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Diffusion LMS for Distributed Estimation over
Wireless Networks with Inter-Node Interference

Perturbation
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Abstract—In this paper, we investigate the diffusion least mean
square (DLMS) algorithm over fading channel, where in addition
to channel noise and path-loss the inter-node-interference (INI)
among neighboring nodes of a host node is also taken into
account. We also analyze the mean-square convergence behavior
of DLMS algorithm, under such condition. In addition, based on
an upper bound of the derived network MSD, an optimization
problem is defined to find an optimal combination strategy.
Furthermore, the adaptive version of the proposed combination
strategy is presented. Simulation results corroborate the the-
oretical findings and indicate the superiority of the proposed
combination methods over some previously reported algorithms.

Index Terms—Diffusion LMS, fading channel, wireless net-
works, inter-node interference.

I. INTRODUCTION

Distributed networks consist of numerous interconnected
nodes which continuously learn and adapt from measurements
to estimate an unknown vector in a distributed manner. Dis-
tributed estimation is a widely accepted method in different
applications, especially in wireless sensor networks (WSNs),
where scalability, robustness, and low energy consumption are
essential [1]. These methods benefit from localized in-network
processing and inter-node data exchange to solve an estimation
problem in a cooperative and online manner. In this paper,
among incremental [2], consensus [3], and diffusion [1], [4],
[5] strategies, we focus on diffusion-based algorithms for the
estimation of an unknown vector parameter. Recently, several
efforts have been done to overcome the challenges encountered
in diffusion-based wireless networks. One of the most impor-
tant challenges is analyzing the performance of the algorithm
when the wireless links between the nodes are non-ideal, i.e.,
they include some perturbations such as fading and additive
noise. There is, however, another perturbation called inter-
node interference (INI) which should be taken into account
in practice. This is because, in diffusion-based algorithms,
the neighboring nodes share some intermediate signals among
each other simultaneously to estimate the unknown vector
[6]. In addition, all nodes are equipped with radio modules
working in the same frequency, for example, Wi-Fi frequency
band. Therefore, the received signal at each node, e.g., node
k, is affected by the superposition of transmitted data from
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the transmitting nodes (see Figure 1). In other words, an
intermediate signal transmitted by a neighboring node l of
node k will be affected by the signals transmitted by other
neighboring nodes (instead of only node l) of node k. On
the other hand, using different transmitters and receivers with
different frequency bands is not cost-effective or feasible in
networks with such limited resources. As a result, the received
signal is perturbed by INI.
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Figure 1. Inter-node interference (INI) at node k

In this paper, we aim to investigate the performance of the
diffusion least-mean-square (DLMS) algorithm in the presence
of fading, additive noise, and INI. Towards that end, we
demonstrate that the algorithm converges in both mean and
mean-square senses in the presence of fading, additive noise,
and INI, with some assumptions. Furthermore, a left-stochastic
matrix will be proposed to govern the combination of data
delivered at node k. The entries of this matrix are derived
by solving a minimization problem via convex optimization
frameworks.

Several diffusion algorithms have been proposed over ideal
communication channel [1], [4]–[7]. In addition, there exists
some work such as [8], [9], and [10] on the analysis of
diffusion algorithms under an additive noise with Gaussian
distribution. However, fading and path loss also contaminate
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the received signals, and they can degrade the performance
of the algorithm. Hence, in [11], [12], and [13] Abdolee
et al. studied the DLMS algorithm over fading channels. In
particular, in [13], they analyze DLMS algorithm in a wireless
network with dynamic topology and with channel estimation
using pilot signals.

Various combination methods have also been proposed such
as Laplacian [14] and Maximum Degree [15] strategies. How-
ever, these strategies are inappropriate for imperfect channel
scenarios and they lead to the performance degradation of the
diffusion algorithm. Hence, in [10] and [16] two combina-
tion weights strategies have been proposed, which utilize the
channel state information (CSI), to enhance the performance
of the DLMS algorithm, in the presence of channel impair-
ments. Nevertheless, such studies lack the theoretical analyses
and verification of the simulation and theoretical findings.
We derive a left-stochastic combination weights matrix by
formulating an optimization problem using an upper bound
of the network mean-square deviation (MSD). Then a closed-
form optimal solution to the problem is computed. These
combination weights are adaptive, i.e., changing with the
adaptive topology of the network, in the presence of fading,
additive noise, and INI.

In this paper, we extend adapt-then-combine (ATC) version
of DLMS algorithm to a wireless network with a time-varying
topology where data is shared among nodes subject to INI,
in addition to fading and channel noise impairments. The
contributions of this paper are summarized as follows: first, we
consider, for the first time in the literature, a new model for the
intermediate received signal at each node k, which includes
INI along with fading and noise. Based on the proposed model,
we then analyze the mean and mean-square convergence of the
DLMS algorithm, under such conditions. We also proposed an
adaptive combination weights matrix using a convex optimiza-
tion framework. Our simulation results reveal a good fit with
theoretical findings and also the superiority of the proposed
combination method over some state-of-the-art algorithms.

Notations: C denotes the field of complex numbers. Scalars
are denoted by lower-case letters, and vectors and matrices
respectively by lower- and upper-case boldface letters. The
transpose and complex conjugate-transpose are denoted by
(·)T and (·)∗, respectively. E{·} represents expectation. IM
denotes an M ×M identity matrix. ⊗ denotes the Kronecker
product operation. diag {·} represents a diagonal matrix with
its arguments. col {·} denotes an enlarged column vector struc-
tured by stacking its columns on top of each other. 1M and
0M are the column vector of length M with all entries being
one and zero, respectively. 1M×N is an M×N matrix with all
entries being one. ‖x‖ denotes the Euclidean norm of its vector
argument. Let x = col {x1,x2, . . . ,xN} denote an N × 1
block column vector whose individual entries are of size M×1
each. Hence, the block maximum norm of x is denoted by
‖x‖b,∞ and is defined as ‖x‖b,∞ , max1≤k≤N ‖xk‖. Corre-
spondingly, the induced block maximum norm of an arbitrary
N ×N block matrix A, whose individual block entries are of
size M ×M each, is defined as ‖A‖b,∞ , maxx6=0

‖Ax‖b,∞
‖x‖b,∞ .

We define the eigenvalue set of the square matrix X as
{λ(X)}, with λmax(X) denoting the maximum eigenvalue.

The spectral radius of the square matrix X is denoted by
ρ(X) , max{|λ(X)|}. ‖x‖2Σ denotes the weighted vector
norm, i.e., ‖x‖2Σ = x∗Σx for any Hermitian Σ > 0. vec(X)
vectorizes matrix X and stacks its columns on top of each
other.

II. SIGNAL MODEL

Consider a network of K nodes which are distributed over
a geographic region aiming at estimating an unknown vector
ωo ∈ CM . Nk denotes the set of neighbors of node k
(including k itself), which are located within the transmission
range (ro) of node k. At each time instance i ∈ {1, 2, ..., T},
every node k ∈ {1, 2, ...,K} collects scalar measurement
dk(i) and a 1 ×M regression vector uk,i which are related
to ωo via the following linear regression model:

dk(i) = uk,iω
o + vk(i), (1)

where vk(i) denotes the additive zero-mean white Gaussian
measurement noise at node k, with variance σ2

v,k. The regres-
sion vectors uk,i are also zero-mean with covariance matrices
Ru,k = E{u∗k,iuk,i}. According to the DLMS algorithm, the
unknown vector ωo is distributively estimated by simultaneous
exchange information among nodes over noisy wireless links,
which are also under influence of fading and path loss. Apart
from these perturbations, however, the data is also subject to
inter-node interference (INI). As a result, the received signal
ψlk,i ∈ CM×1 at node k from a neighboring node l is modeled
as:

ψlk,i = βlk(i)ψl,i + i lk,i + n lk,i, (2)

where ψl,i represents the transmitted signal from node l at

time instant i. Moreover, βlk(i) = hlk(i)
√

Po
rαlk

[16] represents
analog transmission, where hlk(i) denotes the channel coeffi-
cient between nodes l and k, Po is the power of transmitter
signal, rlk is the distance between nodes l and k, and α is the
path loss exponent (see Figure 2). We assume that the links
among nodes are spatially uncorrelated Rayleigh channels,
which are i.i.d over time, and thus hlk(i) is zero-mean Gaus-
sian with variance σ2

h,lk, and consequently βlk(i) is also zero-
mean Gaussian with variance σ2

h,lk
Po
rαlk

. The vector i lk,i ∈ CM
is the INI between nodes k and l which is defined as the
superimposition of signals transmitted by neighboring nodes
of k except node l, i.e., i lk,i =

∑
l′∈Nk\{k,l} βl′k(i)ψl′,i. In

addition, n lk,i represents the zero-mean additive white Gaus-
sian noise (AWGN) vector with covariance matrix σ2

n,lkIM .
At any time instant i, due to channel impairments, some links
may fail. Therefore, to ensure reliable communication, only a
subset of Nk, denoted by Nk,i, whose signal-to-interference-
noise ratio (SINR) exceeds a pre-defined threshold value are
allowed to send the signal to node k. Based on the defined
model of the received signal in (2), SINR be written as:

SINRlk(i) =
|βlk(i)|2∑

l′∈Nk,i\{k,l} |βl′k(i)|2 + σ2
n,lk

. (3)
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Figure 2. The received signal at node k considering fading and path loss,
additive noise, and inter-node interference (INI).

III. DIFFUSION LMS (DLMS) AND PERFORMANCE
ANALYSIS UNDER INI

A. Diffusion LMS (DLMS) Strategy

In this paper, we consider the adapt-then-combine (ATC)
version of diffusion least mean square (DLMS). The extension
to combine-then-adapt (CTA) algorithm is straightforward.
According to the ATC version of DLMS we have [1]:{
ψk,i = ωk,i−1 + µku

∗
k,i(dk(i)− uk,iωk,i−1), (Adaptation)

ωk,i =
∑
l∈Nk,i alk(i)ψlk,i, (Combination)

(4)
where µk is the step-size at node k, and {alk(i)} are non-
negative real coefficients corresponding to the entries of a left-
stochastic combination matrix Ai such that

alk(i) = 0 if l /∈ Nk,i and
∑
l∈Nk,i

alk(i) = 1, (5)

where, the index “i” in Ai is for time-varying topology.
To compensate for the fading and path-loss perturbations,
we multiply the received signal ψlk,i by an equalization
coefficient denoted as glk(i) [11]. Therefore, from (2) the
combination step of (4) is rewritten as

ωk,i =
∑
l∈Nk,i

qlk(i)ψl,i + ik,i + nk,i, (6)

where

qlk(i) ,

{
akk(i) l = k

alk(i)glk(i)βlk(i) l ∈ Nk,i \ {k} ,
(7)

B. Performance Analysis

In this subsection, we analyze the steady-state behavior
of the DLMS algorithm over the fading channel and in the
presence of INI. The following assumptions are helpful for
the analyses:

Assumption 1: All random processes n lk,i, hlk(i), vk(i),
and uk,i are independent and identically distributed (i.i.d) over
time and independent over space.

Assumption 2: The channel noise n lk,i, channel coefficients
hlk(i), the measurement noise vk(i), and regression vectors
uk,i are mutually independent.

Assumption 3: Based on the above assumptions, INI vector
i lk,i is independent of channel noise n lk,i, measurement noise
vk(i), and regression vector uk,i, thus i lk,i has zero-mean and
covariance matrix Ri,lk ,

(∑
l′∈Nk\{l,k} σ

2
h,l′k

Po
rα
l′k

)
IM =

σ2
i,lkIM , where σ2

i,lk =
∑
l′∈Nk\{l,k} σ

2
h,l′k

Po
rα
l′k

.
Assuming that the vector ωo is invariant, then we define the

error vectors ψ̃k,i , ωo − ψk,i and ω̃k,i , ωo − ωk,i. Now,
we subtract ωo from both sides of the adaptation step of (4)
and (6) to obtain:

ψ̃k,i =
(
IM − µku∗k,iuk,i

)
ω̃k,i−1 − µku∗k,ivk(i), (8)

ω̃k,i =
∑
l∈Nk,i

qlk(i)ψ̃l,i +
∑
l∈Nk,i

elk(i)ωo − ik,i − nk,i, (9)

where
elk(i) , alk(i)− qlk(i). (10)

We also introduce the network global error vectors as:

ψ̃i , col
{
ψ̃1,i, ψ̃2,i, ..., ψ̃K,i

}
(11)

ω̃i , col {ω̃1,i, ω̃2,i, ..., ω̃K,i} (12)

Moreover, we collect {qlk(i)} and {elk(i)} into Qi and Ei,
respectively. Then, the following variables are introduced:

Ai , Ai ⊗ IM (13)

Qi , Qi ⊗ IM (14)

Ei , Ei ⊗ IM
(10)
= Ai −Qi (15)

M , diag {µ1IM , µ2IM , ..., µKIM} (16)

Ru,i , diag
{
u∗1,iu1,i,u

∗
2,iu2,i, ...,u

∗
K,iuK,i,

}
(17)

z i , col
{
u∗1,iv1(i),u∗2,iv2(i), ...,u∗K,ivK(i)

}
(18)

i i , col {i1,i, i2,i, ..., iK,i} (19)

n i , col {n1,i,n2,i, ...,nK,i} (20)

ωoc , 1K ⊗ ωo (21)

From these variables along with (8) and (9) the network error
vector is obtained as

ω̃i = Biω̃i−1 −QT
i Mz i + Eiωoc − i i − n i, (22)

where Bi , QT
i (IMK −MRu,i).
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Mean Convergence: Taking expectation from both sides of
(22), with the assumption E{i i} = E{n i} = E{z i} = 0, the
following recursion for network mean error vector is obtained

E{ω̃i} = BE{ω̃i−1}+ Eωoc , (23)

where B = E{Bi} and E = E{Ei}. Based on (23), if B is
stable, the network mean error vector will converge to

lim
i→∞

E{ω̃i} = (IMK −B)
−1 Eωoc . (24)

As (24) reveals, when the fading channel exists the algorithm
is not asymptotically unbiased unless the equalizer coefficient
glk(i) is applied to the channel coefficient. For instance, if
glk(i) is zero-forcing (ZF) equalizer, i.e., glk(i) =

β∗lk(i)

|βlk(i)|2
,

then since qlk(i) = alk(i)glk(i)βlk(i) we have qlk(i) = alk(i)
and QT

i = AT
i . Hence, according to (15) we can deduce that

E = 0MK . As a result, (24) converges to zero, and thus the
algorithm is asymptotically unbiased. Likewise, for the ideal
channel, i.e., βlk(i) = 1 for any l and k, E = 0MK , which
gives the same result as the condition in which ZF equalizer is
used. We now derive the condition, under which B is stable,
i.e., ρ (B) < 1, where ρ (B) represents the spectral radius of
B. To this end, we use the block maximum norm properties
as [6]:

ρ (B) ≤ ‖B‖b,∞ =
∥∥QT (IMN −MRu)

∥∥
b,∞

≤
∥∥QT∥∥

b,∞ ‖IMN −MRu‖b,∞
(25)

where Q = E{Qi} and Ru = E{Ru,i}. Therefore, if
‖IMN −MRu‖b,∞ < 1

‖QT‖
b,∞

, then ρ (B) < 1. Since

IMN −MRu is block diagonal Hermitian, δ = ρ(IMN −
MRu) = ‖IMN −MRu‖b,∞. Hence, if δ < 1

‖QT‖
b,∞

,

then ρ (B) < 1. To satisfy the condition δ < 1

‖QT‖
b,∞

,

we should have λmax (Ru,k) < 1
‖QT ‖b,∞

, where Ru,k =

E{u∗k,iuk,i}. As a result, the step-size µk is chosen according
to the following condition:

1− 1

‖QT‖
b,∞

λmax (Ru,k)
< µk <

1 + 1

‖QT‖
b,∞

λmax (Ru,k)
. (26)

For ideal channel or in the case of using ZF equalizer,
because QT = AT and matrix A is left-stochastic, i.e.,
‖AT ‖b,∞ = 1, (26) reduces to 0 < µk <

2
λmax(Ru,k)

, which
is the mean stability condition for diffusion LMS over ideal
communication channels [1], [6].

Mean-square Performance: To study mean-square perfor-
mance the variance relation of the network error vector is
obtained. To that end, we rearrange (22) and we take the
expected value of the weighted vector norm of both sides of
(22) given Assumption 1, Assumption 2, and Assumption 3.
We obtain:

E{‖ω̃i‖2Σ} = E{‖ω̃i−1‖2Σ′}+ Tr(E{QT
i Mz iz

∗
iMQiΣ})

+ Tr(E{Eiωocωo∗c ETi Σ})
+ 2Re{Tr(E{Biω̃i−1ωocE

T
i Σ})}

+ Tr (E{i ii∗iΣ}) + Tr (E{n in∗iΣ}) ,
(27)

where Σ can be any Hermitian positive-definite matrix and
Σ′ = E{B∗iΣBi}. Let σ , vec (Σ). We also use the
notation E{‖ω̃i‖2σ} to denote E{‖ω̃i‖2Σ}. Using some algebra
such as vec (UΣV ) =

(
V T ⊗U

)
vec (Σ) and Tr (ΣX) =

vec
(
XT

)T
σ, we obtain the following recursion for the

network error variance:
E ‖ω̃i‖2σ = E ‖ω̃i−1‖2Fσ + γTσ

= E ‖ω̃−1‖2Fi+1σ + γT
i∑

j=0

Fjσ
(28)

where F = BT ⊗B∗ and γ is determined as:

γ = 2Re
{

vec
(
BE{ω̃i−1ωo∗}ET

)}
+ vec (Eωo∗ωoE)

+ vec
(
QTMZTMQ

)
+ vec

(
RT
int

)
+ vec

(
RT
n

)
,

(29)

where Rint = diag {Rint,1,Rint,2, ...,Rint,K}, Z =
E{z iz ∗i } = diag

{
Ru,1σ

2
v,1,Ru,2σ

2
v,2, ...,Ru,Kσ

2
v,K

}
, and

Rn = diag {Rn,1,Rn,2, ...,Rn,K}. In addition, Rint,k =
E{ik,ii∗k,i} =

∑
l∈Nk\{k} E{a

2
lk(i) |glk(i)|2}Ri,lk, and

Rn,k = E{nk,in∗k,i} =
∑
l∈Nk\{k} E{a

2
lk(i) |glk(i)|2}Rn,lk,

where Rn,lk = σ2
n,lkIM .

The instantaneous mean square deviation (MSD) at node
k, denoted by ηk(i), is defined as ηk(i) , E{‖ω̃i‖2}. Since
we are free to choose σ, ηk(i) can be computed from (28)
by selecting σmsdk = vec (diag (ek)⊗ IM ), where ek is a
column vector with a unit element at position k and zero else-
where [1]. Therefore, using (28) and assuming ωk,−1 = 0M
the instantaneous MSD at node k is obtained as

ηk(i) = ηk(i−1)−‖ωo‖2Fi(IMN−F)σmsdk
+γTF iσmsdk . (30)

Eventually, from (30), the instantaneous network MSD will be
derived as: η(i) = 1

K

∑K
k=1 ηk(i).

IV. OPTIMIZED COMBINATION WEIGHTS

In this section, we derive an optimal combination rule by
solving an optimization problem that is built on an upper
bound of steady-state network MSD. To this end, first, similar
to [16], the entries of the time-varying matrix Ai are consid-
ered as alk(i) = ζlkΓlk(i), where Γlk(i) is a random function
with two possible values 0 and 1 for l /∈ Nk,i and l ∈ Nk,i,
respectively, where

∑
l∈Nk,i\{k} ζlk < 1. The random function

Γlk(i) has binomial distribution with the probability of success
plk = Pr (SINRlk(i) ≥ SINRth) for successful transmission,
where SINRth is the predefined threshold for the signal-
to-interference-noise ratio. Second, we evaluate (28) when
i→∞. At steady-state, because of the stability of matrix B,
the matrix F = BT⊗B∗ will also be stable, so the first term of
(28) approaches zero. However, the expression for γ includes
unknown parameter ωo, so we consider the assumption of
using ZF equalizer which leads to E = 0. Hence, substituting
F into (28), setting σ = 1

K IMK , and using assumptions we
obtain:

η ≈ 1

K

∞∑
j=0

Tr
[
Bj
(
ATMZTMA + Rint + Rn

)
B∗j

]
.

(31)
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Using nuclear norm properties results in the following upper
bound for η [10]:

η ≤ c2

K

Tr
((

ATMZTMA
)

+ Rint + Rn

)
1− ‖IMN −MRu‖2jb,∞

, (32)

where c is a positive scalar so that ‖X‖∗ ≤ ‖X‖b,∞ and
‖X‖∗ denotes the nuclear norm, which is defined as the sum
of the singular values of X . Therefore, ‖X‖∗ = ‖X∗‖∗ for
anyX and ‖X‖∗ = Tr(X) whenX is Hermitian and positive
semi-definite [10]. This upper bound will be minimized if
its numerator is minimized. Hence, we obtain the following
element-wise problem for each node k:

min
ζlk

∑
l∈Nk

ζ2lkplk

[
µ2
l σ

2
v,l Tr (Ru,l) + |glk|2M

(
σ2
i,lk + σ2

n,lk

)]
,

s.t. ζlk ≥ 0 ,
∑
l∈Nk

plkζlk = 1 , ζlk = 0 if l /∈ Nk,

(33)
where |glk|2 = E{|glk(i)|2 | SINRlk(i) ≥ SINRth}, which
can be computed numerically over repetitious independent
experiments, and ζ2lkplk = E{alk(i)}. The minimization
problem (33) is convex for the following reasons. First, since
ζlk is a positive variable, ζ2lk is convex. Moreover, the linear
constraints form a convex region [17]. As a result, using
Lagrange dual function and applying Karush-Kuhn-Tucker
(KKT) [17], and E [Γlk(i)] = plk, we derive a solution for the
entries Ai, which are the instantaneous combination weights
as:

alk(i) =


α−2
lk∑

m∈Nk,i
α−2
mk

l ∈ Nk,i,

0 otherwise,
(34)

where

α2
lk =


µ2
l σ

2
v,l Tr (Ru,l)

+ |glk|2M
(
σ2
i,lk + σ2

n,lk

) l ∈ Nk,i \ {k} ,

µ2
kσ

2
v,k Tr (Ru,k) l = k.

(35)
As (35) reveals, to compute combination weights
{alk(i)} we need to have second-order moments{
σ2
v,l,Tr (Ru,l) , |glk|2 , σ2

i,lk, σ
2
n,lk

}
, which are not available

in practice. To overcome this challenge, we estimate α2
lk

using available information at every node. To that end, under
Assumption 1-3, using ZF forcing equalizer, and utilizing (1),
(2), and (4) for l ∈ Nk,i \ {k} we can write:

α2
lk = E ‖glk(i)ψlk(i)− ωl,i−1‖2 ≈ µ2

l σ
2
v,l Tr (Ru,l)

+ME |glk(i)|2
(
σ2
i,lk + σ2

n,lk

) (36)

For l = k, as σ2
i,lk and σ2

n,lk are zero, we have:

α2
kk = E

∥∥ψk,i − ωk,i−1∥∥2 ≈ µ2
kσ

2
k,v Tr (Ru,k) . (37)

Hence, using ZF equalizer, the proposed DLMS algorithm,
under INI, converges in mean and mean-square sense, i.e., all
estimates {ωk,i} converge to ωo as i→∞.

To estimate the adaptive combination coefficient α2
lk(i) by

using instantaneous realizations of ‖glk(i)ψlk,i − ωl,i−1‖2,

we replace ωl,i−1 (which is not available at node k) with
ωk,i−1, i.e, ‖glk(i)ψlk,i − ωk,i−1‖2. Similarly, instantaneous
realizations of

∥∥ψk,i − ωk,i−1∥∥2 can be used to estimate
α2
kk(i). Moreover, as the network has a time-varying topology,

we store α2
lk(i−1) to recall them in next iterations. Ultimately,

in light of these explanations, we propose an adaptive combi-
nation rule for such a network as:

alk(i) =


α̂−2
lk (i)∑

m∈Nk,i
α̂−2
mk(i)

l ∈ Nk,i,

0 otherwise,
(38)

where α̂2
lk(i) is an estimation of α2

lk(i) which is computed as:

α̂2
lk(i) =


(1− τ)α̂2

lk(i− 1)

+ τ ‖glk(i)ψlk(i)− ωk,i−1‖2
l ∈ Nk,i,

α̂2
lk(i− 1) l /∈ Nk,i,

(39)
where 0 < τ < 1 is the learning factor. Although the adaptive
combination rule in (38) and (39) looks similar to (32) in
[16], however, in this paper, we examine a different scenario
from [16], in which the possible INI among nodes has been
taken into account. Hence, for calculating α̂2

lk(i), which is the
estimation of α2

lk(i), we use (36), which is different from (32)
in [16] because it requires the variance of INI, i.e., σ2

i,lk.

V. SIMULATION RESULTS

This section presents the simulation results to show the per-
formance of DLMS algorithm over the wireless networks with
fading channels, additive noise, and INI for different combina-
tion schemes. We consider a network with K = 10 nodes. The
topology of the network is shown in Figure 3. The unknown
parameter is assumed to be ωo = [1 + j,−0.5− 0.5j]

T . We
set the initial estimation vectors to ωk,−1 = 0M . In addition,
transmitter power Po = 1, transmission range ro = 0.5,
path-loss exponent α = 2.5, and SINRth = −10dB. The
step size has been set to µk = 0.01 for all nodes. We used
zero-mean complex circular Gaussian distribution to generate
signals vk(i), n lk,i and uk,i. They have (co)variance σ2

k,v ,
Rn,lk = σ2

n,lkIM , and Ru,k, respectively. We further generate
the channel coefficients {h lk(i)} based on zero-mean complex
circular Gaussian distribution with variance σ2

h,lk = 1. We
conduct the experiments with two equalization methods ZF
and MMSE. The former is gZF,lk(i) =

β∗lk(i)

|βlk(i)|2
and the latter

is gmmse,lk(i) =
β∗lk(i)

σ2
i,lk+σ

2
n,lk+|βlk(i)|

2 . The results have been
reported by taking average over 100 independent experiments.

In these simulations, we compare the performance of the
proposed optimal and adaptive combination schemes (equa-
tions (34) and (38)) with Maximum Degree, Laplacian, Opti-
mal Relative Variance (the adaptive version of these schemes
are used, i.e., the combination weights will be updated if there
is a change in the topology of network), and the scheme
proposed in [16]. To this end, the network MSD verses
iterations and node index are illustrated in Figure 4 and
Figure 5, respectively. Note that the network MSD has been
calculated using η(i) = 1

K

∑K
k=1 ηk(i). In addition, Figure 5
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Figure 3. Topology of the wireless sensor network.

demonstrates the steady-state network MSD. The theoretical
results (30) are also plotted in the same figures.
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Figure 4. Network MSD versus different iterations for MMSE (left) and ZF
(right) equalizers.

As the figures show our proposed combination rules outper-
form the existing methods. Figure 4 indicates that applying
MMSE equalizer instead of ZF equalizer does not improve
the performance of the proposed schemes. However, it results
in better performance in steady-state for the case of using
Maximum Degree, Laplacian, and the method proposed in
[16]. Furthermore, we observe a very good match between
theoretical and experimental findings. It is worth mentioning
that there is a slight difference between the optimal and
adaptive proposed combination which is for the approximation
that is used to compute (38).

VI. CONCLUSION

In this letter, we extend ATC DLMS algorithm over wireless
networks with fading to a more piratical scenario in which the
inter-node-interference among nodes was considered. We com-
puted the network error vector and then find such conditions
under which the algorithm converges. Our findings show that
channel coefficients can cause the algorithm to be a biased
estimator unless they are compensated by ZF equalizer. In
addition, we propose an optimal combination method through
solving an optimization problem built on an upper bound of
network MSD. Besides, we proposed the adaptive version of
that, which are superior to the existing methods. In addition,
we simulate the proposed combination methods for both ZF
and MMSE equalizers. The results indicated that our proposed
schemes give the same performance for both cases, but using
MMSE equalizer leads to achieving better performance in
combination rules such as Maximum degree, Laplacian, and
the method proposed in [16].

1 2 3 4 5 6 7 8 9 10
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Proposed method, Simulation

Adaptive, Simulation

Laplacian, Simulation

Max. degree, Simulation

Optimal Rel. variance [9], Simulation

[14], Simulation

Theory

1 2 3 4 5 6 7 8 9 10

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Figure 5. Steady-state network MSD versus node index k for MMSE (left)
and ZF (right) equalizers.
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