Np,}, and are distributed
according to a categorical distribution m; ~ C(p(m; =
1lmy.4—1), -+ ,p(ms = Np|mq.i—1)). In a time-varying latent
Markov process {s;};>1, the ds-dimensional hidden state of
interest s; is generated by a mixture of N, or less dynamic
patterns. The d,-dimensional observation o; is generated by a
measurement model defined by ge,, (0:|s:). The observations
{0¢}+>1 are conditionally independent given the latent process
{st}t>1. We follow the convention that vectors and matrices
are denoted using bold fonts while scalars are denoted in
normal font letters. The system diagram is shown in Fig. [I]
Our goal is to jointly learn the parameter set 0 = UNL’LlO
and track the posterlor distributions p(so.¢, mMo.¢|01:¢) of hid-
den states sg; = {sg, --,s:} and model indices mq.
{mg,--- ,ms}, given a collection of observations 0.

{017"' ;Ot}~

L

Fig. 1. Diagram of a regime switching state-space model with a period of T'.

III. RELATED WORK
A. Regime-switching particle filters

The regime switching particle filter (RS-PF) was proposed
in [24] for general regime switching systems (Equations (I))-
(). The joint posterior can be factorised as [24]:

p(SO:tamO:t|01:t) X p(SO:tfla mo:t71\01;t71)P(0t|St, mt)
X p(se|se—1, me)p(me|mo.—1) . 6)
The unnormalised importance weight of the i-th particle
{sO ' m((fl} is computed as:

(1)
i Spa, Mos|O
wt()—_p(?;—M7 (7
q(sOt,m0t|01 ”

where the joint proposal distribution is factorised by:
q(So:ts Mo:¢|01:¢) = q(So:t—1, Mo:t—1]01:4-1)
X q(st|st—1, 0, me)g(me[mos—1).  (8)

If bootstrap particle filters are adopted for each candidate
model, i.e., q(s¢|st—1,m¢,0¢) = p(s¢|si—1,m¢), the compu-
tation of the importance weight is simplified to:

(3) p(mt)|m0t 1) (Ot\sgl)amgl)) (i)
wy ' X

wy . 9)
Q(mf |m0t 1) o

Three methods were proposed to construct the regime in-
dex proposal distribution g(m¢|mo.s—1) [24]: (1) a discrete
unlform distribution, ie. g(m; = jlmii—1) = Ni for

= {1,---,N,}; (i) a bootstrap method, i.e. g(m; =
j|m0;t,1) = p(mt|m0.t,1) for each j; (iii) a deterministic
method that assigns an equal number of particles to each
candidate model.

B. Differentiable particle filters

Differentiable particle filters [27]-[32] apply neural net-
works to construct dynamic and measurement models of
particle filters in a data-adaptive way, i.e., the dynamic and
measurement models are learned from data using machine
learning models, e.g. neural networks. The forward propa-
gation of a differentiable bootstrap particle filter [28] at a
single time step is illustrated in Algorithm Functions kg (-)
and lg(-), which are the particle proposer and the observation
likelihood estimator, respectively, are parameterised by neural
networks. The dynamic model constructed with kg(-) takes an
auxiliary noise vector €(?) as part of its input for optimisation



Algorithm 1: Forward propagation of a differentiable
bootstrap particle filter at time step ¢

Algorithm 2: Regime switching differentiable boot-
strap particle filters (RS-DBPFs) framework

IHPUt {St 17w1£ )1) (i)}l'\2)17et7k97l9
Output: {s\"”, w("}\7,

1 Sample s( R
(5~ Fo(slsi”,) = kofsl?
2 Compute observation likelihood
{go(edlsi”) = lo(er, i)}

3 Evaluate importance weights {wi R wt(i_)1 gg(et|s§i))

according to the dynamic model
@1 Ne .
e

Np .
i=15

with the reparameterisation trick. The observation o; can be
encoded by a neural network hg(+) to generate a feature vector
e, i.e, e, = hg(o;). Objective functions £(6) employed
by differentiable particle filters can be classified mainly as
supervised losses [27], [28], [31], [36]], where the ground truth
state information is available for training, and semi-supervised
losses to leverage observations with unknown ground truth
state information [35].

IV. REGIME-SWITCHING DIFFERENTIABLE BOOTSTRAP
PARTICLE FILTERS

We now introduce the proposed regime-switching differ-
entiable bootstrap particle filter (RS-DBPF). We show in
Algorithm [2] how to integrate the regime-switching system into
the design of a differentiable bootstrap particle filter. Its key
steps are clarified as follows. ,

At the beginning of each time step, the regime index mﬁ” of
the ¢-th particle is sampled from the model proposal distribu-
tion g(m¢|mo.+—1). Three options of ¢(-) were described in the
end of Section [[IIAl Note that the filter is run with a constant
number of particles [V,, although adaptive mechanisms could
be readily used [37]], [38]]. A forward propagation of the differ-
entiable bootstrap particle filter (Algorithm [T]) is performed to
sample the state component sgz) with a neural network-based
particle proposer kgm(.) () 127], [28], where 0. @ denotes the

(@ )—th candidate model:

)= kgm(i) (Sgi)l’ e(i)) :

The auxiliary noise term € ~ A(04,, 1,,) where 04, denotes
a ds-dimensional zero vector and I;, is a ds x dg identity
matrix. The likelihood of the i-th particle is computed as [27]],
[28]:

plolst”,m (11)

Assummg knowledge of the model switching distribution
p(m )|mgi 1), the unnormalised importance weight wt( D s
updated following Equation (9):

parameter set of the m,

si’ ~ fo_ o (51 Isi, (10)

) =0, elsi”) =l (00,51").

o P(m§1)|m§2_1)ge o (oclsi)

Wy~ = Wy _q

(12)
q(my ‘ml it— 1)
Finally, a resampling step is performed if the effective
sample size (ESS) is smaller than a threshold [39].

Input: 7, 7(mo), p(so), Np, T, o1.1, ke, lo, ESSttres, £

1 Initialise parameter sets 6; C 0 for j = {1,--- , N;»} and
set learning rate 7);
2 while 0 has not converged do
3 Draw regime index {m] } m(mo);
4 Draw samples {s(()")}i:1 ~ u(so)
5 Set importance weights {w’ }Z L=
6 fort=1,2,---,T do
7 Draw regime index from the model proposal
distribution {mii) ~ q(mt\m(lfifl)}ﬁ’l;
8 Sample S,Ei) as in Eq. (I0);
9 Estimate observation likelihood g0 (o: \sgi))
according to Equation (TT); '
10 Calculate importance weights
p(miImil}_1)ge (ﬁwhW)
{7(1 = wy >1 q(m“)\m“} 1) badhs
11 Normalise weights {w") = ENP o }Z -
12 Compute the effective sample gfze
ESS: = S
13 if ESS; < ESS[hreS then
14 Resample and update {m1 b sg’,{ 2, according
to 1mp0rta;n)ce welgh]E]s wg RF
15 Update {w;” = 1.7
16 end ! { " e
17 Calculate the estimate §; = 1 E ;
18 end
19 Calculate the total loss £(0);
20 Update parameters by gradient descent
0; =0; —nVe, L for j = {1, ,Nu};
21 end

V. SIMULATIONS AND RESULTS

We adopt the synthetic data experiment explored in [24].
It includes a mixture of eight candidate dynamic and mea-
surement models with small variances for each candidate
model. This leads to multi-modal posterior distributions that
are challenging for filtering algorithms to explore all modesﬂ

A. Experiment setting

The j-th candidate model (5 € {1, --
St = a;jSi—1 + b + uy

M
J{%Z%ﬂ&+%+%

The number of time steps for one trajectory is 1T =
50. The initial state s; € R is sampled from a contin-
uous uniform distribution 4/[—0.5,0.5] whereas the index
of the initial sub-model mgy is sampled from a discrete

,8}) is as follows:

13)

uniform distribution 4{1,8}. Coefficients [a1, - ,as] =
[-0.1,-0.3,-0.5,—0.9,0.1,0.3,0.5,0.9], [by,---,bs] =
[07_2723 _470727_274]’ [cly"' 708] = [a17"' ua8]s and

2Code to reproduce experiment results is available at https:/github.com/
WickhamLi/RS-DBPF


https://github.com/WickhamLi/RS-DBPF
https://github.com/WickhamLi/RS-DBPF

[di,--+ ,dg] = [b1,--- ,bs]. The noise terms u; ~ A(0,0.1)
and vy ~ N(0,0.1). The overall dataset includes 2000 trajec-
tories (1000 for training, 500 for validation, 500 for testing).

The regime switching dynamic follows either a Markovian
dynamic or a Pdlya urn dynamic. In the Markovian switching
system, p(my|mo..—1) = p(my|m¢—_1). Following the example
in [24], we set the transition probability matrix P as:

080 0.15 p p
p 080 015 --- p
P=": Sl (14
p .- p 080 0.15
0.15 »p p 080

where p = 5. Py £ p(my = klme—1 = j).

The Poélya switching model is a more general dynamic
process to describe long-term time dependencies between
candidate models:

th;lo 1y + Br

p(my = klmo.—1) = N ) ) (15)
> (20 Lir + B5)
where k = {1,---, Ny} denotes the regime index, 15, =

1(m, = k) is an indicator function on whether the system is
switched to the k-th model at time step 7. (i is set to 1.

B. Parameter values for the filtering algorithms

We compare the proposed regime-switching differentiable
bootstrap particle filter (RS-DBPF) with a multi-model particle
filter (MM-PF) [20], a differentiable bootstrap particle filter
(DBPF) [28], and a regime-switching particle filter (RS-
PF) [24]. 200 particles are employed for training and validation
to reduce computational costs. 2000 particles are used to
perform filtering with testing trajectories for smooth estimated
trajectories. Particles are initialised from a uniform distribution
U[—0.5,0.5]. The RS-DBPF and the RS-PF adopt a uniform
distribution for the regime index proposal g(m;|mi.—1) to
evaluate the robustness of the filters when the regime index
proposal deviates from the regime switching dynamic.

For the DBPF and the RS-DBPF, the particle proposer kg
adopts a 2-layer neural network with 8 neurons in the hidden
layer. A Gaussian kernel with a learnable kernel parameter
is used to generate conditional likelihoods lg, by comparing
the observation with an embedding generated from the state
through a 2-layer neural network with 8 neurons in the hidden
layer with a tanh-activation function. A supervised loss based
on mean squared errors between the ground truth and predicted
states is adopted. Stochastic gradient descent with a momen-
tum factor of 0.9 is used as optimiser. We choose learning
rates 17 € {0.01,0.02,0.05,0.1} with a step-wise decay that
halves the learning rate every 10 epochs for the DBPF and the
RS-DBPF based on best validation performance. The epoch
number is set to 60. The mini-batch size is set to 100.

C. Tracking performance

We compute root mean squared errors (RMSEs) of predicted
states for each test trajectory and report error statistics among

TABLE I
AVERAGE, BEST, AND WORST RMSES WITH A MARKOVIAN DYNAMIC.
Average Best Worst
MM-PF (baseline) 1.9016 | 0.5601 | 9.4422
DBPF (baseline) 1.5176 | 0.5085 | 9.5790
RS-DBPF (proposed) 0.8325 0.3779 | 8.6401

[ RS-PF (oracle) | 0.4627 | 0.2570 | 2.2972 |

TABLE II
AVERAGE, BEST, AND WORST RMSES WITH A POLYA DYNAMIC.
Average Best Worst
MM-PF (baseline) 2.1334 0.6409 | 5.3060
DBPF (baseline) 1.6144 0.4754 | 5.4350
RS-DBPF (proposed) 0.8394 0.3817 | 2.5627

[ RS-PF (oracle) | 0.6399 | 03171 | 2.0383 |

500 test trajectories in TABLEs [l and [ll The proposed RS-
DBPF leads to significantly smaller average RMSEs compared
with the baselines including the DBPF and the MM-PF. Fig. 2]
plots the absolute errors along each time step averaged over all
the test trajectories for the Pélya urn switching model. Note
that both the RS-DBPF and the DBPF assume no knowledge
of the candidate models, while the MM-PF and the RS-PF
have access to the ground truth candidate models. The RS-PF
can further utilise the regime switching dynamic so it is served
as the oracle model to generate optimal filtering performance
as a benchmark. The poor performance of the MM-PF is due
to its algorithmic assumption that there is no regime switching.

—7— MM-PF RS-PF

DBPF —#— RS-DBPF —&—

ol :
W RN

1.75
1.50
1.25
1.00 4
0.75 1
0.50 1
0.25 1
0.00

absolute error

0 10 20 30 40 50
t (time step)

Fig. 2. Mean absolute errors at each time step (Pdlya urn dynamics).

VI. CONCLUSION

In this paper, we address filtering tasks where a mixture of
unknown candidate dynamic and measurement models exist.
The proposed RS-DBPF can flexibly switch between candidate
models, i.e. regimes, while simultaneously learn the candidate
models without prior knowledge of their functional forms.
Numerical simulations show that the RS-DBPF outperforms
both a vanilla DBPF and a MM-PF in two simulation se-
tups with different regime switching dynamics. Future work
includes the estimation of the regime-switching dynamic, the
incorporation of more expressive neural networks to construct
candidate models, and more extensive experimental evaluation
with high-dimensional numerical and real-world experiments.
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