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ABSTRACT

Human-sensor systems have a wide range of applications
in fields such as robotics, healthcare, and finance. These
systems utilize sensors to observe the true state of na-
ture and generate strategically designed signals, aiding
humans in making more accurate decisions regarding the
state of nature. We adopt a Bayesian persuasion frame-
work that is integrated with quantum prospect theories.
In this framework, we develop a detection scheme where
humans aim to determine the true state by observing the
realization of quantum states from the sensor. We derive
the optimal signaling rule for the sensor and the optimal
decision rule for humans. We discover that this scenario
violates the total law of probability. Furthermore, we ex-
amine how the concepts of rationality can influence the
human detection performance and the signaling rules em-
ployed by the sensor.

Index Terms— Quantum Detection, Quantum Sig-
nal Processing, game theory, Bayesian Persuasion

1. INTRODUCTION

Detection methods play a vital role in statistical signal
processing, encompassing a wide range of applications,
such as studying sensor attacks [1], analyzing internet
traffic, and more. Within the realm of human-sensor sys-
tems, detection frameworks have emerged as essential
components in domains like robotics [2], healthcare sys-
tems, and recommendation systems [3]. An essential as-
pect of research within this field centers on the influence
of sensors in guiding human decision-making processes
through the meticulous design of signals intended for in-
dividuals.

Recent studies have embraced quantum decision
theories [4] to interpret various phenomena in human
cognitive science such as order effect [5] and violation
of sure-thing-principle [6] that cannot be adequately
explained using classical theories. which refers to the
violation of the total probability law when probabili-
ties represent human perception in the decision-making
process. In [7], researchers have developed quickest
detection frameworks by integrating quantum decision

models, aiming to capture bounded rationalities observed
in human decision-making. However, it is essential to
consider risk preference [8] as a crucial factor in hu-
man decision-making. Humans may not assign equal
weight to gains and losses, and risk-averse individuals
may be unwilling to trade the possibility of a loss for the
chance of a gain when selecting lotteries. Theories on
risk measures [9] have been developed to provide a more
sophisticated characterization of human risk preferences.

To this end, we formulate the detection of sensor-
human systems to using quantum decision theory [10].
This decision model integrates classical outcomes and
the psychological state to capture human’s bounded
rationality, including risk-preference, in the decision-
making process. Our contributions can be summarized
as follows. First, we develop a comprehensive detec-
tion framework for human-sensor systems that takes into
account risk-preference and incorporates interference ef-
fects, thereby capturing the inherent bounded rationality
of humans. Second, we establish the existence of an
optimal policy resembling a likelihood-ratio test for the
human receiver within the detection framework. This
finding sheds light on the optimal decision-making strat-
egy for the human component of the system, enhancing
our understanding of their behavior.

The rest of the paper is organized as follows: Sec-
tion 2 presents the formulation of the relationship be-
tween the sensor and the human receiver, along with the
protocol for communication between them regarding the
true state of nature. In Section 3, we discuss the optimal
decision policies for the human receivers and the opti-
mal signaling rules for the sensors. Section 4 is dedi-
cated to the numerical simulation of the proposed solu-
tion concepts. Specifically, we verify the violation of the
sure-thing principle and illustrate the optimal threshold-
ing based on different prior beliefs about the true hypoth-
esis. Finally, Section 5 concludes the paper.

Related work: This work builds upon previous re-
search such as [11] and [12], but introduces a novel per-
spective by incorporating quantum decision theory into
the human decision-making process. In addition, we em-
ploy the Bayesian persuasion model [13] to formulate
the behaviors of the sensor. By integrating these frame-
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Fig. 1: The human-sensor interaction scheme. Before
the game starts the sender (sensor) commits to a type-
dependent signaling devices ρ0, ρ1 ∈ S. The sender is a
sensor/machine that obtains the true state.

works, we aim to capture the complex dynamics within
the sensor-human system.

Notation: H: the Hilbert space (over the set of real
numbers R); H∗: the dual space of H; ⟨Φ| ∈ H∗: the left
state vector; |Φ⟩ ∈ H: the right state vector; B(H): the
space of all positive, Hermitian and bounded operators
from H to itself; S: the subset of B(H) such as trace
of its operators is 1; V: the space of projection-valued
measurements [14]; S: the space of signals; ∆(·): the set
of probability measures over the given space; 1 ∈ B(H):
the identity operator; Ω = {H0, H1}: the space of states.

2. PROBLEM FORMULATION

In this section, we develop the framework of detection
in human-sensor systems where human adopts quantum
decision theory [10]. We assume that there are two un-
derlying states of the system: normal state ω = H0 and
abnormal state ω = H1. Under each hypothesis, the ob-
servations generated s′ ∈ S obey different distributions:

H0 : s′ ∼ f0(s), H1 : s′ ∼ f1(s), (1)

where f0, f1 are probability density functions. We as-
sociate a common prior p(H1), p(H0), with p(H1) +
p(H0) = 1 with the true hypothesis.

The key feature of quantum decision theory lies in
the entanglement of quantum states, which connects clas-
sical, exogenous outcomes with the quantum states as-
sociated with the endogenous psychological mind state
of humans. This connection is achieved by mathemati-
cally associating a composite state of mind, represented
as |Φ⟩ ∈ H = HC ⊗ HI , with each classical obser-
vation of the signal, denoted as s′ ∈ S. The compos-
ite state consists of a quantum state |ψs′⟩ ∈ HC repre-
senting the cognitive aspect of the human’s mind and a
quantum state |χ⟩ ∈ HI representing the subjective in-
terpretation or perception associated with the signal. The
human receiver produces a ‘prospect state’ |Φ⟩ = |ψs⟩⊗∑

k ask|φk⟩ =
∑

k ask|ψsφk⟩ (with
∑

k=1 |ask|2 = 1),
where {|φk⟩} is a set of orthonormal basis spanning HI

as the space of perception states. When the realization of
signals s is stochastic, obeying distributions f1, f0 as in

(1) and depending on the true state of nature, the sensor
(sender) generates two possible “mixed prospect states”
ρ̃1 and ρ̃0 from the set S as follows:

ρ̃1 =
∑
s

f1(s)
(∑

k

ask|ψsφk⟩
)(∑

k′

ask′⟨ψsφk′ |
)
,(2)

ρ̃0 =
∑
s

f0(s)
(∑

k

ask|ψsφk⟩
)(∑

k′

ask′⟨ψsφk′ |
)
,(3)

The protocol: We adopt a sender-receiver frame-
work to model the relationship between a sensor and
a human being, as illustrated in Figure 1. The sys-
tem consists of an underlying state that satisfies the
requirements described in (1). We apply the following
decision-making protocol for human-sensor system. The
sender(sensor) first commits to a type-dependent signal
devices: ρ1, ρ0 ∈ S based on the ‘vanilla prospect states’
ρ̃1, ρ̃0. The sender observes the realization of the true
state ω ∈ Ω. The sender delivers randomized signal to
the receiver(human). The receiver observes the realiza-
tion of the signal Φ ∈ H. The receiver takes an action
a = δ(Φ) ∈ {0, 1} suggesting that the human thinks the
hypothesis Ha holds true. The sender and the receiver
both obtain reward/cost based on the true state and their
actions.

Sender’s utility function: We denote v : Ω × S ×
S × B(H) → R be the sender’s utility function. The
sender aims at seeking optimal signaling devices ρ∗1, ρ

∗
0

by solving the following optimization problem:

max
ρ1,ρ0∈S

{
EΦ0∼ρ0
Φ1∼ρ1

[v(ω,Φ1,Φ0, P
∗)]

}
,

s.t. P ∗ ∈ arg min
P∈B(H)

u(ρ∗1, ρ
∗
0, P ),

(4)

where P ∗ ∈ B(H) and u : S × S × B(H) → R are
the optimal decision rule and the utility function of the
human receiver, respectively, which we will specify later.

Human’s decision model: Upon receiving the sig-
nal s ∈ S from the sensor, the human receiver first con-
struct a prospect state Φ based on s as mentioned before.
Then the human receiver updates the common prior be-
lief p(H0), p(H1) on the true hypothesis into posterior
belief based on Bayes’ rule:

p(Hj |Φ) =
p(Hj)⟨Φ|ρj |Φ⟩

p(H0)⟨Φ|ρ0|Φ⟩+ p(H1)⟨Φ|ρ1|Φ⟩
, j = 0, 1.

The human arrives at a decision rule δ∗ through
projective positive-valued measurements (POVM) [14]:
P (·) =

∑
j |ηj⟩⟨ηj |, where {|ηj⟩}j ⊂ H forms a set of

orthonormal base vectors for the decision maker to find
out. Given any realization of the prospect state |Φ⟩ ∈ H,
we can form that the human receiver makes a probabilis-
tic decision a1 = δ(Φ) = 1 (i.e., considering that H1

holds true) with probability P(a1 = 1|Φ) = ⟨Φ|P |Φ⟩ ≡



g + q, where g, q represent the utility factor and the
attraction factor respectively [10].

Motivated by the frameworks in [11], we let the prob-
ability PF = Tr(Pρ0) denote the false alarm rate, and
the probability PD = Tr(Pρ1) the detection rate. They
are used to characterize receiver’s risk function due to
errors. We now formulate human’s problem as an op-
timization problem where we construct the human re-
ceiver’s weighted risk function u that takes into account
the probabilities PF , PD in a way similar to [11] based
on sensor’s equivalent signaling rules ρ1, ρ0 as follows:

min
P∈B(H)

u(ρ1, ρ0, P,Φ)

= w(p(H0|Φ)Tr(Pρ0))u01 + w(p(H1|Φ)Tr(Pρ1))u11
+ w(p(H0|Φ)(1− Tr(Pρ0)))u00
+ w(p(H1|Φ)(1− Tr(Pρ1)))u10,

(5)
where for convenience we assume u11, u00 < 0, u01, u10 >
0. The weight function w : [0, 1] → [0, 1] in (5) is se-
lected the same as in [12]:

w(z; ϵ) = zϵ, z ∈ [0, 1], ϵ > 0, (6)

where 0 < ϵ < 1 corresponds to a pessimistic agent,
while ϵ > 1 an optimistic agent [12].

3. THEORETICAL RESULTS

In this section, we solve the optimization problems
(5) and (4). Notice the sender’s utility function v in
(4) characterizes sender’s type-dependent strategies of
changing the original prospect states. We assume that
the sensor construct mixed prospect states with the
same form but with different ‘perception coefficients’
a1sk ∈ R, a0sk, s ∈ S, k = 1, 2, . . . , d. Below, we demon-
strate that the human agent’s optimal decision rule cor-
responds to the Quantum Likelihood Ratio Test (QLRT),
which bears resemblance to the approach outlined in
[15].

Proposition 1 (QLRT as human’s optimal strategy)
Let ρ1, ρ0 ∈ B(H) be the sender’s signaling devices and
let Φ ∈ H be the prospect state. Let the problem (5)
be the human’s receiver’s optimization problem, where
the receiver aims at developing optimal measurements
P ∗ ∈ B(H). Suppose that the weight function w defined
in (6) is monotonically increasing. Then, we arrive at
the following conclusion:

P ∗ =
∑
ηj>0

|ηj⟩⟨ηj |, (7)

where |ηj⟩ are the eigenvectors of ρ1 − τρ0 with eigen-
values ηj , j = 1, 2, . . . i.e.,(ρ1 − τρ0)|ηj⟩ = ηj |ηj⟩ for
some τ ⩾ 0.

Proof. We adopt the proof similar to the one for propo-
sition 1 in [11]. We know that the human receiver aims
to distinguish between two states H1, H0 corresponding
to two mixed states ρ1, ρ0, respectively as in (3) and (2).
Denote y∗ = Tr(P ∗ρ1) as the detection rate and x∗ =
Tr(P ∗ρ0) as the false alarm rate. We construct the pro-
jective measurement P ∗ for binary hypothesis testing as
(7). Now we claim the decision rule δ∗ : H → [0, 1]
is constructed as δ∗(Φ) = ⟨Φ|P ∗|Φ⟩ is optimal. To see
this, first notice via [15] that P ∗ minimizes the Bayes risk
for quantum detection:

P ∗ ∈ arg min
P∈B(H)

τTr(Pρ0) + Tr((1− P )ρ1).

Thus if we pick another arbitrary projective operator-
valued measurement P ′ ∈ B(H) leading to another
detection rate x′ = Tr(P ′ρ1) and false alarm rate
y′ = Tr(P ′ρ0), similar to the proof of Neyman-Pearson
lemma [16], we can derive for any P ′ ∈ B(H),τ(x∗ −
x′) ⩽ y∗ − y′, where x∗, y∗ are the false alarm rate and
detection rate of P ∗, respectively. Since we set y∗ = y′,
we conclude x∗ ⩽ x′. Since w is monotone increasing
and that the left hand side is 0, we have

w(Tr((1− P ∗)ρ1)) ⩾ w(Tr((1− P ′)ρ1)).

As a result, for any measurement P ′ leading to a certain
detection rate y′, we can always construct a correspond-
ing P ∗ of the form (1) achieving a lower false positive
rate than the one of P ′ under the same detection rate.
Thus using P ∗ of the form (7) we can lower the sec-
ond term without changing the first term in (5). Thus
a generic human’s optimal decision rule P ∗ minimizing
the utility function u must be of the form given in (7).

4. NUMERICAL RESULTS

In this section, we present the numerical illustration of
the optimal detection policy for the human agent and the
optimal signaling rule for the sensor, as discussed in Sec-
tion 3. To demonstrate these concepts, we utilize a cog-
nitive case study known as the Prisoner’s Dilemma, as
described in [17]. In this scenario, there are two par-
ties involved: a human agent and her opponent. signal-
ing rules according to ρ1, ρ0. The human decision maker
faces a binary choice: defection (a = 1) or cooperation
(a = 0). Simultaneously, the opponent’s choices, repre-
sented by the true state of nature, consist of defection H1

or cooperation H0. Notably, the human agent is unaware
of the opponent’s action until after she has made her own
decision. The human agent’s objective is to maximize
her reward, which is higher when her action aligns with
that of her opponent. Human makes a decision based
on (5) while the sensor (interpreted as a message passer)
producing signaling rules according to ρ1, ρ0.



Fig. 2: Demonstration of violation of sure-thing-
principle with ϵ = 1: The probability of defection for
the human receiver when the opponent is known to de-
fect and cooperate is 0.39 and 0.26, respectively. The
probability of defection when the action of the opponent
is unknown depends on the attraction factor as illustrated
in the dashed curve. We observe a violation of the total
law of probability in our framework. Specifically, when
the attraction factor exceeds 0.001 (indicated by the pur-
ple region), the probability of defection for the human
receiver is no longer a convex combination of the prob-
abilities associated with the opponent’s certain defection
or cooperation.

Violation of sure-thing-principle: The sure-thing-
principle (STP), or total probability law, can be inter-
preted in decision theory as a phenomenon that if under
two states H1, H0, an action a is preferred to a′, then
such preference is carried over to the scenario where the
state is unknown. Authors in [17] have used quantum
probabilistic models to justify such violations under in-
vestigations of the case of Prisoner’s dilemma. We as-
sume d = 2 and K = 5 and fix the realization of the
state |Φ⟩. We apply the same payoff matrix as in [17]
and set the reward values as u00 = 20, u01 = 5, u10 =
10, u11 = 25. Using different values of the attraction
factor from 0 to 1, we demonstrate the violation in [18]
in Figure 2.

In addition, we plot in Figure 3 the human detec-
tor’s optimal decision rule, characterized by the thresh-
old, given the prior that the opponent chooses to defect
p(H1). We observe that as p(H1) increases from 0 to 1,
the optimal detecting threshold initially increases slowly,
but later drastically after a certain point, indicating that
the probability that human cooperates decreases slowly
when the prior p(H1) is not too large, but switch to de-
fect very quickly after a certain point.

The human agent’s detection performance: We
plot the receiver operating characteristic (ROC) curve
of the human detector’s optimal decision rule, which
is determined by the threshold. Assume that the two
underlying distributions f1, f0 are both Gaussian with
mean 0 and mean 1 and with the same variance of 1. We

Fig. 3: The ROC curves of the human agent’s opti-
mal decision rules using our framework and a previ-
ous prospect-theory-based hypothesis testing framework
[12].

choose randomly the coefficients ask in (3) and (2). Fig-
ure 3 illustrates the observed ROC curve, highlighting
the impact of the attraction factor on the human agent’s
detection performance. Notably, the quantum human
agent exhibits a distinct behavior due to the influence
of the attraction factor, which arises from the quantum
interference of the human mind. This interference phe-
nomenon leads to an intriguing deviation in the detection
performance.

5. CONCLUSION

In this paper, we have proposed a novel detection frame-
work for human-sensor systems based on quantum deci-
sion theory, which effectively captures the bounded ratio-
nality of human agents, including their risk preferences,
in the decision-making process. We have specifically fo-
cused on deriving the optimal decision rule for human
agents under a particular case. Additionally, we conduct
an analysis to highlight the impact of the attraction fac-
tor on the detecting performance of human agents. To
achieve this, we have compared the receiver operating
characteristic (ROC) curves obtained using quantum de-
cision models with those obtained using prospect-theory-
based models.

Our framework possesses the flexibility to be ex-
tended to cases where the sender exhibits different pref-
erences, which can be characterized by specifying dis-
tinct utility functions. For instance, the sender may be
adversarial towards the human receiver and aim to em-
ploy persuasive strategies that lead the human agent to
higher error rates. Such conflicting relationships often
arise in network security detection problems and are
frequently studied using game theory (see [19]).
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