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Abstract—We present a vision based control strategy for
tracking and following objects using an Unmanned Aerial Vehicle.
We have developed an image based visual servoing method that
uses only a forward looking camera for tracking and following
objects from a multi-rotor UAV, without any dependence on
GPS systems. Our proposed method tracks a user specified
object continuously while maintaining a fixed distance from
the object and also simultaneously keeping it in the center of
the image plane. The algorithm is validated using a Parrot
AR Drone 2.0 in outdoor conditions while tracking and following
people, occlusions and also fast moving objects; showing the
robustness of the proposed systems against perturbations and
illumination changes. Our experiments show that the system is
able to track a great variety of objects present in suburban areas,
among others: people, windows, AC machines, cars and plants.

Keywords—multirotor control, Visual Servoing, Object Follow-
ing

I. INTRODUCTION

The motivation of this work is to show that Visual Object
Tracking can be a reliable source of information for Unmanned
Air Vehicles (UAV) to perform visually guided tasks on
GPS-denied unstructured outdoors environments. Navigating
populated areas is more challenging to a flying robot than
to a ground robot because it requires to stabilize itself at all
moments; in addition to the other usual robotics operations.
This provides a second objective to the presented work to
show that Visual Servoing, or positioning a Vertical Take-
Off and Landing (VTOL) UAV relative to an object at an
approximate fixed distance, is possible for a great variety of
objects. The capability of autonomous tracking and following
of arbitrary objects is interesting by itself; because it can be
directly applied to visual inspection among other civilian tasks.

The VTOL UAV platform used in the experimental work
is the multirotor Parrot AR.Drone 2.0, shown in Fig. 1. Recent
work has demonstrated that the the AR Drone is a realiable
platform for VTOL UAV vision based navigation algorithm
prototyping for GPS-denied environments, for example: au-
tonomous navigation of hallways and stairs [1], visual SLAM
based indoors navigation [2], reactive obstacle avoidance in
natural environments [3] and floor optical flow based naviga-
tion [4].

Fig. 1. (left) Image of the AR Drone 2.0 during one of the Visual Servoing
experiments. (right) Modified front image of the drone to show the cotroller
(green) references, (blue) feedback, and (red) control error.

The contributions of this paper are the integration of a
system that: performs Visual Servoing on a great variety of
targets, does not depend on GPS, and is able to achieve
person following while handling occlusions. This work has
been so far a feasibility project to showcase the possibilities of
Visual Servoing to operate in relatively spacious environments
in suburban areas. Its success has been achieved through
the knowlegeable choice of robust and reliable components,
namely: the open-source object tracker OpenTLD [5], [6],
and the AR Drone 2.0 (see Fig. 1-left). This project will be
improved in future work but the authors believe that the
current results already have value to the scientific commu-
nity. Several videos with descriptions about the presented
work on Visual Servoing using the AR Drone 2, a cheap
robotics platform, can be found on the following website:
http://robotics.asu.edu/ardrone2 ibvs/.

II. RELATED WORK

Recent research on Visual Tracking has been focused on
online learning and detection [6], [7]. Such trackers have
demonstrated to be able to track general targets online, which
is the reason why they were selected to be tested in our project.

Research on Image Based Visual Servoing (IBVS) has
shown that the performance of the robot depends on the set
of used image features, which should be decoupled [8] or
based on computing image moments on a group of points on
the target [9]. Recent research has included non-overlaping
multi-camera robotic systems [10]. More specific to our work
the research [11] discusses “eye-in-hand” systems where the
camera is fixed to a rigid body with actuated dynamics.



When compared to prior research, the main advantage
of our system is that OpenTLD allows to perform visual
servoing with a large number of different targets; which is
a big improvement compared to targets marked with blobs
of different sizes [12]; or to balloons [13], [14]. However, our
architecture is not able to estimate the depth at which the target
is located as in [15], or the relative attitude of the target with
respect to the drone, as in [16].

Fig. 2. Parrot AR.Drone 2.0 and its body reference frame, {Xm, Ym, Zm}.

III. SYSTEM DESCRIPTION

Our system consists of several modules that can commu-
nicate with each other under the Robot Operating System
(ROS) framework [17]. The AR.Drone 2.0 is commanded from
a computer via WiFi link using the ardrone autonomy ROS
package [18] to communicate with the Drone, which is based
on official AR-Drone SDK version 2.0. The following section
is dedicated to describe the system and its components.

A. System Overview

The main modules of our system are an object tracker
and an Image Based Visual Servoing (IBVS) controller. As
shown on Fig. 3, the drone is commanded by the controller
at 15-25 Hz calculating the drone reference commands based
on the bounding box provided by the object tracker. The
AR.Drone 2.0 is operated using the flight mode when the
object is tracked properly and it will be hovering otherwise.
The software sets the drone to hovering mode when the tracker
losses tracking for 200 ms or more. The following is a brief
description of each of the modules:

1) Object tracker: our software is currently using a C++
open source implementation of the OpenTLD tracker
[19]. The OpenTLD tracker was originally developed
by Z. Kalal at the University of Surrey during his
PhD Thesis [5], [6]. All the open source repositories
related to this library are located in [20], including a
C++ ROS wrapper.
This tracker can robustly track objects on the drone’s
video stream. A great advantage of object trackers
with learning capaibility is that they do not require
any previous knowledge of the tracked object. It
provides a bounding box (location, height and width)
around the tracked object along with a confidence
ratio. During our tests we have tested the tracker
during drone flights on a great variety of objects that
can be found in suburban areas, including: windows,
AC machines, cars, plants, logos and people (t-shirt
logos). The only constraints that were important in
order to get high repeatibility during tests were:
tracker’s learning is switched off to better handle
object occlusion and during object following of small
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Fig. 3. System overview, the AR.Drone 2.0 is commanded from a computer
over a WiFi link. The main components of the system are: the drone, the drone
driver (ardrone autonomy ROS package), the image rectification stage, the
object tracker (OpenTLD tracker) and the controller. The user only interacts
with the system to set the target to be visually tracked and to toggle the
model learning of the tracker, in order to attain improved performance handling
occlusions.

targets the bounding box should not include any
background.

2) IBVS controller: the controller closes four feedback
loops based on image features, which are the bound-
ing box location and size, at 15-25 Hz. The references
to the controller are desired location of the centroid
of the bounding box in the image, and the size of
bounding box. The resulting behaviour of the system
is that the drone will turn to look to the target
and approximately control its relative position with
regards to the target.

As a result of the above mentioned system architecture,
the sensor information required during the experiments is (see
Fig. 4):

1) During succesful object tracking: the built-in opera-
tion of the drone requires, at all times, to use the IMU
and the ultrasound altitude sensor. Additionally, our
offboard sofware uses only the front camera image to
control the vehicle. Note that the optical flow based
speed estimation is not used, either by the IBVS
controller or by the AR Drone 2.0 itself, during this
operation mode.

2) Whenever the object tracking is lost or when the
object is out of the image frame: the AR Drone
2.0 is automatically commanded to enter hovering
mode. As a result the optical flow speed estimation,
in addition to the previous sensors, is internally used
to stabilize the vehicle.

The following subsections explain the architecture of the
controller and the obtention of the controller gains.
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Fig. 4. Diagram of the Image Based Visual Servoing (IBVS) Controller.
Since the tracker is working properly at this moment, the drone is operating
under the flight mode and following the drone reference commands that the
off-board computer is sending via WiFi. During flight mode, the optical flow
speed estimation is unused. The figure shows the image features utilized by
the controller, which are: {fx, fy ∈ [0, 1]} related to the centroid position
and {f∆ > 0} to the size of the bounding box.

B. Image Based Visual Servoing (IBVS) Controller

An overview of the system focused on the description of
the controller is shown in Fig. 4. The user interacts with the
system only to: take off, land, start the controller, change the
IBVS controller references, select the targets to be tracked
and to toggle, on and off, the learning feature of the tracker.
As shown, the feedback measurements and the references
used by the controller are directly related to the target’s
bounding box on the image plane. Thus, the controller, as
implemented during the current experimental work is purely
a Visual Servoing controller. As depicted on Fig. 4, the drone
reference commands calculated by the controller are only taken
into account when the drone is operated on “Flight Mode”.
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Fig. 5. IBVS Controller Breakdown, the four PD controllers shown in Fig. 4
can be broken down to show how they relate to a regular position controller.

The following variables, measured in pixels, specify the
estimate of the target’s bounding box as returned by the object
tracker: horizontal xbb and vertical ybb location of its upper-left
corner, and its width wbb and height hbb. Additionally the size
constants of the image in pixels are: width wim = 640 px, and
height him = 360 px. The image features that are provided as

feedback to the controller are calculated as follows, see Eq. 1
and Fig. 4, where xtm is the frontal distance from drone to
target:

fx =
xbb + (wbb/2)

wim

fy =
ybb + (hbb/2)

him
(1)

f∆ =

√
wim · him
wbb · hbb

∝∼ xtm

Note that the image feature f∆ is approximately proportional
to xtm, the frontal distance from drone to target, which
results in simpler and better performance on Visual Servoing
controllers [8], [21].

The behaviour of the controller is succesful, but the con-
troller’s behaviour is affected by the following factors:

• The controller is tuned to follow targets of surface
size Aexp = 40×30 cm, at an expected distance of
dexp = 3 m.

• Multirotor’s degrees of freedom are not dynamically
coupled, but in our system they are coupled by the
controller architecture. The main couplings are the
following:

• Pitch reference commands intended to control the
distance to the target will cause the altitude controller
to react unnecessarily.

• Yaw speed and roll reference commands cause similar
movements on the horizontal centroid coordinate, fx.
Also, the dynamics of fx are dominated by the yaw
command. The effect on the system is that the PD
controller that generates the roll commands is mainly
stabilizing the platform laterally, but its action is not
enough to counteract moderate winds.

• Due to the fact that the AR Drone 2.0’s frontal camera
is fixed to the vehicle’s body, the yaw IBVS PD
controller has to be strong enough to prevent the target
of moving out of the image frame. A pan-tilt camera
would allow to avoid this situation.

At its current stage this project is mainly a feasibility project,
but the disadvantages of the current controller architecture will
be adressed in the near future. The next subsection introduces
a simple methodology to tune the IBVS controller gains.

C. Simple IBVS Controller tunning

As shown it is explained in this section, the IBVS Con-
troller gains are related to those of a position controller through
the relationship shown in Fig. 5, where each gain is shown to
be the result of the multiplication of three terms: process of
image formation on the camera, a previously tunned position
controller; and the stationary relationship between speeds and
drone reference commands.

The meaning of the variables and constants in the Fig. 5
are explained in the following enumeration:

• The target dependent parameters are the size of the
tracked object’s target surface, Aexp; and the expected
distance to the target dexp.



Fig. 6. Selection of on-board camera images showing targets upon which our system was tested: (house elements) a window with an AC machine, a chair, a
door and a small window; (roof elements) AC machinery on the roof and a roof part; (car elements) a moving car and a car logo; (street elements) a basketball
basket and a plant.

Fig. 7. Selection of on-board camera images, showing a person following test and how the system handles occlusions. The AR Drone 2.0 starts hovering until
it locates the target again and proceeds with the Visual Servoing task. The first three images show target occlusion by a tree, and the second three images by
another person. In our experience the learning feature of the tracker must be switched off in order to handle occlusions successfuly.

Fig. 8. Selection of on-board camera images from another person following test, which is explained in subsection IV-A. The drone follows a person along a
street in a suburban area, the experiment lasted 1.5 minutes and the tracking had to be recovered by hand only once.

• The camera dependent parameters are: the image reso-
lution along width wim and height him; αx, αy and the
horizontal view angle of the camera, “view anglex”,
which are obtained from the rectified image projection
matrix P :

P =

αx 0 x0 0

0 αy y0 0

0 0 1 0

 (2)

• {∆xtme,∆ytme,∆ztme,∆ψtme} is the estimated rel-
ative position of the target to the drone, expressed
in the drone’s reference frame, as shown in Fig. 2.
{vxr, vyr} are speed commands in the same reference
frame.

• PDvar1→var2 are the PD controllers of an already
tunned position controller which outputs speed com-
mands. For this experimental work the controller pre-
sented in [4] was used.

•
{
kθ→vx , kφ→vy

}
, are the static relationship between

the multirotor tilt and the attained horizontal steady-
state speed. In multirotors this constant is related
to the aerodynamic profile of the vehicle. For the
AR Drone with the indoors hull, they were estimated
to be ktilt→vh ≈ 7m/s

24◦ for angles lower than 8◦ [22].

•
{
θr, φr,

dψr

dt ,
dz
dt

}
are the reference commands, Fig. 2.

IV. EXPERIMENTS AND RESULTS

Several experimental flight videos are avaiable online on
our website: http://robotics.asu.edu/ardrone2 ibvs/. The avail-
able videos show the system performing the following Visual
Servoing tasks: two tests where the target matches the Aexp
and dexp parameters of the gain tunning; two tests where
various urban objects were used as targets, one of them with
selected targets moving along a street; a car and a person
following tests along suburban area streets; and two tests were
people were followed from close distances showing occlusion
handling.

Various tests were performed to ascertain what kind of
objects could be tracked visually. A selection of images that
includes house, roof, car and street elements is shown in Fig. 6.
The selected targets ranged from a quarter of the tunned size
to more than ten times the tunned target surface, Aexp. The
drone was able to visually track all these targets even when
the objects were at a distance, relatively far from the stable
visual tracking position.

A second battery of tests was performed to showcase
moving object following, mainly including people following
and some car following tests. For small moving targets, such as
logos on people’s t-shirts, the best performance was achieved
when no background is included in the bounding box. How-
ever, for big moving targets, the bounding box can be chosen
with background on it and the tracker and system will still



work successfuly. The reason for this is that big targets tend
to move slowly in the image plane, which accounts for the
tracker’s higher performance.

People following was highly succesful, which is the reason
why it is the main focus on this article. As shown on Fig. 7,
our solution can handle occlusion by objects such as trees and
also by other people.

A. Quantitative performance during a person following task

The experimental test corresponding to the images shown
in Fig. 8 was selected to showcase the performance of our
Visual Servoing controller. The test lasted for about 1 minute
and 30 seconds, where the drone followed a person in a
suburban area. The main variables of the controller are plotted
on Figs. 9 & 10.
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Fig. 9. Measured and reference values of the image features during a
30 seconds period of the experiment shown in Fig. 8. The f∆ plot shows
that the distance to the target varies slowly and it was estimated to be on the
5-7.5 m range, due to the target being 2.2 times smaller than expected; the
real distance was about sqrt(2.2) smaller, thus, in the 3.4-5 m range. Note
that the object tracker does not estimate f∆, the size of the target’s bounding
box, smoothly. fx has been well controlled around the reference value; its
graph also shows (red, dash-dot line) that the tracking was lost for a very
small period of time once. The reason why there are big variations on fy is
that this image feature is tightly coupled to the vehicle’s pitch, because the
camera is fixed to the vehicle’s body and the pitch commands are required to
follow the moving target.

Figs. 9 & 10 show the main variables of the controlled
system and show an overall succesful behaviour. There is no
noise in the image features, the drone commands or the attitude
and altitude of the drone. The coupling between pitch and
altitude through the fy image feature is noticeable.
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Fig. 10. Controller commands during a 30 seconds period of the experiment
shown in Fig. 8. As shown, none of the commands have a noticeable level
of noise. The pitch command has a negative average because the drone
is following a person and it has to move forward. The roll command is
approximately zero, as explained on the article the roll command is used
just to stabilize the vehicle laterally. The drone stayed at an altitude of
1 to 2.0 m during the experiment, as measured by the ultrasound altitude
sensor. The altitude speed command suffer from the influence of fy on the
pitch commands, because fy is the image feature used to feedback the altitude
controller. The yaw plot shows a constant heading while crossing the street
and then it changes when the drone moves parallel to the street.

This flight, shown in Figs. 8 & 9 & 10, lasted one more
minute. After that point the tracking was lost due to the tracker
increasingly learning the background and finally loosing the
target. After this event, the main target was reentered by hand
again and the vehicle succesfully followed the target along the
street for another 30 seconds. The total flight distance was
about 90-110 m, with no user interaction other than target
selection. These values allow us to estimate that the drone had
to move an average forward velocity of 1.5 m/s.

As discussed on the papers and supported by the exper-
imental videos, the system as a whole has demonstrated to
be robust to temporary loss of the visual tracking. This fact



is provided by the flying mode switching strategy and by the
reliability of the AR Drone 2.0 hovering mode. The system
has also been shown to be able to perform visual servoing on
a great variety of targets, with robustness to low winds and no
dependence on GPS.

V. CONCLUSIONS

In this paper, a visual based object tracking and following
system is presented. Our flying robot is able to follow a
variety of static and moving targets, without any dependence
on GPS signals, using a recently developed visual tracking and
target model learning algorithm. The system does not require
the targets to be marked, and no prior knowledge about the
targets is required. Our system has been able to perform Visual
Servoing task on targets of varying size, from a quarter to more
than ten times the tunned target size, and at varying distances
from 1-2 m to 10-15 m of distance from the target. It has also
achieved person following at up to 1.5 m/s of speed.

All the experiments have been performed in an unstructured
suburban area, in an outdoors environment. Our system has
been tested for person following tasks being able to handle
occlusion by trees or other people. The computations are
performed in an offboard computer that commands the vehicle
from a WiFi link. Safety is assured even when the wire-
less connection is suddently degraded by using a multirotor
platform that can attain on-board autonomous hovering using
floor optical flow. The main contribution of the paper is to
demonstrate that Visual Servoing on a great variety of targets
including person following with occlusions handling, on an
unstructured suburban area, and without dependence on GPS
signals is feasible by a current low-cost but reliable UAV
robotic platform.
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