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ABSTRACT

We consider the problem of information aggregation in federated
decision making, where a group of agents collaborate to infer the
underlying state of nature without sharing their private data with
the central processor or each other. We analyze the non-Bayesian
social learning strategy in which agents incorporate their individual
observations into their opinions (i.e., soft-decisions) with Bayes rule,
and the central processor aggregates these opinions by arithmetic or
geometric averaging. Building on our previous work, we establish
that both pooling strategies result in asymptotic normality character-
ization of the system, which, for instance, can be utilized to derive
approximate expressions for the error probability. We verify the the-
oretical findings with simulations and compare both strategies.

1. INTRODUCTION AND RELATED WORK

The centralized strategy has been the traditional form for collab-
orative decision-making, where data is collected from all sources
and processed at a central controller, fusion center or cloud. How-
ever, this approach raises concerns about data privacy and commu-
nication costs. In this work, we study the paradigm of federated
decision-making, which enables cooperative decision-making with-
out data collection [1–3]. For example, in healthcare applications,
federated decision-making can be used to test possible hypotheses
without gathering private data from siloed institutions [4]. More-
over, in classification tasks, agents (e.g., mobile device users) may
have different views of a physical phenomenon such as scenery as
in multi-view learning [5], and the server may want to classify the
scene or infer the state of environment without collecting the local
data of users.

The setting we consider in this work, which is described in
Sec. 2, is an instance of locally Bayesian (a.k.a. non-Bayesian) so-
cial learning [6–10] that is based on general decentralized networks.
Here, we only consider the special case of a star network topology
where all agents are connected to a central node. In social learning,
the goal is to infer the hypothesis that best describes the observations
received from the environment. The true hypothesis is common for
all agents and hence cooperation is of interest for all agents. To
this end, at each time instant, (i) distributed agents process their
private data locally and send their opinions (i.e., soft-decisions)
to the server, (ii) the server pools the information received from
agents and broadcasts the aggregated belief back to the agents, and
(iii) the agents use the broadcasted belief as a prior belief for their
subsequent opinions.

Note that this setting has close ties with the distributed detection
literature [11–15], which typically involves sharing log-likelihood

This work was supported in part by grant 205121-184999 from the Swiss
National Science Foundation (SNSF). Emails: {mert.kayaalp, yunus.inan,
emre.telatar, ali.sayed}@epfl.ch., visa.koivunen@aalto.fi

Fig. 1: Data types at the edge devices can be highly heterogeneous.
Image from: freepik.com.

ratios for each data and assumes spatial independence and/or ho-
mogeneity across agents. In contrast, in the social learning frame-
work, agents share beliefs (posteriors) formed over time, rather than
a statistic about individual data. In this way, they can incorporate
their individual priors as well. Furthermore, in social learning, data
is not required to be independent between agents nor identically dis-
tributed. In fact, agents can possess different data types (e.g., text,
video), as in multi-modal machine learning — see Fig. 1. The feder-
ated decision-making is also related to federated learning [16–19] as
they both fall under the umbrella of federated analytics [1–3], which
aims to enable cooperation among multiple users while preserving
privacy of data. However, federated learning focuses on training ma-
chine learning models with labeled data samples, whereas the current
setting involves making collaborative inferences without sharing raw
observations.

In this paper, we address the following problem: How should
the server aggregate information received from multiple distributed
agents that process the data locally and share only their local soft de-
cision statistics? Two of the most widely used methods for combin-
ing probability vectors are arithmetic averaging (AA), a.k.a. linear
opinion pooling, and geometric averaging (GA), a.k.a. logarithmic
opinion pooling. The distinct properties of these procedures are
well-established in the literature — see, e.g., [20]. In our previous
work [21], we investigated the performance of AA and GA strategies
in the general social learning setting. For the special case of feder-
ated architectures, we derived an exact expression for the asymptotic
convergence rates of beliefs. Different from prior works that only
compare AA and GA with some assumptions, such as assuming only
one step of fusion [22–24] or assuming specific/particular distribu-
tions like Gaussian or Poisson [22, 24, 25], our analysis considered
repeated fusion of beliefs without any assumption on the distribution
of data. In this work, we extend our previous findings and show that
the asymptotic behavior of both AA and GA can be characterized
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with normal distributions and the asymptotic error probabilities of
both strategies can be established accordingly. The results provide
further insight into the arithmetic and geometric fusion rules, and
can be utilized for designing federated decision-making systems.

Notation. Random variables are written in boldface letters. We use
“proportional to” symbol ∝ whenever the LHS of an equation is a
proper normalization of the RHS. The KL-divergence between two
distributions p and q is denoted by DKL(p||q).

2. FEDERATED DECISION MAKING

We consider a distributed hypothesis testing task in which a groupK
of K agents, aided by a central controller or server, performs infer-
ence on a phenomenon of interest. More formally, the agents seek
to choose the true hypothesis θ◦ from a finite set of H hypotheses,
Θ = {1, 2, . . . , H}. At each time instant i, agent k receives a per-
sonal observation ξk,i from the environment that is distributed ac-
cording to the marginal likelihood function Lk(·|θ◦) (since the true
hypothesis is θ◦). The likelihood functions are allowed to depend on
the agent index k, so that the data distributions across the different
agents can be heterogeneous. We assume that the environment is sta-
tionary, and that the data is independent and identically distributed
(i.i.d.) over time at each agent. However, we do not make any as-
sumption on spatial dependence, i.e., there is no assumption on the
dependence among different agents. Each agent k only knows its
own local likelihood models Lk(ξ|θ) for each θ ∈ Θ, which repre-
sent how likely an observation ξ is produced by θ. Furthermore, the
server does not need to possess any information about the distribu-
tion of data over the agents.

The agents do not share their private raw data with the server: all
data processing and ownership are local. Each agent k only shares its
belief (i.e., opinion) ψk,i about the possible hypotheses, which is a
probability mass function over Θ. In other words,ψk,i(θ) represents
the amount of confidence agent k has on the proposition “θ = θ◦”,
at time instant i. Once the server receives the intermediate beliefs
from the distributed agents, it pools them and broadcasts the aver-
aged belief back to the agents. In this work, we study the widely
used linear (AA) and logarithmic (GA) pooling strategies, although
there are other variations [20]. We now motivate the setting with two
real-world applications.

Example 1 (Crowd size estimation). Crowd counting aims to esti-
mate the number of people in a given area using visual or other sen-
sory data. The possible hypotheses are the size of the crowd, such as
“the number of people in the event is between 500-1000”. Agents,
i.e., users cooperating with the server, obtain data in the form of
photos and videos of their surroundings, or their mobile devices can
measure the number of possible connections over Bluetooth. Due to
privacy concerns, users may prefer not to share their raw data with
the server. In addition, transmitting raw data can create commu-
nication bottlenecks at the server. Therefore, employing the social
learning strategy, users would only share their beliefs over the set
of hypotheses. They can form their beliefs by using local likelihood
models, e.g., by using pre-trained neural network models on their
devices to estimate the crowd size based on images [26]. �

Example 2 (Flexible spectrum use). Spatially distributed sensors
or mobile devices can try to estimate the number of targets or active
wireless emitters within a particular area. For example, in the radio
spectrum, the mobile devices can measure the local occupancy and
field levels to distinguish between idle and congested spectrum, or

map the radio environment. This practice can enhance the environ-
mental awareness, and allocate the resources optimally in order to
improve the wireless communication. Exchanging beliefs only rather
than raw data can be advantageous in terms of privacy and commu-
nication costs. �

To form the beliefs, agents execute the non-Bayesian social
learning strategy [6–9] under the special case of star topologies. At
each time instant i, agents first process their observations in a locally
Bayesian manner:

ψk,i(θ) ∝ Lk(ξk,i|θ)µi−1(θ) (Adapt), (1)

and then share these intermediate beliefs with the server. If the server
employs AA for information fusion, the updated belief is a weighted
arithmetic average of the intermediate beliefs from different agents:

µi(θ) =
∑
k∈K

πkψk,i(θ) (AA). (2)

Here, π = [π1, . . . , πK ]T is a vector of the confidence weights πk
the server assigns to each agent k [12, 27]. We assume that these
weights are positive, sum up to 1, and are constant over time. Al-
ternatively, if the fusion rule is GA, the updated belief is a weighted
geometric average:

µi(θ) ∝
∏
k∈K

(ψk,i(θ))
πk (GA). (3)

The server then sends the updated belief to the agents, and they exe-
cute the same steps repeatedly over time by using the updated beliefs
and locally observed data.

Remark 1. An important distinction between AA and GA lies in
their handling of initial beliefs and their sensitivity to individual be-
liefs. In AA, only one agent having a positive initial belief on the
true hypothesis is sufficient. In contrast, in GA, all agents must have
positive initial beliefs on the truth in order not to discard it from the
beginning. Furthermore, GA is more sensitive to small beliefs com-
pared to AA. This is because, if some agents’ beliefs are very small,
they impact the product more significantly compared to the sum. In
other words, GA grants the agents a veto power: if one agent trans-
mits a belief entry as 0, the combined belief also becomes 0. In
general, giving this level of autonomy to individual agents depends
on the application at hand. �

3. ASYMPTOTIC NORMALITY OF AA AND GA

In this section, we analyze the asymptotic behavior under both fu-
sion strategies. In order to avoid pathological cases, we assume that
each observation has finite information about the true hypothesis.
That is to say, for each agent k and for each hypothesis θ ∈ Θ, we
assume DKL(Lk(·|θ◦)||Lk(·|θ)) < ∞. This implies that likelihood
functions have the same support. Moreover, in order to uniquely
distinguish the true hypothesis, we need the following condition.

Assumption 1 (Global identifiability). For each wrong hypothe-
sis θ 6= θ◦, there exists at least one clear-sighted agent k with
DKL(Lk(·|θ◦)||Lk(·|θ)) > 0. �

Note that this assumption does not require local identifiability,
which is an agent’s ability of inferring θ◦ without any cooperation.
As a result, all agents can benefit from cooperation. Under Assump-
tion 1, it is already known that AA [6, 7, 28] and GA [8, 9] result



in consistent truth learning, that is, the beliefs on the true hypothesis
converge to one almost surely. In this work, we further show that un-
der both AA and GA fusion rules, the asymptotic error probabilities
can be calculated with Gaussian cumulative distribution functions
(CDFs). We start with the AA strategy.

Lemma 1 (Asymptotic normality of AA). For each wrong hypoth-
esis θ 6= θ◦, we define the mean and variance

ρA , −E

[
log

(∑
k∈K

πkrk,i

)]
, σ2

A , Var

[
log

(∑
k∈K

πkrk,i

)]
,

(4)
in terms of the likelihood ratios

rk,i ,
Lk(ξk,i|θ)
Lk(ξk,i|θ◦)

. (5)

If σ2
A <∞, it holds under Assumption 1 that

lim
i→∞

P
(

logµi(θ) + ρAi

σA
√
i

≤ t
)

= Φ(t), (6)

where Φ(t) is the standard Gaussian cumulative distribution func-
tion.

Proof Sketch. For the complete proof, see Appendix A. Consider an
arbitrary θ 6= θ◦. For notational simplicity, define

xi , logµi(θ), Li , log

(∑
k∈K

πkrk,i

)
. (7)

Since Li’s are assumed to be i.i.d. and of finite variance, the central
limit theorem [29] yields:

lim
i→∞

P
(∑i

j=1Lj + ρAi

σA
√
i

≤ t
)

= Φ(t). (8)

Therefore, if we show that the distance between 1√
i
xi and 1√

i

∑i
j=1Lj

goes to zero with high probability, we are done. To that end, we
utilize the result from [21] which states

1

i
xi → −ρA as i→∞, almost surely. (9)

In particular, we use the following bootstrapping argument on (9):
There exists an i0 after which (i.e., ∀i ≥ i0)

µi(θ) ≤ exp{−i(ρA − ε)}, ∀θ 6= θ◦ (10)

with high probability. This result enables a finer study of the evolu-
tion of xi as i→∞. �

Note that Lemma 1 can equivalently be given in terms of the log-
belief ratios.

Corollary 1. If we define the log-belief ratio λi(θ) , log
µi(θ

◦)

µi(θ)
,

for each θ 6= θ◦, Lemma 1 implies that

lim
i→∞

P
(
λi(θ)− ρAi

σA
√
i

≤ t
)

= Φ(t). (11)

Proof Sketch. For the complete proof, see Appendix B. Essentially,
the proof follows from consistent truth learning, i.e., µi(θ◦) → 1
almost surely as i → ∞. This implies that, as i → ∞, logµi(θ)
and logµi(θ)− logµi(θ

◦) behave similarly. �

Next, we investigate the behavior of beliefs under the GA fusion
rule.

Lemma 2 (Asymptotic normality of GA). For each wrong hypoth-
esis θ 6= θ◦, we define the mean

ρG , −E

[∑
k∈K

πk log rk,i

]
=
∑
k∈K

πkDKL(Lk(.|θ◦)||Lk(.|θ)) (12)

and the variance

σ2
G , Var

[∑
k∈K

πk log rk,i

]
. (13)

If σ2
G <∞, then under Assumption 1 it holds that

lim
i→∞

P
(
λi(θ)− ρGi

σG
√
i

≤ t
)

= Φ(t). (14)

Proof. The proofs from [8, 9] for the convergence rate analysis can
be easily extended to establish asymptotic normality. From (1) and
(3), the log-belief ratio λi(θ) evolves according to the recursion:

λi(θ) = λi−1(θ)−
∑
k∈K

πk log rk,i. (15)

Expanding the recursion over time, we obtain

λi(θ) = −
i∑

j=1

(∑
k∈K

πk log rk,j

)
+ λ0(θ). (16)

Since (i) λ0(θ) <∞ due to initial beliefs being positive, (ii) rk,i’s
are i.i.d., and (iii) σ2

G <∞, an application of the central limit theo-
rem [29] concludes the proof. �

In Lemmas 1 and 2, we have established the asymptotic nor-
mality for each wrong hypothesis, which allows approximating the
error probabilities when agents or the central processor employs a
maximum a-posteriori (MAP) rule to estimate θ◦. It is important
to note that under spatial independence, GA matches the optimal
Bayes posterior, which attains minimum error probability, when the
confidence weight πk on each agent k is uniform. Additionally, the
convergence rates ρG and ρA were already established in previous
works [8, 9] and [21] respectively. Notice that ρG ≥ ρA — apply-
ing Jensen’s inequality to the equation on the left in (4), we obtain
(12). However, this does not directly imply that GA has a better
performance in probability of error criterion since it depends on the
variances as well. Our simulations indicate, however, that GA has
lower error probability in general. We leave it to future work to de-
termine whether GA is superior to AA in terms of asymptotic error
probability under any data distribution or confidence weight config-
uration — such as in the convergence rate case.

4. NUMERICAL RESULTS

We consider a binary hypothesis testing problem with K = 10 dis-
tributed agents connected to a fusion center. In the first experiment,
agents receive i.i.d. Gaussian observations with mean 0 under the
true hypothesis θ◦, and with mean 1 under θ 6= θ◦. For both hy-
potheses, the correlation matrix is the identity matrix IK , i.e., data is
independent across agents. A possible application of this experiment
is in flexible spectrum use, for example in cognitive radios. The pos-
sible hypotheses are whether the spectrum is idle or not. If there is
noise only, the signal distributions would be central (i.e., 0 mean).



(a) (b)
Fig. 2: (a) For the first experiment with Gaussian data, the histograms of λ̃(A)

i (θ) and λ̃(G)
i (θ) are drawn as shaded bar plots with colors

blue and red respectively. The standard normal density G(t) is shown as solid black line. (b) For the second experiment with exponentially
distributed data, the histograms of λ̃(A)

i (θ) and λ̃(G)
i (θ) are drawn as shaded bar plots with colors blue and red respectively. The standard

normal density G(t) is shown as solid black line.

(a) (b)
Fig. 3: (a) For the uncorrelated Gaussian case, histograms of λ(A)

i (θ) and λ(G)
i (θ) are drawn as shaded bar plots with colors blue and red

respectively. (b) For the correlated Gaussian case, histograms of λ(A)
i (θ) and λ(G)

i (θ) are drawn as shaded bar plots with colors blue and red
respectively.

Otherwise, if there is a signal present, it would not be 0 mean. We
choose the combination vector as
π = [0.13, 0.2, 0.09, 0.15, 0.08, 0.05, 0.1, 0.05, 0.1, 0.05]. (17)

If we take the time horizon i = 5000 and repeat the experiment
for 500 realizations, we obtain the histograms given in Figure 2a.
Specifically, we obtain the normalized log-belief ratios:

λ̃
(A)
i (θ) ,

λ
(A)
i (θ)− ρAi√

iσA
, λ̃

(G)
i (θ) ,

λ
(G)
i (θ)− ρGi√

iσG
(18)

and plot their histograms in density forms (denoted by f (A)(t) and
f (G)(t), respectively) to compare them with the standard normal
density G(t) , 1√

2π
exp(−t2/2). In addition to the visual matching

supporting our claims, we performed a Shapiro-Wilk test for testing
the normality of λ̃(A)

i (θ) and λ̃(G)
i (θ). The resulting p-values turn

out to be 0.66 and 0.54, which strongly support the null hypothesis
of normal distribution.

For the second experiment, we assume that agents receive i.i.d.
exponential observations with mean 1 under θ◦ and with mean 0.5
under θ 6= θ◦. The other problem parameters are the same as the first
experiment. The resulting histograms are given in Figure 2b. The
Shapiro-Wilk test yields p-values 0.93 and 0.53, respectively, again,
strongly supporting the null hypothesis of normal distribution.

We also conducted a third experiment to verify that correlations
between the agents affect ρA but do not affect ρG (see (12)). To

compare correlated versus uncorrelated data across agents, we sim-
ulate the setting from the first experiment, except that this time we
set the correlation matrix as Σ = 0.951K1

T
K + 0.05IK . Note that

this choice makes the data highly correlated. Then, we plot the his-
tograms of λ(A)

i (θ) and λ(G)
i (θ) (without normalization) for both

uncorrelated and correlated cases in Figure 3a and 3b. We can ob-
serve that ρG = 0.5 is unchanged by the correlations — the obser-
vation that f (G)’s are concentrated around i × ρG = 2500 supports
this fact. In contrast, ρA increases drastically under the presence of
positive correlations. Nevertheless, in both cases considered, GA
outperforms AA in terms of the error probability.

5. CONCLUSION

In this work, we considered two pooling algorithms for federated
decision making, namely AA and GA. The choice between AA and
GA may depend on the specific task at hand. We study their per-
formance in terms of error probability, and establish asymptotic nor-
mality which is a valuable tool that can help avoid the need to simu-
late the algorithm for large time horizons. Note that the parameters
in the normal approximations can be obtained either analytically or
through Monte Carlo simulations, which is more efficient compared
to the exact simulation of the entire system. We leave the study for
asymptotic normality of general decentralized networks to a future
work.
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A. PROOF OF LEMMA 1

Consider an arbitrary θ 6= θ◦. We denote the log-belief on θ as

xi , logµi(θ). It was shown in [21] that
1

i
xi → −ρA almost

surely as i→∞. This implies that for any ε > 0, there exists an i0
such that

A0 , {µi(θ) ≤ exp{−i(ρA − ε)}, ∀i ≥ i0, ∀θ 6= θ◦} (19)

is a high-probability event. After this observation, we split the proof
into two parts:

(a) lim infi→∞ P
(
xi + ρAi

σA
√
i

< t

)
≥ Φ(t)

(b) lim supi→∞ P
(
xi + ρAi

σA
√
i
≤ t
)
≤ Φ(t).

Then, it readily follows from (a) and (b) that

lim
i→∞

P
(
xi + ρAi

σA
√
i
≤ t
)

= Φ(t). (20)

A.1. Proof of (a)

Using (1) and (2), the log-belief xi can be upper bounded under the
event A0 as

xi ≤ xi0 +

i∑
j=i0+1

Lj−
i−1∑
j=i0

log(1−H exp{−j(ρA − ε)}) (21)

where we defined Li , log(
∑
k πkrk,i) and recall that H is the

number of hypotheses. Since

−
∞∑
j=i0

log(1−H exp{−j(ρA − ε))} <∞, (22)

for every δ > 0 there must exist an i+1 > i0 such that for all i ≥ i+1 :

− 1√
i

i−1∑
j=i0

log(1−H exp{−j(ρA − ε))}) ≤ δ. (23)

Consequently, the event

A+
1 ,

{ 1√
i
xi ≤

1√
i
xi0 +

1√
i

i∑
j=i0+1

Lj + δ,∀i ≥ i+1
}

(24)

is also a high-probability event. Furthermore, since xi0 is almost
surely finite, there is an i+2 > i0 such that

A+
2 , {

1√
i
xi0 ≤ δ,∀i ≥ i

+
2 } (25)

is a high-probability event as well. Accordingly, for any outcome in
A+ , A+

1 ∩ A
+
2 , and for i ≥ max{i+1 , i

+
2 }, we have

1√
i
xi ≤

1√
i

i∑
j=i0+1

Lj + 2δ, (26)

which directly implies

xi + ρAi

σA
√
i
≤
∑i
j=i0+1Lj + ρAi

σA
√
i

+
2δ

σA
. (27)

Finally, with A+ denoting the complement of A+, we obtain that
for i ≥ max{i+1 , i

+
2 }:

P
(
xi + ρAi

σA
√
i
≥ t
)

= P
(
xi + ρAi

σA
√
i
≥ t ∩ A+

)
+ P

(
xi + ρAi

σA
√
i
≥ t ∩ A+

)
≤ P

(
xi + ρAi

σA
√
i
≥ t ∩ A+

)
+ P(A+)

≤ P
(∑i

j=i0+1Lj + ρAi

σA
√
i

≥ t− 2δ

σA

)
+ P(A+), (28)

where (28) follows from (27). Since Li’s are i.i.d. random variables
with finite variance, we can use the central limit theorem (CLT) [29]
and arrive at

lim sup
i→∞

P
(
xi + ρAi

σA
√
i
≥ t
)
≤ 1− Φ(t) (29)

by using the facts that δ and P(A+) can be made arbitrarily small
and Φ(·) is continuous. Note that (29) is equivalent to

lim inf
i→∞

P
(
xi + ρAi

σA
√
i

< t

)
≥ Φ(t). (30)

A.2. Proof of (b)

Similar to the proof of (a), we obtain a lower bound for xi under the
event A0 by

xi ≥ xi0 +

i∑
j=i0+1

log

(∑
k∈K

πkrk,j
1 + exp{−(j − 1)(ρA − ε)}

∑
θ 6=θ◦ rk,j(θ)

)

≥ xi0+
i∑

j=i0+1

log

(∑
k∈K

πkrk,j
1 + exp{−(j − 1)(ρA − ε)}

∑
k∈K

∑
θ 6=θ◦ rk,j(θ)

)

≥ xi0+
i∑

j=i0+1

Lj −
i∑

j=i0+1

log

(
1 + exp{−(j − 1)(ρA − ε)}

∑
k∈K

∑
θ 6=θ◦

rk,j(θ)

)

≥xi0+
i∑

j=i0+1

Lj −
i∑

j=i0+1

exp{−(j − 1)(ρA − ε)}
∑
k∈K

∑
θ 6=θ◦

rk,j(θ).

(31)

Comparing with (21), we aim to show that the rightmost term in (31),
i.e.,

Si ,
i∑

j=i0+1

exp{−(j − 1)(ρA − ε)}
∑
k∈K

∑
θ 6=θ◦

rk,j(θ) (32)

tends to zero almost surely when divided by
√
i. Observe that Si is

non-decreasing. Hence,

S∞ , lim
i→∞

Si (33)

exists almost surely, i.e.,

lim sup
i→∞

Si = lim inf
i→∞

Si. (34)

Moreover, by the monotone convergence theorem [30],

E[S∞] = lim
i→∞

E[Si] <∞. (35)



Consequently, S∞ must be finite almost surely. Then, by combining
the inequality

0 ≤ Si√
i
≤ S∞√

i
(36)

and the limit
S∞√
i
→ 0 as i → ∞ (both of which hold almost

surely), we conclude that
Si√
i
→ 0 almost surely as well. Therefore,

for every δ > 0 there must exist an i−1 > i0 such that for all i ≥ i−1 :

1√
i

i∑
j=i0+1

exp{−(j − 1)(ρA − ε)}
∑
k∈K

∑
θ 6=θ◦

rk,j(θ) ≤ δ. (37)

Then, proceeding similarly to the part (a), we define the high-
probability sets:

A−1 ,
{ 1√

i
xi ≥

1√
i
xi0 +

1√
i

i∑
j=i0+1

Lj − δ,∀i ≥ i−1
}

(38)

and
A−2 , {

1√
i
xi0 ≥ −δ,∀i ≥ i

−
2 }. (39)

By defining A− , A−1 ∩ A
−
2 , we arrive at the following analog to

(28) for i ≥ max{i−1 , i
−
2 }:

P
(
xi + ρAi

σA
√
i
≤ t
)
≤ P

(∑i
j=i0+1Lj + ρAi

σA
√
i

≤ t+
2δ

σA

)
+ P(A−),

(40)

which implies

lim sup
i→∞

P
(
xi + ρAi

σA
√
i
≤ t
)
≤ Φ(t), (41)

and the proof is complete.

B. PROOF OF COROLLARY 1

Notice that for any outcome in A0, defined in (19), it is true that

1−H exp{−i(ρA − ε)} ≤ µi(θ◦) ≤ 1, (42)

which implies

log(1−H exp{−i(ρA − ε)}) ≤ logµi(θ
◦) ≤ 0. (43)

Since
1√
i

log(1−H exp{−i(ρA − ε)})→ 0, (44)

the result of Lemma 1 applies here as well.
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