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Abstract A robotic boat is moving between two points when
it encounters an obstacle of unknown size. The boat must
find a short path around the obstacle to resume its original
course. How should the boat move when it can only sense
the proximity of the obstacle, and does not have prior infor-
mation about the obstacle’s size? We study this problem for
a robotic boat with a forward-facing sonar.

We study two versions of the problem. First, we solve a
simplified case when the obstacle is a rectangle of known
orientation but unknown dimensions. Second, we study a
more general case where an arbitrarily shaped obstacle is
contained between two known parallel lines. We study the
performance of the algorithms analytically using competi-
tive analysis and present results from field experiments. The
experimental setup is relevant for harbor patrol or autonomous
navigation in shallow water.

1 Introduction

Imagine an autonomous robot equipped with a forward fac-
ing sensor. The robot detects an obstacle in front of it. How
can the robot go around the obstacle as quickly as possible?
This is a classical robot navigation problem.

Now imagine the robot is a boat, equipped with a for-
ward facing sonar (Figure 1). The narrow width of the sonar,
the noisy and sometimes ambiguous sonar readings, and the
motion constraints of the boat make the problem challenging
in this domain.
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Fig. 1 The autonomous boat (top), with sonar visible (bottom).

In the literature, there are two primary approaches in
solving this type of online navigation problems. BUG Algo-
rithms [1] provide easy to implement strategies which work
well in simple environments with small obstacles. However,
they do not have strong performance guarantees and their
performance can be arbitrarily bad as the obstacles grow
larger. In contrast, online navigation algorithms with prov-
able performance guarantees have been proposed in the lit-
erature [2–4]. However, these algorithms are rarely imple-



mented on real robot systems since they do not address mo-
tion and sensing constraints.

In this paper, we present novel navigation strategies which
are both provably efficient and suitable for field implemen-
tation. We first start with the case of a rectangular obstacle
with unknown size. The justification for this assumption is
that many artificial objects (ships, docks etc.) have rectangu-
lar shapes. Moreover, long shorelines or boundaries of veg-
etated areas can be approximated by a line. Obtaining the
orientation of the line or the face of the rectangle amounts
to fitting a line to initial readings.

We provide an adaptation of the doubling strategy (ex-
plained in Section 3) which accounts for motion and sens-
ing constraints and analyze its performance. While testing
the algorithm in field experiments, we realized that in some
cases it becomes very hard to fit a line to initial readings.
Moreover, the assumption of linearity is violated in most
settings. Therefore, we also study the problem in a more
general setting where we are given two parallel lines bound-
ing an arbitrarily shaped obstacle. Here the parallel lines
represent a weak prior on the extent of the obstacle. Our
analysis shows that this generality comes at the expense of
slightly reduced theoretical performance. However, field ex-
periments demonstrate the effectiveness of the strategy.

2 Related Work

Several techniques have recently been developed to enable
obstacle avoidance in sonar equipped Autonomous Surface
Vehicles (ASVs).

Heidarsson and Sukhatme [5] implemented the Vector
Field Histogram (VFH) [6] method for sonar-based obstacle
avoidance. They also introduced an echo filtering process,
which averaged the local maximas. Vector field methods are
subject to local minima and the same vehicle with the same
potential function in a different environment can result in
success or failure with no guarantee.

Caladoet al. [7] used Histogramic In-Motion Mapping
(HIMM) [8] to build grid maps of the sensed obstacle. A
convex polygon obstacle is built based on the line segments
extracted by Hough transform. Given the constructed map,
a potential field method was used for navigation.

Petillot et al. mapped the surrounding obstacles by seg-
menting and extracting obstacle features from the sonar im-
age [9]. Then vehicle motion planning was converted into a
nonlinear programming problem while the extracted obsta-
cles were treated as inequality constraints [10]. Nonlinear
programming approaches can be less succeptible to local
minima than vector field methods. However, they require
prior knowledge of the location and size of the obstacles.
They also do not guarantee the length of the path and the
time required to avoid an obstacle with arbitrary shape and

size, whereas our approach can handle arbitrarily large ob-
stacles and still reach the target in finite time with a near
optimum competitive ratio.

3 Preliminaries

An online algorithmis an algorithm which does not have
access to its entire input in advance. Instead, the input is re-
vealed during the execution of the algorithm. For example,
a memory management algorithm must choose which pages
to retain in the cache without knowing future page requests.
The obstacle avoidance problem studied in this paper is an
online problem since we must choose a motion strategy that
reacts to the sonar measurements received during execution
without knowing the exact geometry of the obstacle in ad-
vance.

The performance of an online algorithmA is measured
using its competitive ratio which is given by

c(A) = maxσ
A(σ)

OPT(σ)
(1)

whereσ varies across all inputs,A(σ) is the performance
of A for input σ andOPT(σ) is the optimaloffline perfor-
mance – i.e. the performance of an optimal algorithm which
has access to the entire inputσ in advance. The competitive
ratio is a measure of worst-case deviation from the optimal
offline behavior. Further information on online problems can
be found in [11].

The lost-cow problemis a classical online optimization
problem which highlights important aspects of online algo-
rithm design. In this problem, a short sighted cow is lost and
tries to find the only gate on a straight fence. The problem
is formulated as follows. The cow and the gate are on a line,
the gate’s location is unknown, and the cow starts fromx= 0
in order to find the gate. The true location is chosen by an
adversary. Note that the cow can not simply pick a direction
and move until finding the gate as this strategy would have
unbounded competitive ratio (the adversary chooses the gate
location in the opposite direction.) Instead, the cow can fol-
low the so-calleddoubling strategyto effectively find the
gate: Initially, at roundi = 0 the cow is atf0 = 0. It moves
in such a way that at theith round, the cow is at locationfi
where fi = (−2)i−1 for i ≥ 1. In other words, in odd rounds
the cow is to the right of the origin while in even rounds the
cow is to the left of the origin (Fig. 5). Using elementary
computations, it can be shown that the doubling strategy has
a competitive ratio of 9 [12].

Due to sensing and motion uncertainty and constraints,
designing a similar online algorithm for obstacle avoidance
is non-trivial. In this paper, we present novel online strate-
gies, analyze their competitive ratios and validate them in
field experiments.



4 System Description

Our test system is an Oceanscience Q-Boat 1800D1. The
Q-Boat is 1.8m long, with a cruising speed of about 1 m/s
and a turning radius ofRt = 5m. During the experiments, we
moved at a slower speed of about 0.5 m/s. The Q-Boat is au-
tonomously controlled with a laptop computer. Localization
was achieved through the use of a GPS unit and a compass,
filtered with an Extended Kalman Filter.

A forward-looking, single-beam sonar unit was mounted
on the bow of the vehicle, as shown in Figure 1. The sonar
unit is an Imagenex 852 Digital Echo Sounder2. It has a
conical acoustic transducer with 10 degree beam width. The
sonar sound frequency is 675kHz. As configured the sonar
unit provides 500 measurements for each pulse, each mea-
surement representing the intensity of the sonar return in an
evenly spaced range bin determined by the configured max-
imum range. For the maximum range of 50m, each range
bin represents a 0.1m increment. The sonar pulses were sent
once a second. After each pulse, we smooth the data returned
by convolving the 500 bin vector with a Gaussian filter that
hasσ = 15. For each return we detect the distance that has
the maximum return intensity. If this intensity is above our
threshold of 30 out of 127, we place an obstacle point at the
appropriate distance in the appropriate direction from thees-
timated position of the boat.

Heidarssonet al [5] indicated that tilting the sonar by
10 degrees towards the lake surface or towards the lake bot-
tom had little effect on the detection of obstacles. However
we found that in shallow water, tilting the sonar could cause
the bottom to be detected as an obstacle even if the water
was clearly deep enough for our ASV to comfortably oper-
ate (1.5 meters in depth). In the end we decided to operate
with the sonar tilted downward slightly. This ensured that
the ASV could clearly detect the rising lakebed before the
shore, but did not cause any false positives when the ASV
was facing away from the shore.

5 Motivation and Problem Formulation

We address an online navigation problem, where a vehicle
similar to the ASV described above detects an obstacle. First
we describe the model used for the ASV. See also Figure 2.

Motion Constraints:The ASV can position its rudder to
direct thrust from a single motor. The maximum angle of
the rudder,β , determines a minimum turning radiusr. The
forward velocity can be set independently of the rudder. In
the remainder of the paper, we consider the forward veloc-
ity fixed at a constant, labeledv. In practice, the forward

1 www.oceanscience.com
2 www.imagenex.com

Fig. 2 The setup for Problem 1. The robot, moving from the left, en-
counters the rectangular obstacleR. With no information other than the
orientation of the leading edge, the robot must find the path pastthe ob-
stacle (L) or one of comparable length. The robot is equipped with a
range sensor which can sweep out an angleΘ , and detect obstacles up
to rangeD.

Fig. 3 Left: Problem setup for Problem 2. The optimal path is shown
as an arrow, which lies tangent to one of the extreme points of the
polygon. The optimal path, therefore, has length at least

√
d2+s2. The

robot will move up and down the lineℓ, probing forward for the ex-
treme points of the polygon by travelling toward lineℓ2, up to distance
s, or returning toℓ if it has encountered the obstacle. Right: An exam-
ple execution ofAdvanceRetreat. The goal is to make sufficient
progressspast the obstacle. The robot chooses points toprobeaccord-
ing to the doubling strategy. Each point is checked until the robot is
able to make sufficient progress.

velocity determines the time to complete a turn, but has lit-
tle effect on the turning radius. Thus, we assume a constant
turning radius for the boat, given byRt ≈ 5m.

Sensing Constraints:The ASV is equipped with a sonar
(a range sensor), which detects the ranges to objects in a
cone of angular widthΘ , and up to a maximum rangeD.
BothΘ andD are measured from the front of the vehicle. In
our system,Θ is on the order of 10 degrees.

Next we define the obstacle avoidance problem: We start
with an idealized case where the obstacle is a rectangleR.
Suppose from the initial measurement, the ASV can infer
the line containing a side ofR. How can the ASV go around
the nearest corner of R as quickly as possible? We formalize
this problem as follows.

Problem 1 (Rectangular Obstacle) Given a rectangleR, a
line ℓ containing the nearest edge ofR, and a vehicle subject
to motion and sensing constraints described above, compute
a strategy for the vehicle to reach the nearest corner ofR as
quickly as possible using online sensor measurements (i.e.
without knowing the exact shape ofR in advance).

The problem setup is illustrated in Figure 2.



Fig. 4 TheSweep maneuver. The robot with maximum sensing dis-
tanceD, and beginning the maneuver from distancet +Rt can search
an a portion of the obstacle with widthU ≥ 2u1 = 2

√

R2
t +D2− t2.

In the next section we present an online algorithm for
Problem 1, show that it has constant competitive ratio and
demonstrate its performance on the field. The strategy relies
on two assumptions (1) the lineℓ supporting the obstacle can
be obtained from initial readings, and (2) the shape of the
obstacle is a rectangle. Field experiments reveal that these
assumptions can be too strong in some cases. This lead us to
a second, more general problem.

Problem 2 (Arbitrary Obstacle Bounded by Lines) Given
two parallel lines,ℓ andℓ2, which are known to contain a
single obstacle, and a vehicle subject to motion and sensing
constraints as described, compute a strategy for the vehicle
to reach the second lineℓ2 as quickly as possible using on-
line sensor measurements.

This second problem is illustrated in Figure 3. In Section 7,
we present an extension to our algorithm for Problem 1 which
can solve the second problem. The generality comes at the
expense of increased competitive ratio, but field experiments
reveal the algorithm is effective in practice.

6 Strategy for Problem 1 and Analysis

In this section we present a solution to Problem 1. We are
required to use motion primitives that respect the minimum
turning radius of our ASV. The first,Sweep, is used to
search the portion of the obstacle which is near the robot.
If a corner of the rectangle is detected, the robot can plan a
clear path around the obstacle. The second,GoTo, simply
moves the robots between two points.

Sweep: The robot, moving on lineℓ, begins a turn to-
ward the obstacle along a circle with radiusRt . When the
turn is 3

4 completed, the robot re-aligns with the lineℓ, and
moves in the opposite direction. This maneuver is illustrated
in Figure 4.

GoTo: The robot, which is on lineℓ and oriented parallel
to ℓ, moves straight ahead until a destination point onℓ is
reached.

Some simple calculations reveal the following properties
of these operations.

1. Sweep traces out a path of length 2πRt .

2. After Sweep has been executed, the robot is facing the
opposite direction to the direction it was facing initially.

3. Sweep searches a portion of the obstacle of widthU ≥
2
√

R2
t +D2− t2, when the maneuver is started at dis-

tancet +Rt , as shown in Figure 4
4. GoTo follows a path of length equal to the Euclidean

distance between two points.

Algorithm 1 CircleSweep
1: θ ← orientation of the lineℓ
2: i← 0
3: xi ← (0,0), origin at the point of first detection
4: Sweep
5: while obstacle detected atxi do
6: i← i +1
7: xi ← ((−2)i−1 cosθ ,(−2)i−1 sinθ)
8: GoTo xi andSweep
9: end while

We can now describe our algorithm for finding a cor-
ner of a rectangular object. We call the algorithmCircle-
Sweep. Let the robot detect the obstacle at positionx0, which
we treat as the origin. Similar to the lost-cow algorithm de-
scribed in Section 3, the robot willGoTo waypoints which
alternate left and right fromx0, such that each pointxi is at
positionU(−2)i−1. At each of these points, including the
first detection point, the robot will execute aSweep, which
simultaneously scans the object for the edge and turns the
robot toward the next waypoint. The algorithm terminates
when the robot either detects the edge, or detects that it has
passed beyond the edge. See Algorithm 1 for the detailed
steps of this algorithm.

The analysis of the cost of this algorithm proceeds in two
parts. First, we bound the distance travelled during allGo-
To phases, then, we show that the cost of all theSweep op-
erations is bounded with respect to the optimal cost. Com-
bining these, we prove a competitive ratio in Theorem 1.

Lemma 1 (GoTo cost)
TheGoTo cost is upper bounded by12d, where d is the dis-
tance to the closest point from which the robot could detect
the corner.

Proof The lastGoTo operation occurs immediately before
the robot performs theSweep operation that detects the cor-
ner of the rectangle or detects that the robot has moved be-
yond a corner of the rectangle. Letd be the nearest point
to the origin, from which the robot could detect the corner
while performing aSweep. In the worst case, the robot trav-
elled to a position just short of detecting the corner, (i.e.,
d−ε). Note, the lost-cow algorithm will arrive at the pointd
while traveling no farther than 9d [12]. However, we cannot
stop atd because we cannot continually sense the obstacle.
Instead we must continue on to the nextSweep location.



Fig. 5 The doubling strategy. Atith round, the boat is atxi = (−2)i−1. At each point, aSweep maneuver is performed to search a portion of the
obstacle for the corner.
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Fig. 6 A Google Maps satellite image of the Lake Staring shoreline, andthree trial executions ofCircleSweep, using the shoreline of Lake
Staring as the object to avoid. The initial point the object was detected was assumed to be at(40,−60). The crosses give the orientation of the
line the robot moves along, and they are spaced apart by 25 meters,corresponding with ourU = 25m. The shoreline is in red, the detected sonar
objects are x markers, and the path followed by the ASV is labeled. On the left and in the middle, the corner of the object is mistakenly detected
at the thirdSweep operation. On the right, the corner of the object is mistakenlydetected at the fourthSweep operation. This indicates that the
algorithm must be extended if it is to perform well in this practical situation.

Because the robot travels to the pointd− ε in stepn− 2,
then to−2d in stepn−1, the final sweep location is at 4d.
Thus, we have “overshot” the locationd by an additional a
travel distance of 3d in the worst case, which we add to the
cost of the lost-cow algorithm.

Lemma 2 (Sweep cost)
Let d be the distance to point from which the nearest corner
of the rectangle can be detected. Then the total cost of all
Sweep operations is less than4πRt⌈log4

d
U ⌉.

Proof Let d be the nearest point to the origin, from which
the robot could detect the corner while performing aSweep.
We will just consider the “positive” steps, withxi > 0 and
double the result. Then each positive step reachesxi = U ·
4i . The algorithm terminates when the robot reaches a point
beyondd and completes aSweep operation. If thenth step
is the first to passd, thenU ·4n−1≤ d≤U ·4n, which implies
n= ⌈log d

U ⌉ steps are required on the positive side, or at most
n= 2⌈log4

d
U ⌉ steps are required overall. Since each sweep

has a cost of 2πRt , the lemma statement follows.

Theorem 1 CircleSweep has a competitive ratio of
13 + 4π Rt

U

Proof By combining the previous two lemmas, we see that
the total cost of usingCircleSweep to find the corner
point is less than 12d+4πRt⌈log4

d
U ⌉. Then, the robot must

travel past the obstacle, which adds a cost less thanL. Di-
viding this cost by the optimal cost,L the resulting ratio is
12d
L +

4πRt⌈log4
d
U ⌉

L + L
L . Sinced < L,

c(CircleSweep)≤ 13+
4πRt⌈log4

d
U ⌉

d
(2)

= 13+4πRt
U⌈log4

d
U ⌉

Ud
(3)

= 13+4π
Rt

U

⌈log4
d
U ⌉

d
U

(4)

Also note⌈logb x⌉
x ≤ 1, producing the theorem statement.

Note, the last sweep operation will orient the boat so
that it can travel on a straight path past the obstacle, thus
Theorem 1 does not include an additional turning cost.



6.1 Field Experiments

For our first field experiments we executedCircleSweep at
Lake Staring, Minnesota, USA. We used the north east shore-
line of the lake as a proxy for a large-scale obstacle to avoid.
At first we attempted to fit a line to the sonar returns ob-
served during the initial circle performed after detectingthe
obstacle, but we found that there was not nearly enough in-
formation to decide the direction of the line. Our strategy
requires a good estimate on the line direction or it may sim-
ply retreat away from the object and declare the problem
solved. In the end, to executeCircleSweep we needed
to manually define the line to walk along. We usedt = 10m
andU = 25m; this is reasonable as long asD≥ 15.21m. D is
nominally 50m, but in practice, given our tilt angle, 20 me-
ters is a good estimate of the trueD at which we can reliably
detect an obstacle.

The paths followed by the robot along with the estimated
positions of all detected sonar objects are shown in Figure 6.
The sonar returns indicate that the shallow water close to
the shore is correctly detected as an obstacle to avoid. Our
strategy assumes the obstacle is a rectangle with known ori-
entation but unknown dimensions. In practice this is almost
never the case, and the basic strategy performs poorly when
its assumptions are violated: In each of our three trials it
would have incorrectly detected the rectangle corner and ter-
minated early.

7 Strategy for Problem 2 and Analysis

Fig. 8 Close up of the experiment area. Approximately 180 meters of
shoreline was used as a proxy for a large obstacle. The shore curved
east, providing a convenient corner to serve as the edge of the obstacle.

Given the insights from our first field experiments, we
now solve the more general case presented in Problem 2. In
this section we propose and analyze an algorithm for moving
past an arbitrarily-shaped object. This object is paramater-
ized by two parallel linesℓ andℓ2 which are inferred based

Algorithm 2 AdvanceRetreat
1: θ ← orientation of lineℓ
2: i← 0
3: xi ← (0,0), origin at the point of first detection
4: probeforward by travelling towardℓ2
5: while obstacle detected during last probe towardℓ2 do
6: completeprobeby returning toxi

7: i← i +1
8: xi ← ((−2)i−1 cosθ ,(−2)i−1 sinθ)
9: GoTo xi

10: probeforward by travelling towardℓ2
11: end while

on the assumed width and orientation of the obstacle. The
safety lineℓ is assumed to lie on the same side of the obsta-
cle as the robot, and the goal lineℓ2 is assumed to lie on the
opposite side. The distance between the lines iss.

First, we discuss the optimal path for a given obstacle.
Consider the polygonal obstacle shown in Figure 3. The op-
timal path, starting at positionx0, does not enter the con-
vex hull of the polygon. It passes through a “corner point”–
a point which is a maxima or minima with respect to the
line ℓ, as shown. Thus, the optimal path has length at least√

d2+s2.
Our algorithm, calledAdvanceRetreat, proceeds as

follows. From the starting location, which is defined as the
origin, the robot will move forward (perpendicular toℓ) up
to distances, and return if an obstacle is detected. This is
called aprobestep. Upon returning, the robot will move to
a location which is distanceU · (−2)i−1 along the lineℓ and
repeat the process (see Figure 3 and Algorithm 2).

There are two important differences fromCircleSweep.
First, the robot cannot “sweep” out a portion of the obsta-
cle, because during a probe it may only detect a very small
part of the obstacle. In this case, we terminate when we can
detect no part of the obstacle, not just when we detect the
corner. In practice,U can be represented by the beam width,
and a non-detection is simply no echo returns. Second, we
assume that the robot can always turn around to return to the
line, thus the obstacle should not have very narrow “chan-
nels” in which the robot can get stuck. In most settings, this
assumption is not restrictive.

We now analyze the cost of this strategy. First, note that
the distance travelled while searching for the closest location
past the corner point is at most 12d as given in Lemma 1.
What remains is to analyze the cost of eachprobestep.

Lemma 3 (Number of Probes)
During an execution ofAdvanceRetreat, the robot makes
2⌈log4

d
U ⌉ probesteps, each with cost less than2s+2πRt .

Proof This cost of each probe step is upper bounded us-
ing s the max distance fromℓ to the object plus the cost
to make four quarter turns. Without loss of generality, let
d be the point onℓ from which theprobeoperation would
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Fig. 7 Four trial executions ofAdvanceRetreat, using the shoreline of Lake Staring as the object to avoid. Theinitial point the object was
detected was assumed to be at(40,−60) for the first two, and(20,−100) for the second two. The crosses give the orientation of the safetyline ℓ,
and they are spaced apart at the unit distanceU = 25m. The portion of the shoreline we are avoiding is assumed to lie between parallel north-south
linesℓ andℓ2, which is assumed to be 50meast ofℓ. The shoreline is in red, the detected sonar objects are x markers, and the path followed by the
ASV is labeled. In each probe that is not a feasible route around the object, the shoreline is successfully detected. In the last two trials, the boat
successfully navigates around the shoreline to the other side ofℓ2.

first succeed in passing the obstacle. The algorithm termi-
nates when the robot travels pastd and executes a probe
step. Using the same analysis as Lemma 2, we obtain an up-
per bound of⌈log4

d
U ⌉ probe steps required on the positive

side, or 2⌈log4
d
U ⌉ probes required in total.

Theorem 2 (Cost of AdvanceRetreat)
AdvanceRetreat has a competitive ratio that isΘ(log⌈ d

U ⌉).

Proof We know the robot travels no more than distance 12d+
(2s+ 2πRt)⌈log4

d
U ⌉, by combining the travel (Lemma 1)

and probe (Lemma 3) steps. Note that the optimal path is at
least length

√
d2+s2, as illustrated in Figure 3. Thus,

c(AdvanceRetreat)

=
12d+(4s+4πRt)⌈log4

d
U ⌉√

d2+s2

=
12d√
d2+s2

+
(4s+4πRt)⌈log4

d
U ⌉√

d2+s2

≤12+ ⌈log4
d
U
⌉
(

4+
4πRt√
d2+s2

)

,

which proves the theorem statement.

Note that the part of the competitive ratio that grows
logarithmicly is the cost from the logarithmic number of
probes. Ifs is small, the cost of each probe is also small and
the competitive ratio ofAdvanceRetreat is linear. Next
we present results from repeated field tests of the proposed
algorithm.

7.1 Field Experiments

For our second field experiments we executedAdvance-
Retreat at Lake Staring. The obstacle to avoid was the
same north east part of the shoreline as before. The safe line
ℓ was selected manually but the trajectory of the ASV was
determined online from the sonar measurements. As before,
we usedU = 25m andt = 10m.

The paths followed by the robot, along with the esti-
mated positions of all detected sonar objects, are shown in
Figure 7. The boat successfully navigated around the obsta-
cle in both of the trials where it was run to completion, and
at every probe the boat correctly determined whether or not
there was an object present. These results indicate that our
strategy is in practice a feasible method to find a path around
an object.

We found thatAdvanceRetreat performed much bet-
ter in practice. This was becauseCircleSweep requires
that the obstacle is a line with known orientation, and the
boundary of Lake Staring is poorly approximated by a straight
line. However, the northeast boundary of Lake Staring is
well approximated as a polygon that stays within distance
s of a straight line; this was the setup of Problem 2 for
which we used theAdvanceRetreat strategy. We expect
many common obstacles are well approximated by the par-
allel bounding linesℓ andℓ2.

8 Conclusion

In this paper we presented strategies for an Autonomous
Surface Vehicle equipped with a fixed angle sonar to navi-



gate around an obstacle. We first studied a simple case where
the obstacle is a rectangle of unknown size. For this prob-
lem, we presented a strategy with a constant-factor compet-
itive ratio. In other words, the ratio of the distance traveled
to the distance traveled by the optimal offline solution is
bounded by a constant. In the field, we observed that fitting
a line to the sonar sensor readings was difficult. This made
it difficult to determine the orientation of a straight obstacle.
Furthermore, a realistic non-straight obstacle was handled
poorly by our first strategy, even when the line was a reason-
able fit for its boundary. Therefore, we also studied a more
general case in which the obstacle has arbitrary shape but
it is contained between two bounded lines. The competitive
ratio of our algorithm for this case depends on the distance
between the lines. In field experiments, we showed that the
algorithm can be executed in a robust fashion to navigate
around large, unknown obstacles including shallow waters
around a shoreline.

An interesting but challenging avenue for future work
is to study navigation in the presence of multiple unknown
obstacles and provide performance bounds. Another avenue
for research is to study an environment with moving obsta-
cles such as other boats.
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