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Abstract

Graphs arising in statistical problems, signal processing, large networks, combinatorial optimization, and data analysis are often
dense, which causes both computational and storage bottlenecks. One way of sparsifying a weighted graph, while sharing the same
vertices as the original graph but reducing the number of edges, is through spectral sparsification. We study this problem through
the perspective of RandNLA. Specifically, we utilize randomized matrix multiplication to give a clean and simple analysis of how
sampling according to edge weights gives a spectral approximation to graph Laplacians, without requiring spectral information.
Through the CR−MM algorithm, we attain a simple and computationally efficient sparsifier whose resulting Laplacian estimate
is unbiased and of minimum variance. Furthermore, we define a new notion of additive spectral sparsifiers, which has not been
considered in the literature.

Index Terms

Large graphs, Laplacians, spectral sparsification, numerical linear algebra, graph approximations, random sampling.

I. INTRODUCTION AND RELATED WORK

Large graphs, networks and their associated Laplacian are prevalent in many applications and domains of modern signal

processing, statistics and engineering, e.g. spectral clustering [1], community detection [2] and graph learning [3]. Their size

makes them hard to store and process, which is why it is preferred to instead work with a good approximation or sketch of the

graph. Algorithms for approximating large graphs have been developed through the study of spectral graph theory, which deals

with the eigenvalues and eigenvectors of matrices naturally associated with graphs. A standard approach is by sampling edges or

vertices of these graphs, with judiciously chosen sampling distributions.

Our main contribution, is bridging a connection between randomized numerical linear algebra (RandNLA) and approximate

matrix multiplication (MM), with Laplacian spectral sparsifiers of weighted graphs G = (V,E,w). The resulting algorithm is

intuitive and simple, and has been considered in independent works. Our analysis though is more straightforward and shorter

than other analyses considering the same and similar sparsifiers, e.g. [4]. Lastly, we introduce an alternative measure for spectral

sparsifiers, which captures additive approximation errors.

Spectral sparsifiers are of importance, as they preserve eigenvector centrality [5], cuts in a graph [6], flows in networks modeled

by graphs [7], and maintain the structure of the original graph. By viewing the Laplacian L of G as the outer product of its

boundary matrix B ∈ R
E×V
>0 , we use CR matrix multiplication (CR−MM) to approximate the Laplacian L̃ ≈ L. This turns out

be equivalent to sampling and re-weighting edges from G, with sampling probabilities proportional to the edges’ weights. The

resulting Laplacian L̃ is an unbiased estimate of minimum variance, and represents the sketched graph G̃ = (V, Ẽ, w̃). Unlike

most other spectral sparsifiers whose guarantees depend entirely on the number of vertices n, ours depends on the edge weights

w.

What we present also draws connections between sampling according to Frobenius norm of vectors, and leverage scores; which

has been extensively studied in the context of linear systems and ℓ2-subspace embeddings [8], [9]. Sparsifying Laplacians through

sampling is the appropriate intermediate application, between MM and subspace embeddings.

A. Related Work

The main idea behind the sparsifier we study is simple and intuitive. By using a primitive which has extensively been studied;

approximate multiplication, as a surrogate to analysing the proposed spectral sparsifier, we present a simple analysis which yields

more concise statements regarding the resulting sparsifier, compared to related work [4]; which considers Gaussian smoothing.

Our guarantees differ from previous works, and we draw connections to RandNLA.

Along similar lines, connections between effective resistances and leverage scores have been previously established [10], [11].

Spectral sparsification has also been used in linear algebra to obtain deterministic and randomized algorithms for low-rank matrix

approximations [12], [13]. In this work, we obtain results in the converse direction.

The state-of-the-art approach to spectral sparsification is to sample edges according to effective resistances [11], [14]. This

approach leads to a nearly-linear time algorithm that produces high-quality sparsifiers of weighted graphs. A drawback of this

approach is the computational complexity of determining the resistances, which requires either a spectral decomposition of L,
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or directly computing L
†. In what we propose, the sampling distribution is already known through w, and the sampling can

be done pass-efficiently only inquiring an additional O(1) additional storage space [15, Algorithm 1]. This makes our method

algorithmically superior to sampling according to effective resistances, as computing them requires O(|E| · |V |2) operations.

Furthermore, through leverage scores, sampling according to the effective resistances relates to the notion of an ℓ2-subspace

embedding. As contrasted to the objective of [11], we use approximate multiplication; to obtain minimum variance unbiased

estimators.

B. Preliminaries

Recall that the Laplacian of G = (V,E,w) a weighted undirected graph with |V | = n, |E| = m, weights wi,j for each edge

(i, j) ∈ E is

Lij =

{

∑

(i,ℓ)∈E wi,j if i = j

−wi,j if i 6= j
for i, j ∈ V. (1)

Equivalently, it is expressed as L = D −A, for D,A ∈ N
n×n
0 respectively the degree and adjacency matrices of G. This can

also be expressed as the Gram matrix of the boundary matrix1 B ∈ R
E×V . Once we determine an arbitrary positive orientation

(i, j) of the edges in E, the boundary matrix associated with the orientation is defined as

B(i,j),v =











−√wi,j if v = i
√
wi,j if v = j

0 o.w.

for (i, j) ∈ E and v ∈ V.

For an edge e = (u, v), the orientation is represented in the incidence vector χe = eu − ev; for ei ∈ R
V the standard basis

vectors. We define the weighted incidence vector as χ̃e =
√
we · χe. The Laplacian of G is then

L = B
T
B =

∑

e∈E

χ̃eχ̃
T
e =

∑

e∈E

we · χeχ
T
e ∈ R

V×V . (2)

C. Approximate Matrix Multiplication

Consider the two matrices A ∈ R
L×N and B ∈ R

N×M , for which we want to approximate the product AB. It is known that

the product may be approximated by sampling with replacement (s.w.r.) columns of A and rows of B, where the row-column

sampling probabilities are proportional to their Euclidean norms. That is, we sample with replacement r pairs (A(i), B(i)) for

i ∈ NN := {1, · · · , N} and r < N (A(i)=ith column of A, and B(i)=i
th row of B), with probability

pi =
‖A(i)‖2 · ‖B(i)‖2

∑N
l=1 ‖A(l)‖2 · ‖B(l)‖2

(3)

and sum a rescaling of the samples’ outer-products:

AB ≈ 1

r
·





∑

j∈S

1

pj
A(j)B(j)



 =
∑

j∈S

A(j)

√
rpj
· B(j)√

rpj
=: Y (4)

where S is the multiset consisting of the indices (possibly repeated) of the sampled pairs, hence |S| = r. We denote the

corresponding “compressed versions” of the input matrices by C ∈ R
L×r and R ∈ R

r×M respectively. This approximation

satisfies ‖AB−CR‖F = O(‖A‖F ‖B‖F/
√
r). Further details on this algorithm may be found in [15]–[19]. We have the following

known results for the CR−MM algorithm.

Theorem 1 (Section 3.2 [15]). The estimator Y = CR from (4) is unbiased, while the sampling probabilities {pi}Ni=1 minimize

the variance, i.e.

{pi}Ni=1 = argmin
∑

N
i=1

pi=1

{

Var(Y ) = E
[

‖AB − CR‖2F
]

}

(5)

and it is an ǫ-multiplicative error approximation of the matrix product, with high probability. Specifically, for δ > 0 and r > 1
δ2ǫ2

the number of sampling trials which take place

Pr
[

‖AB − CR‖F 6 ǫ · ‖A‖F‖B‖F
]

> 1− δ (6)

for any ǫ > 0.

1The transpose of the boundary matrix of G, is also known as the incidence matrix of G.
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Theorem 2 (Theorem 8 [15]). Let A ∈ R
L×N with σmax(A) = ‖A‖2 6 1, and approximate the product Y ≈ AAT using

CR−MM. Let ǫ ∈ (0, 1) be an accuracy parameter, and assume that ‖A‖2F > 1/24. If

r >
96‖A‖2F

ǫ2
ln

(

96‖A‖2F
ǫ2
√
δ

)

>
4

ǫ2
ln

(

4

ǫ2
√
δ

)

for r 6 N , then

Pr
[

‖AAT − Y ‖2 6 ǫ
]

> 1− δ . (7)

Below, we provide the pseudocode of the CR−MM algorithm.

Algorithm 1: CR matrix multiplication

Input: Matrices A ∈ R
L×N and B ∈ R

N×M

Output: Approximate product Y ≈ AB
Determine: Distribution {pi}Ni=1, according to (3)

Initialize: Y = 0L×M

for i← 1 to r do

sample j ∈ NN with replacement, according to {pi}Ni=1

Y ← Y + 1
rpj
· A(j)B(j)

end

II. SPECTRAL SPARSIFICATION

First, recall that an ε-spectral sparsifier for ε ∈ (0, 1) of G with Laplacian L, is a sketched graph G̃ whose Laplacian L̃ satisfies

(1− ε)xT
L̃x 6 x

T
Lx 6 (1 + ε)xT

L̃x ⇐⇒ (1− ε)‖B̃x‖22 6 ‖Bx‖22 6 (1 + ε)‖B̃x‖22 (8)

for all x ∈ R
n. This implies that the approximated graph G̃ preserves the total weight of any cut between the factors of 1±ε, hence

also allowing a good approximation to its max-flow. A natural definition to consider, is that of when the approximation error is

additive.

Definition 1. An additive ε-sparsifier of G with Laplacian L, is a sketched graph G̃ whose Laplacian L̃ satisfies

x
T
(

L̃− ε · In

)

x 6 x
T
Lx 6 x

T
(

L̃+ ε · In

)

x ⇐⇒
∣

∣

∣x
T (L− L̃)x

∣

∣

∣ 6 ε · ‖x‖22 ,
for all x ∈ R

n.

We distinguish between the two types of sparsifiers, by referring to those satisfying (8) as multiplicative. It is worth pointing out

that row/column sampling algorithms whose approximations are in terms of the Frobenius norm; e.g. (6), naturally yield additive

sparsifiers, while those which are in terms of the Euclidean norm; e.g. (7), admit multiplicative sparsifiers.

A. Spectral Sparsifier from CR−MM

We propose approximating L by using the CR−MM algorithm on B
T
B. Let W = ‖B‖2F /2 =

∑

e′∈E we′ . The resulting

sampling probability of e ∈ E according to (3), is

pe ∝ ‖B(e)‖22 = 2we =⇒ pe = we/W . (9)

Thus, we are sampling edges proportionally to their weights. The resulting procedure is presented in Algorithm 2, where at each

iteration we have a rank-1 update. We carry out a total of r sampling trials and rescale the updates, to reduce the variance of the

estimator. Moreover, for Π = diag(we/W ), let xe =
√
Πχe. Then pe = ‖xe‖22.

In simple words, we carry out r sampling trials with replacement on E, and each time e′ is sampled, its new weight is increased

by W
r . Furthermore, we note that the sampling procedure results in a diagonal sketching matrix S, where Se,e = # e is sampled

rpe
.

Hence L̃ = B
T
SB and B̃ =

√
SB.

Proposition 1. Given a weighted simple undirected graph G = (V,E,w), Algorithm 2 produces an additive ε-spectral sparsifier

of minimum variance; for ε = 2Wǫ and ǫ the CR accuracy parameter, with probability 1− δ and r >
1

δ2ǫ2 .

Proof. From (6), for ∆ := L− L̃ � 0 we have w.h.p. ‖∆‖F = ‖L− L̃‖F 6 ǫ‖B‖2F = 2Wǫ, and in turn:

x
T (L− L̃)x

♯
= x

T∆x

= ‖xT∆x‖F
6 ‖∆‖F · ‖x‖22
=

(

2Wǫ
)

· ‖x‖22,
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Algorithm 2: CR spectral sparsifier

Input: A weighted simple undirected graph G = (V,E,w), number of sampling trials r
Output: Laplacian L̃, of sparsified G̃ = (V, Ẽ, w̃)
Determine: Boundary matrix B ∈ R

E×V of G, distribution {pe = we/W}e∈E

Initialize: L̃ = 0V×V

for i← 1 to r do
sample w.r. e′ ∈ E, according to {pe}e∈E

L̃← L̃+ W
rwe′
· χ̃e′ χ̃

T
e′ = L̃+ W

r · χe′χ
T
e′

end

which implies that

x
T
Lx 6 x

T
(

L̃+ In ·
(

2Wǫ
)

)

x.

In the case where ∆ � 0, continuing from ♯ we have

−xT∆x = ‖xT∆x‖F 6
(

2Wǫ
)

· ‖x‖22 =⇒ x
T
(

L̃− In ·
(

2Wǫ
)

)

x 6 x
T
Lx.

All in all we have

x
T
(

L̃− In

(

2Wǫ
)

)

x 6 x
T
Lx 6 x

T
(

L̃+ In

(

2Wǫ
)

)

x ⇐⇒
∣

∣

∣x
T (L− L̃)x

∣

∣

∣ 6
(

2Wǫ
)

· ‖x‖22 , (10)

which is an additive ε-spectral sparsifier; for ε =
(

2Wǫ
)

.

By Theorem 1, the resulting estimator is of minimum variance. If r >
1

δ2ǫ2 sampling trials are carried out, by (6) it follows that

we attain such a sparsifier with probability at least 1− δ.

B. Multiplicative Spectral Sparsifier

The case where A = BT in the CR−MM algorithm has also been studied as a special case, as it appears in numerous

applications. This restriction allows us to use statements from random matrix theory [20], to get stronger spectral norm bounds,

e.g. Theorem 2 [8, Theorem 4], [15, Theorem 8].

We will use Theorem 2 to show that Algorithm 2 is also a multiplicative spectral sparsifier. First, we recall an equivalent

definition of a multiplicative ε-spectral sparsifier, based on spectral norm.

Definition 2. For a weighted graph with Laplacian L and ε > 0, a sketched graph G̃ of G with Laplacian L̃ and isotropic

boundary matrix B̃iso := B̃L
−1/2 for L−1/2 :=

√

L
†, is a multiplicative ε-spectral sparsifier if

‖In − B̃
T

isoB̃iso‖2 = ‖L−T/2(L− L̃)L−1/2‖2 6 ε . (11)

Proposition 2. Let G = (V,E,w) be a weighted simple undirected graph with W =
∑

e′∈E we′ > σ2
max(B)/48, and ǫ ∈ (0, 1)

an accuracy parameter.2 Algorithm 2 produces a multiplicative ε-spectral sparsifier G̃ for ε = κ2(L) · ǫ with high probability, for

r sufficiently large.3

Proof. Denote the sketch of Algorithm 2 by B
T
B ≈ B̃

T
B̃, and define B̄ := B/σmax(B); B̂ := B̃/σmax(B). Let B̄

T ← A

in Theorem 2, thus B̄
T
B̄ ≈ B̂

T
B̂. The first condition of Theorem 2 is met, as ‖B̄‖2 = ‖B‖2/σmax(B) = 1. Since ‖B̄‖2F =

‖B‖2F /σ2
max(B) = 2W/σ2

max(B), by our assumption on W it follows that ‖B̄‖2F = 2W
σ2
max

(B) >
2σ2

max
(B)

48σ2
max

(B) = 1/24. Hence, the

condition ‖B̄‖2F > 1/24 is also met.

Let θ = σmax(L)ǫ = σ2
max(B)ǫ. From (7) it follows that:

Pr
[

‖L− L̃‖2 6 σmax(L)ǫ
]

= Pr

[

‖BT
B − B̃

T
B̃‖2

σ2
max(B)

6 ǫ

]

= Pr
[

‖B̄T
B̄ − B̂

T
B̂‖2 6 ǫ

]

6 1− δ .

2λmax(L) = σmax(L) = σ2
max(B)

3The condition number of L is denoted by κ2(L) = ‖L‖2‖L
†‖2 = σmax(L)/σmin(L) [14], [21], [22]. Since the smallest singular of L for G connected

is 0, by σmin(L) we denote the second smallest singular, which is equal to 1/‖L†‖2. Also note that L−T/2 = L
−1/2.
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We now appropriately apply L
−1/2, in order to invoke (11):

‖In − B̃
T

isoB̃iso‖2 = ‖In −L
−1/2 · (B̃T

B̃) ·L−1/2‖2
= ‖In −L

−1/2 · L̃ · L−1/2‖2
= ‖L−1/2(L− L̃)L−1/2‖2
6 θ · ‖L−1/2‖22
=

θ

σmin(L)

= κ2(L) · ǫ .
Therefore

Pr
[

‖In − B̃
T

isoB̃iso‖2 6 κ2(L) · ǫ
]

> 1− δ

for r > 6γ2
ǫ,B ln

(

γ2
ǫ,B/
√
δ
)

, where γǫ,B = 8W
ǫ·σmax(B) and δ ∈ (0, 1]. This completes the proof.

We note that since the objective here is to sparsify the graph, and since we do so by s.w.r., the condition r 6 N assumed in

Theorem 2 can be violated, as we will get heavier resulting edges for unstructured graphs, rather than more edges. All guarantees

will still hold true.

C. Comparison to the Effective Resistances Approach

Let x̃e = L
−1/2χe, for each e ∈ E. Then, the effective resistances are defined as re = ‖x̃e‖22. It is therefore clear that the

only difference between the proposed algorithm and that of sparsifying through effective resistances, is that the former is rescaled

according to Π rather than L
†. The main benefit in our approach, is that the sampling distribution can be determined directly

through w. We note also that {re}e∈E can be approximated in nearly-linear time [11].

The analysis of the proposed random sampling algorithm invokes Theorem 2, whose proof relies on a Chernoff bound on sums

of Hermitian matrices [20]. Use of this bound is new in random sampling for Laplacian sparsification, and specifically applies

to our proposed spectral method using sampling with replacement. This is to be compared with the use of other conventional

Chernoff bounds [23] and concentration of measure [24] approaches. Intriguingly, unlike [11]; our approach does not require

spectral information of L.

The benefit of using the bound of [20], is that it can be applied to directly approximate the intersection of two different graphs

on V . Specifically, we use CR−MM to approximate L1,2 = B
T
1 B2, for B1,B2 the boundary matrices of the two graphs. A

spectral guarantee, is not available, to our knowledge, for the case where the error of the underlying approximate MM is in terms

of the Euclidean norm. Therefore, the techniques of [11] on sampling according to effective resistances does not apply. Definition

1 on the other hand quantifies the approximation error we get for Laplacians of such intersection graphs.

III. EXPERIMENT

We compared s.w.r. according to {pe}e∈E (via CR−MM) which is already known through w, and {re}e∈E (ER); which

requires O(mn2) operations to calculate. Even though our main benefit is algorithmic, empirically our approach performs just as

well; in terms of the error characterization (11). We considered the barbell graph on n = 2713 vertices, and assigned weights to

each of the m = 7864 edges randomly from N100. We sparsified the graph for r = 3500 + 500ν; for each ν ∈ N13. In Figure 1

we present the adjacency matrices of G and G̃, to distinguish the difference of G and G̃ for r = 4000. In Figures 2,3, we show

the sparsification rate and error for each r.
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Fig. 1: Adjacency matrices of G and G̃, for r = 4000.
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Fig. 2: Percentage of retained edges, after sparsification.
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Fig. 3: Error in terms of (11), for varying r.

IV. FUTURE DIRECTIONS

In this paper, we proposed a graph sparsifier that approximates Laplacian through the use of CR−MM; a sampling with

replacement technique, adapted from RandNLA.

Applications of the proposed method to spectral clustering through block sampling [25], [26] would be worthwhile future

work. Specifically, cliques of a given graph may be determined by approximating their Laplacians. The proposed computationally

efficient spectral approximation may permit the identification of highly connected vertices without the need to traverse through

the entire graph.
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