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Abstract A robotic boatis moving between two points when
it encounters an obstacle of unknown size. The boat must
find a short path around the obstacle to resume its original
course. How should the boat move when it can only sense
the proximity of the obstacle, and does not have prior infor-
mation about the obstacle’s size? We study this problem for
a robotic boat with a forward-facing sonar.

We study two versions of the problem. First, we solve a
simplified case when the obstacle is a rectangle of known
orientation but unknown dimensions. Second, we study a
more general case where an arbitrarily shaped obstacle is
contained between two known parallel lines. We study the
performance of the algorithms analytically using competi-
tive analysis and present results from field experiments. Th
experimental setup is relevant for harbor patrol or autamosn
navigation in shallow water.

1 Introduction

Imagine an autonomous robot equipped with a forward fac-

ing sensor. The robot detects an obstacle in front of it. How

can the robot go around the obstacle as quickly as possible?

This is a classical robot navigation problem. Fig. 1 The autonomous boat (top), with sonar visible (bottom).
Now imagine the robot is a boat, equipped with a for-

ward facing sonar (Figure 1). The narrow width of the sonar,

the noisy and sometimes ambiguous sonar readings, and the

motion constraints of the boat make the problem challenging !N the literature, there are two primary approaches in
in this domain. solving this type of online navigation problems. BUG Algo-

rithms [1] provide easy to implement strategies which work
The authors are with the Department of Computer Science and Erwell in simple environments with small obstacles. However,
gineering, University of Minnesota, Minneapolis, USA. This rv_vo they do not have strong performance guarantees and their
B e ans s alorl S performance can be arbiaril bad a5 the obstaces grow
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tional Canference on Robotics and Automation. erature [2-4]. However, these algorithms are rarely imple-




mented on real robot systems since they do not address msize, whereas our approach can handle arbitrarily large ob-
tion and sensing constraints. stacles and still reach the target in finite time with a near
In this paper, we present novel navigation strategies whiciptimum competitive ratio.
are both provably efficient and suitable for field implemen-
tation. We first start with the case of a rectangular obstacle o
with unknown size. The justification for this assumption is3 Préliminaries
that many artificial objects (ships, docks etc.) have regian . o . .
lar shapes. Moreover, long shorelines or boundaries of ve fn onI|rt1e .?Igor?hms atn_ algdorlthm V\Ilh'(;h %OTE npt ZSYe
etated areas can be approximated by a line. Obtaining th cclesdsdo '_S e?hlre npu tl'n a \f/z;lrr:ce.l ns';eha ' Fe P |slr
orientation of the line or the face of the rectangle amountd c2'€d durng the exeCltJ 'Tn O‘th N ag(?[rl hm. or;ximp ©
to fitting a line to initial readings. amemory management aigorithm must cnoose Which pages
. . . to retain in the cache without knowing future page requests.
We provide an adaptation of the doubling strategy (ex- . L .
. . . . . The obstacle avoidance problem studied in this paper is an
plained in Section 3) which accounts for motion and sens- . . .
: . . . . _online problem since we must choose a motion strategy that
ing constraints and analyze its performance. While testln(]g . ) .
. o A . ; eacts to the sonar measurements received during execution
the algorithm in field experiments, we realized that in some . . )
) o N, . without knowing the exact geometry of the obstacle in ad-
cases it becomes very hard to fit a line to initial readlngsvance
Moreover, the assumption of linearity is violated in most ' . oy
. . The performance of an online algorithinis measured
settings. Therefore, we also study the problem in a more . . " . S
. . . Jsing its competitive ratio which is given by
general setting where we are given two parallel lines bound-
ing an arbitrarily shaped obstacle. Here the parallel lines
represent a weak prior on the extent of the obstacle. Oyt A) = maxy A(o) 1)
analysis shows that this generality comes at the expense og‘ OPT(0)
slightly reduced theoretical performance. However, figld e

| ’ where o varies across all input#\(o) is the performance
periments demonstrate the effectiveness of the strategy.

of A for input o andOPT(0) is the optimaloffline perfor-
mance —i.e. the performance of an optimal algorithm which
has access to the entire inpmin advance. The competitive

2 Related Work ratio is a measure of worst-case deviation from the optimal

offline behavior. Further information on online problema ca
Several techniques have recently been developed to enalye found in [11].

obstacle avoidance in sonar equipped Autonomous Surface Thelost-cow problenis a classical online optimization
Vehicles (ASVs). problem which highlights important aspects of online algo-
Heidarsson and Sukhatme [5] implemented the Vectorithm design. In this problem, a short sighted cow is lost and
Field Histogram (VFH) [6] method for sonar-based obstaclaries to find the only gate on a straight fence. The problem
avoidance. They also introduced an echo filtering processs formulated as follows. The cow and the gate are on a line,
which averaged the local maximas. Vector field methods arghe gate’s location is unknown, and the cow starts froa0
subject to local minima and the same vehicle with the samg order to find the gate. The true location is chosen by an
potential function in a different environment can result inadversary. Note that the cow can not simply pick a direction
success or failure with no guarantee. and move until finding the gate as this strategy would have
Caladoet al [7] used Histogramic In-Motion Mapping unbounded competitive ratio (the adversary chooses tlee gat
(HIMM) [8] to build grid maps of the sensed obstacle. A location in the opposite direction.) Instead, the cow can fo
convex polygon obstacle is built based on the line segmentsw the so-calleddoubling strategyto effectively find the
extracted by Hough transform. Given the constructed maggate: Initially, at round = 0 the cow is atfy = 0. It moves
a potential field method was used for navigation. in such a way that at th" round, the cow is at locatiof
Petillot et al. mapped the surrounding obstacles by segwheref; = (—2)'~1 for i > 1. In other words, in odd rounds
menting and extracting obstacle features from the sonar inthe cow is to the right of the origin while in even rounds the
age [9]. Then vehicle motion planning was converted into aow is to the left of the origin (Fig. 5). Using elementary
nonlinear programming problem while the extracted obstacomputations, it can be shown that the doubling strategy has
cles were treated as inequality constraints [10]. Nonlineaa competitive ratio of 9 [12].
programming approaches can be less succeptible to local Due to sensing and motion uncertainty and constraints,
minima than vector field methods. However, they requiredesigning a similar online algorithm for obstacle avoidanc
prior knowledge of the location and size of the obstaclesis non-trivial. In this paper, we present novel online strat
They also do not guarantee the length of the path and thgies, analyze their competitive ratios and validate them in
time required to avoid an obstacle with arbitrary shape anfield experiments.



4 System Description

Our test system is an Oceanscience Q-Boat 1800mhe s
Q-Boat is 1.8m long, with a cruising speed of about 1 m/s /
. . . . —— D

and a turning radius d¥ = 5m. During the experiments, we . @)
moved at a slower speed of about 0.5 m/s. The Q-Boat is au- T
tonomously controlled with a laptop computer. Localizatio 14
was achieved through the use of a GPS unit and a compassg. 2 The setup for Problem 1. The robot, moving from the left, en-
filtered with an Extended Kalman Filter. counters the rectangular obstaBlewith no information other than the

A forward-looking. sinale-beam sonar unit was r,nountedorientation of the leading edge, the robot must find the paththbastb-
9, 9 stacle () or one of comparable length. The robot is equipped with a

on the bow of the vehicle, as shown in Figure 1. The sonafange sensor which can sweep out an amjland detect obstacles up
unit is an Imagenex 852 Digital Echo Sountlelt has a  to rangeD.

conical acoustic transducer with 10 degree beam width. The
sonar sound frequency is 675kHz. As configured the sonar/ lo L
unit provides 500 measurements for each pulse, each mea-
surement representing the intensity of the sonar returnin a

evenly spaced range bin determined by the configured max-

12

imum range. For the maximum range of 50m, each range | ) j
bin represents a 0.1m increment. The sonar pulses were sentt; g

once a second. After each pulse, we smooth the data returneé o

by convolving the 500 bin vector with a Gaussian filter that 8 2

haso = 15. For each return we detect the distance that hasig. 3 Left: Problem setup for Problem 2. The optimal path is shown
the maximum return intensity. If this intensity is above ouras an arrow, which lies tangent to one of the extreme pointhef t
threshold of 30 out of 127, we place an obstacle point at th@olygon. The optimal path, therefore, has length at leait+ <. The

. . . . . . robot will move up and down the ling& probing forward for the ex-
appropriate distance in the appropriate direction frometie treme points of the polygon by travelling toward lifig up to distance

timated position of the boat. s, or returning to? if it has encountered the obstacle. Right: An exam-
Heidarssoret al [5] indicated that tilting the sonar by ple execution ofAdvanceRet r eat . The goal is to make sufficient

10 degrees towards the lake surface or towards the lake bt:09ress past the obstacle. The robot chooses poingsabeaccord-

. . Ing to the doubling strategy. Each point is checked until thieot is
tom had little (_affect on the detec_;tl_on of obstacles. Howevety|e 1o make sufficient progress.
we found that in shallow water, tilting the sonar could cause
the bottom to be detected as an obstacle even if the water . _ .
was C|ear|y deep enough for our ASV to Comfortab|y Oper.Velocny determines the tlme to Complete aturn, but has lit-
ate (1.5 meters in depth). In the end we decided to operaf€ effect on the turning radius. Thus, we assume a constant
with the sonar tilted downward slightly. This ensured thatturning radius for the boat, given % ~5m.
the ASV could clearly detect the rising lakebed before the ~ Sensing Constraint&the ASV is equipped with a sonar

shore, but did not cause any false positives when the AS\@ range sensor), which detects the ranges to objects in a
was facing away from the shore. cone of angular widtt®, and up to a maximum rande.

Both® andD are measured from the front of the vehicle. In
our system@ is on the order of 10 degrees.

Next we define the obstacle avoidance problem: We start
with an idealized case where the obstacle is a rectaRgle

Suppose from the initial measurement, the ASV can infer

We address an online navigation problem, where a vehiclg,e jine containing a side ¢t How can the ASV go around
similar to_the ASV described above detects an obsta(_:ld. Fir$he nearest corner of R as quickly as possible? We formalize
we describe the model used for the ASV. See also Figure Z4,iq problem as follows.

Motion ConstraintsThe ASV can position its rudder to
direct thrust from a single motor. The maximum angle ofProblem 1 (Rectangular Obstacle) Given a rectangI®, a
the rudder, determines a minimum turning radiusThe  line £ containing the nearest edgeRfand a vehicle subject
forward velocity can be set independently of the rudder. Irto motion and sensing constraints described above, compute
the remainder of the paper, we consider the forward veloca strategy for the vehicle to reach the nearest corn&raxf
ity fixed at a constant, labeled In practice, the forward quickly as possible using online sensor measurements (i.e.
without knowing the exact shape Bfin advance).

5 Motivation and Problem For mulation

1 WwWw.oceanscience.com
2 www.imagenex.com The problem setup is illustrated in Figure 2.



2. After Sweep has been executed, the robot is facing the
opposite direction to the direction it was facing initially

3. Sweep searches a portion of the obstacle of witlh>
2/R¢+D2 —t2, when the maneuver is started at dis-
tancet + R, as shown in Figure 4

4. GoTo follows a path of length equal to the Euclidean
distance between two points.

==

Fig. 4 The Sweep maneuver. The robot with maximum sensing dis-
tanceD, and beginning the maneuver from distabeeR; can search

an a portion of the obstacle with width > 2uy = 2,/RZ+ D2 —t2. Algorithm 1 CircleSweep
1: 6 < orientation of the line
2:i+0

In the next section we present an online algorithm for £ - . . .
. o . 3: X < (0,0), origin at the point of first detection

Problem 1, show that it has constant competitive ratio andy. gpeep
demonstrate its performance on the field. The strategysrelie 5: while obstacle detected &t do
on two assumptions (1) the lifesupporting the obstacle can 65 i+l - o
be obtained from initial readings, and (2) the shape of the’’ &?O(E(_’g]ds\f\gse%(’z) sin)
obstacle is a rectangle. Field experiments reveal thatthesg. engwhile
assumptions can be too strong in some cases. This lead usto

a second, more general problem.

Problem 2 (Arbi ObstacleBounded by Li Gi We can now describe our algorithm for finding a cor-
roblem 2 (Arbitrary Obstacle Boun y Lines) Given ner of a rectangular object. We call the algoritlimr cl e-

two parallel lines¢ and/,, which are known to contain a Sweep. Let the robot detect the obstacle at positignwhich

single qbstacle, and a vehicle subject to motion and sens.irwe treat as the origin. Similar to the lost-cow algorithm de-
constraints as described, compute a strategy for the mh'cgcribed in Section 3, the robot wioTo waypoints which

;[.0 reach the second lin as quickly as possible using on- alternate left and right fromo, such that each poirg is at
Ine sensor measurements. positionU (—2)'~1. At each of these points, including the

This second problem is illustrated in Figure 3. In Section 7first detection point, the robot will executeSaeep, which
we present an extension to our algorithm for Problem 1 whicfimultaneously scans the object for the edge and turns the
can solve the second problem. The generality comes at tHgbot toward the next waypoint. The algorithm terminates

expense of increased competitive ratio, but field expertmnen when the robot either detects the edge, or detects that it has
reveal the algorithm is effective in practice. passed beyond the edge. See Algorithm 1 for the detailed

steps of this algorithm.
The analysis of the cost of this algorithm proceeds in two
6 Strategy for Problem 1 and Analysis parts. First, we bound the distance travelled duringzall
To phases, then, we show that the cost of all$aeep op-
In this section we present a solution to Problem 1. We ar@rations is bounded with respect to the optimal cost. Com-

turning radius of our ASV. The firstSweep, is used to

search the portion of the obstacle which is near the robot.emmal (GoTo cost)

If a corner of the rectangle is detected, the robot can plan &heCGoTo cost is upper bounded d2d, where d is the dis-
clear path around the obstacle. The secd®ai[o, simply  tance to the closest point from which the robot could detect
moves the robots between two points. the corner.

Sweep: The robot, moving on liné, begins a turn to-
ward the obstacle along a circle with radiBgs When the
turn is;e’1 completed, the robot re-aligns with the lidgand
moves in the opposite direction. This maneuver is illusttat
in Figure 4.

GoTo: The robot, which is on liné and oriented parallel

Proof The lastGoTo operation occurs immediately before

the robot performs th8weep operation that detects the cor-

ner of the rectangle or detects that the robot has moved be-

yond a corner of the rectangle. Ldtbe the nearest point

to the origin, from which the robot could detect the corner

to ¢, moves straight ahead until a destination point/da while perform|r_19 58‘.”83'0- In the worst case, the robot tra_v-
elled to a position just short of detecting the corner, ,(i.e.

reached. . . . .
. . . . d—¢). Note, the lost-cow algorithm will arrive at the poiht
Some simple calculations reveal the following properties | . .
. while traveling no farther thand[12]. However, we cannot
of these operations. .
stop atd because we cannot continually sense the obstacle.

1. Sweep traces out a path of length®;. Instead we must continue on to the n&deep location.
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Fig. 5 The doubling strategy. At" round, the boat is a =
obstacle for the corner.

)i-1, At each point, &weep maneuver is performed to search a portion of the
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Fig. 6 A Google Maps satellite image of the Lake Staring shoreline,taree trial executions dfi r cl eSweep, using the shoreline of Lake
Staring as the object to avoid. The initial point the objeaesvdetected was assumed to b¢4&t —60). The crosses give the orientation of the
line the robot moves along, and they are spaced apart by 25 matenessponding with oud = 25m. The shoreline is in red, the detected sonar
objects are x markers, and the path followed by the ASV is labé&m the left and in the middle, the corner of the object is mesthkdetected

at the thirdSweep operation. On the right, the corner of the object is mistakeelected at the fourtBweep operation. This indicates that the
algorithm must be extended if it is to perform well in this preat situation.

Because the robot travels to the poiht € in stepn—2,  Proof By combining the previous two lemmas, we see that
then to—2d in stepn— 1, the final sweep location is atl4 the total cost of usindgli r cl eSweep to find the corner
Thus, we have “overshot” the locatiehby an additional a point is less than 12+ 47R; [log, g] Then, the robot must
travel distance of @in the worst case, which we add to the travel past the obstacle, which adds a cost less thabi-
cost of the lost-cow algorithm. viding this co%t by the optimal codt, the resulting ratio is
Lemma2 (Sweep cost) %‘F%‘Ff Sinced <L,

Let d be the distance to point from which the nearest corner

of the rectangle can be detected. Then the total cost of all

Sweep operations is less tha#nR, [log, 1. ¢(Circl eSweep) < 13+ 4TR [log, 3 @
Proof Let d be the nearest point to the origin, from which d[ 1

the robot could detect the corner while performirgeeep. =13+ 4R % 3)
We will just consider the “positive” steps, witk > 0 and d

double the result. Then each positive step reachesU - —13+ 47-[& 1095 | (4)
4'. The algorithm terminates when the robot reaches a point U %

beyondd and completes 8weep operation. If then™ step
is the first to pasd, thenU -4"1 < d <U -4", which implies
n= [Ioggl steps are required on the positive side, or at mosAlso notew < 1, producing the theorem statement.
= 2[log, g} steps are required overall. Since each sweep
has a cost of &R, the lemma statement follows. . . .
Note, the last sweep operation will orient the boat so

that it can travel on a straight path past the obstacle, thus
Theorem 1 does not include an additional turning cost.

Theorem 1 Ci r cl eSweep has a competitive ratio of
13 + 4ny



6.1 Field Experiments Algorithm 2 AdvanceRetreat
1: 6 «+ orientation of line/
For our first field experiments we execut@idr cl eSweepat 2:i«+0
Lake Staring, Minnesota, USA. We used the north east shore> % < (0.0), origin at the point of first detection
. 4: probeforward by travelling toward
line of the lake as a proxy for a large-scale obstacle to avoid 5. \pjje obstacle detected during last probe towérdo
At first we attempted to fit a line to the sonar returns ob- 6:  completeprobeby returning tox;
served during the initial circle performed after detecting  7: i< i+1 . L
obstacle, but we found that there was not nearly enough in-gf ’é;io?o(g(fz)'f cosd, (—2)"""sing)
formation to decide the direction of the line. Our strategy; . probefcl)rvvard by travelling toward,
requires a good estimate on the line direction or it may sim11: end while
ply retreat away from the object and declare the problem
solved. In the end, to execut@ r cl eSweep we needed
to manually define the line to walk along. We uged 10m  on the assumed width and orientation of the obstacle. The
andU = 25m; this is reasonable as longBs> 15.21m.Dis ~ safety linel is assumed to lie on the same side of the obsta-
nominally 50m, but in practice, given our tilt angle, 20 me- cle as the robot, and the goal ligis assumed to lie on the
ters is a good estimate of the trDeat which we can reliably Opposite side. The distance between the lines is
detect an obstacle. First, we discuss the optimal path for a given obstacle.

The paths followed by the robot along with the estimatedconsider the polygonal obstacle shown in Figure 3. The op-
positions of all detected sonar objects are shown in Figure éimal path, starting at positiory, does not enter the con-
The sonar returns indicate that the shallow water close tgex hull of the polygon. It passes through a “corner point’—
the shore is correctly detected as an obstacle to avoid. O@rpoint which is a maxima or minima with respect to the
strategy assumes the obstacle is a rectangle with known ofine ¢, as shown. Thus, the optimal path has length at least
entation but unknown dimensions. In practice this is almosV d? + ¢
never the case, and the basic strategy performs poorly when Our algorithm, calledddvanceRet r eat , proceeds as
its assumptions are violated: In each of our three trials ifollows. From the starting location, which is defined as the
would have incorrectly detected the rectangle corner and teorigin, the robot will move forward (perpendicular £pup
minated early. to distances, and return if an obstacle is detected. This is

called aprobestep. Upon returning, the robot will move to
a location which is distandé - (—2)' ! along the line and
7 Strategy for Problem 2 and Analysis repeat the process (see Figure 3 and Algorithm 2).

There are two important differences franr cl eSweep.
First, the robot cannot “sweep” out a portion of the obsta-
cle, because during a probe it may only detect a very small
part of the obstacle. In this case, we terminate when we can
detect no part of the obstacle, not just when we detect the
corner. In practicd) can be represented by the beam width,
and a non-detection is simply no echo returns. Second, we
assume that the robot can always turn around to return to the
line, thus the obstacle should not have very narrow “chan-
nels” in which the robot can get stuck. In most settings, this
assumption is not restrictive.

We now analyze the cost of this strategy. First, note that
the distance travelled while searching for the closestiona
past the corner point is at mostd 2s given in Lemma 1.

Fig. 8 Close up of the experiment area. Approximately 180 meters ol\/hat remains is to analyze the cost of epobbestep.
shoreline was used as a proxy for a large obstacle. The shoredcurve

east, providing a convenient corner to serve as the edge obttiadie. Lemma3 (Number of Probes)

During an execution oAdvanceRet r eat , the robot makes

2[log, 3 probesteps, each with cost less thasH- 27R.
Given the insights from our first field experiments, we

now solve the more general case presented in Problem 2. Proof This cost of each probe step is upper bounded us-
this section we propose and analyze an algorithm for movingng s the max distance frond to the object plus the cost
past an arbitrarily-shaped object. This object is paramateto make four quarter turns. Without loss of generality, let
ized by two parallel line¢ and/, which are inferred based d be the point or? from which theprobe operation would
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Fig. 7 Four trial executions oAdvanceRet r eat , using the shoreline of Lake Staring as the object to avoid.ifitial point the object was
detected was assumed to bé 4, —60) for the first two, and20, —100) for the second two. The crosses give the orientation of the skfety,

and they are spaced apart at the unit dist&hee25m. The portion of the shoreline we are avoiding is assumed to ligd®t parallel north-south
lines? and/{,, which is assumed to be B0east of?. The shoreline is in red, the detected sonar objects are x nsaekat the path followed by the

ASV is labeled. In each probe that is not a feasible route atdli@ object, the shoreline is successfully detected. In thevastrials, the boat
successfully navigates around the shoreline to the other sifie of

first succeed in passing the obstacle. The algorithm termiz.1 Field Experiments

nates when the robot travels pastnd executes a probe

step. Using the same analysis as Lemma 2, we obtain an upor our second field experiments we execulelyance-

per bound of[log4g] probe steps required on the positive Ret r eat at Lake Staring. The obstacle to avoid was the

side, or Zlog, g] probes required in total. same north east part of the shoreline as before. The safe line
£ was selected manually but the trajectory of the ASV was

Theorem 2 (Cost of AdvanceRet r eat ) determined online from the sonar measurements. As before,

AdvanceRet r eat has a competitive ratio that @(log[ 3 7). W€ used) = 25mandt = 10m. . _

The paths followed by the robot, along with the esti-

Proof We know the robot travels no more than distancg 1.2 mated positions of all detected sonar objects, are shown in

(2s+ 2nRt)[Iog4g], by combining the travel (Lemma 1) FigL_Jre 7. The boat_successful_ly navigated around t_he obsta-

and probe (Lemma 3) steps. Note that the optimal path is é:ge in both of the trials where it was run t_o completion, and

least length/d2+ &2, as illustrated in Figure 3. Thus, at every probe th_e boat correctly determmed_ wr_]ether or not
there was an object present. These results indicate that our

strategy is in practice a feasible method to find a path around

c(AdvanceRetreat) an object

_ 12d+ (4s+471R)[log, § | We found thadvanceRet r eat performed much bet-

N NG ter in practice. This was becau€er cl eSweep requires

L USR] ey ot ake Staing s ool approximated by a staigh
2+ 21 y g1s poorly app y g

line. However, the northeast boundary of Lake Staring is
47TR‘) , well approximated as a polygon that stays within distance
VaZ2+¢? s of a straight line; this was the setup of Problem 2 for
which we used thddvanceRet r eat strategy. We expect

many common obstacles are well approximated by the par-
allel bounding line€ and/».

<12+ [log, 31 <4+

which proves the theorem statement.

Note that the part of the competitive ratio that grows
logarithmicly is the cost from the logarithmic number of
probes. Ifsis small, the cost of each probe is also small and8 Conclusion
the competitive ratio oAdvanceRet r eat is linear. Next
we present results from repeated field tests of the proposdd this paper we presented strategies for an Autonomous
algorithm. Surface Vehicle equipped with a fixed angle sonar to navi-



gate around an obstacle. We first studied a simple case whetrg. A. Borodin and R. El-YaniDnline computation and competitive

the obstacle is a rectangle of unknown size. For this prob- analysis Cambridge University Press, 1998.

. 2. J.C.C. Ricardo A. Baeza-Yates and G. J. E. Rawlines, “Seagrch
lem, we presented a strategy with a constant-factor compe} with uncertainty.” Indiana Univeristy, Tech. Rep., 1988,

itive ratio. In other words, the ratio of the distance trael

to the distance traveled by the optimal offline solution is
bounded by a constant. In the field, we observed that fitting
a line to the sonar sensor readings was difficult. This made
it difficult to determine the orientation of a straight olidéa
Furthermore, a realistic non-straight obstacle was haindle
poorly by our first strategy, even when the line was a reason-
able fit for its boundary. Therefore, we also studied a more
general case in which the obstacle has arbitrary shape but
it is contained between two bounded lines. The competitive
ratio of our algorithm for this case depends on the distance
between the lines. In field experiments, we showed that the
algorithm can be executed in a robust fashion to navigate
around large, unknown obstacles including shallow waters
around a shoreline.

An interesting but challenging avenue for future work
is to study navigation in the presence of multiple unknown
obstacles and provide performance bounds. Another avenue
for research is to study an environment with moving obsta-
cles such as other boats.
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