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Abstract— Many species in nature demonstrate symbiotic re-
lationships leading to emergent behaviors through cooperation,
which are sometimes beyond the scope of the partnerships
within the same species. These symbiotic relationships are
classified as mutualism, commensalism, and parasitism based
on the benefit levels involved. While these partnerships are
ubiquitous in nature, it is imperative to understand the benefits
of collective behaviors in designing heterogeneous multi-robot
systems (HMRS). In this paper, we investigate the impact of
heterogeneity on the performance of HMRS applied to a search
and rescue problem. The groups consisting of searchers and
rescuers, varied in the individual robot behaviors with multi-
ple degrees of functionality overlap and group compositions,
demonstrating various levels of heterogeneity. We propose a
new technique to measure heterogeneity in the agents through
the use of Behavior Trees and use it to obtain heterogeneity
informatics from our Monte Carlo simulations. The results
show a positive correlation between the groups’ heterogeneity
measure and the rescue efficiency demonstrating benefits in
most of the scenarios. However, we also see cases where hetero-
geneity may hamper the group’s abilities pointing to the need
for determining the optimal heterogeneity in group required to
maximally benefit from HMRS in real-world applications.

I. INTRODUCTION
Disasters cause severe disruption of systems impacting

humans, materials, the environment, and the economy. Many
times, efficiently responding and reacting to these disasters
may get hard for humans, which mostly involves conducting
search and rescue operations involving other humans or
material [1]. In such caes, use of multi-UAV, UGVs, and
UUVs systems have proven to be beneficial [2]. Specifically,
we emphasize the importance of Heterogeneous Multi-Robot
Systems (HMRS) in urban search and rescue (USAR) appli-
cations [3], [4], [5]. HMRS include robots of different types
with structural and functional differences that are similar to
animals from different species.

In natural living systems, partnerships between different
animal species are ubiquitous in nature, which help them
in their survival, betterment, and evolution. These partner-
ships are broadly classified as mutualism, commensalism,
and parasitism, based on the type of benefit or harm a
participating species has from the other. In a mutualistic
type of relationship, both the species are benefited through a
partnership [6], [7], in commensalism, one is benefited while
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the other is not harmed [8], and in parasitism, one species
is harmed while the other one benefits [9].

Heterogeneity in a group can either arise dynamically
due to physical constraints or can be a macro property
in a group. For example, a mostly homogeneous robot
group can be heterogeneous at a micro level, with minor
differences in sensor or actuation levels. On the other hand,
a macro level heterogeneity can be due to various types of
robots (UAVs and UGVs) within a group. Twu et al., [10]
define heterogeneity in a multi-agent system as a product
of complexity and disparity, where complexity refers to the
variety in the group and disparity refers to the distinction
between the agents within a group.

Over the past decade, various HMRS strategies have been
developed for collective path planning, exploration, self-
organization, formation control, and disaster management.
Rizk et al. present a comprehensive survey on the existing
state of the art cooperative HMRS [11], along with the
limitations and challenges faced in this domain. Recent
research in the use of HMRS for USAR is focused on
developing efficient algorithms and strategies in decision
making, development of novel networks, reducing human ef-
fort at low-level control, etc. [12], [13]. Predominantly these
strategies are designed for the collective accomplishment of
a task through cooperation [14], in which a primary task
(a mission) is decomposed into sub-tasks and assigned to
robots through techniques like performance assessment and
auction [15], [16]. These behaviors are either decided upfront
or dynamically changed with time and circumstances in a
mission, based on the performance at the mission level.

A similarity between the HMRS strategies can also be
drawn to the dynamic nature of symbiotic relationships in
nature, where a group or species varies its relationships with
others based on the benefit levels it perceives at a given
point of time. Drawing inspiration from these dynamics in
symbiotic relationships, we deem that an understanding of
the need for heterogeneity and functional overlap between
agents is crucial for designing an optimal team composition
and task allocation to successfully deploy HMRS in real-
world USAR applications [17].

Therefore, in this paper, we present an analysis of the ef-
fect of heterogeneity and functionality overlap on an HMRS
applied to a Search and Rescue problem. Specifically, we
design an USAR problem with two types of agents, searchers
and rescuers, where searchers lookout for a targets and res-
cuers retrieve them. While these robots are distinct in primary
functionalities, we vary the amount of functionality overlap
between the agents to capture their complex relationships.
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We build upon the work in [10] and propose a new exem-
plar technique to measure the heterogeneity (functionality
overlap) in robots and multi-agent systems by exploiting
a distance function applied on the state-action plan of the
robots represented through Behavior Trees [18], [19]. We
create Monte Carlo simulations of several mixture of robot
groups with varying degree of heterogeneity and diversity.
Through the results, we observe the system-level global SAR
performance in terms of cost and efficiency to analyze and
discuss the impact of heterogeneity in such applications.

Our analysis demonstrate the extent at which this func-
tionality overlap determines the performance of the system.
We present the formulation of the USAR problem in Sec. II,
followed by our proposed approach in Sec. III to measure
heterogeneity and conducting simulations on a Unity game
engine. We present the results obtained from various experi-
ments conducted on different agent combinations in Sec. IV
and finally conclude the paper with arguments on the benefits
of heterogeneity and its shortcomings in Sec. V.

II. SAR PROBLEM FORMULATION

We investigate the need for heterogeneity and functional
overlap between agents in HMRS through a Search and
Rescue problem by introducing two types of robots called
searchers and rescuers, whose primary task involves the
retrieval of targets scattered in a configuration space. This
section presents the definitions for the search space, sensor
and control models used.

A. Search Space

The search area is a rectangular configuration space given
by A = [0, x] × [0, y]. The target points T (e.g, victims in
USAR) are blocks or points which, are randomly located in
the space and should be moved to one of the collection or
retrieval points in C. The number of target points (we use
target points and treasure blocks interchangeably), scattered
in the configuration space is nt and nr, ns and nc correspond
to the number of rescuers, searchers and collection points in
the configuration space respectively. Further, nH = nr + ns
is the total number of heterogeneous agents and nha

are the
number of acceptable hosts, and ha ⊆ H , which are changed
with the scenarios (defined in Sec. II-E).

The location of the target is given by, Ti ∈ A and T =
[T1, T2 . . . Tnt]. Similarly, the collection points C are fixed
and given by, Ci ∈ A and C = [C1, C2 . . . Cnc

]. The target
points and collection points are static through the simulations
and hence, Ṫ = 0 and Ċ = 0.

B. Sensor Models

Each of the searchers and rescuers have a suite of
sensors for detecting collisions, for short and long range
detection of target and communication, whose ranges are
DCL, DTS , DTL and DC respectively. Also, the ranges of
these sensors follow the order, DCL < DTS < DTL < DC

and the detection ranges associated with each of the sensors
is shown in Fig. 1.

Fig. 1: The ranges of communication,collision detector, short
range target detector, long range target detector are labeled
as DC , DCL, DTS , DTL, respectively.

1) Collision Detector: The first type of sensor is for
collision detection with other agents and the walls. Its field
of collision at any given point of time is

FCLi
= FCL(Hi, DCL) (1)

This represents a disc of detection with radius DCL around
agent Hi. We model this sensor to also estimate the proba-
bility of collision PCL and the point of collision VCL by the
following equations

PCLji = PCL(Hj , Hi) =

{
0 : dCLi

> DCL

1 : dCLi
≤ DCL

(2)

VCLji
= VCL(Hj , Hi) =


Hj −Hi : dCLi

≤ DCL

∨PCLj = 1

0 : PCLj = 0
(3)

where dCLi
= ‖Hj −Hi‖ and j ∈ [1, nH ]−{i}, i ∈ [1, nH ].

When multiple collisions are detected simultaneously, a
resultant of all the VCL is generated by the collision detector,
with respect to the robot.

VCLi =

nH−{i}∑
j=1

VCLj (4)

2) Short Range Target Detector: This sensor was modeled
to detect only the presence of a target point with in its
range, and cannot generate any relative position vectors. The
detection disc radius is DTS and the field of view for the
sensor is defined as,

FTSi
= FTS(Hi, DTS) (5)

its probability of detection is given by,

PTSi
= PTS(T,Hi) =

{
0 : dTSi > DTS

1 : dTSi
≤ DTS

(6)

where, dTSi
= ‖Tj −Hi‖ and 1 ≤ j ≤ nt, i ∈ [1, nH ]



3) Long Range Target Detector: This sensor is similar
to a short range target detector with additional ability to
detect all the target points in its proximity and also generate
a position vector to the nearest one, within a disc of radius
DTL. The field of view of the sensor, probability of detection
and position vector are

FTLi
= FTL(hai

, DTL) (7)

PTLi
= PTL(T, hai

) =

{
0 :dTLi

> DTL ∨ PTSi
= 1

1 : dTLi
≤ DTL ∧ PTSi

= 0

,∀j ∈ [1, nha
]− {i}

(8)

VTi = VT (T, hai) =


Tbest−hai | Tbest ∈ T

∧ ‖Tbest − hai‖ = dtmin

: PTLi
= 1

0 : PTLi
= 0

dtmin = min
∀j∈nt

‖Tj − hai
‖ ,

(9)

where dTL = ‖Tj − hai‖ and 1 ≤ j ≤ nt.
4) Communicator: A communicator communicates with

the nearest active transmitter in its range and its field of view
is defined as,

FCi = Fc(hai , Dc) (10)

Here, we maintain that the probability of communication
is based on the state of the other agent under interaction.
Only, those agents which have a target detected by its
long-range sensor is considered as an active transmitter.
Inversely, this can also be stated as, an agent generates
beacon on encountering a target by its long-range detector.
The probability of detection and the position vector of the
nearest active transmitter is given as,

PCi
= PC(ha, hai

) =



0 :
∥∥haj − hai

∥∥ > Dc

∨ PTL(T, haj ) = 0
∨ PTLi

= 1
1 :
∥∥haj − hai

∥∥ ≤ Dc

∧ PTL(T, haj
) = 1

∧ PTLi
= 0

,∀j ∈ [1, nha
]− {i}

(11)

VCi
= VC(ha, hai

) =


habest

− hai
| habest

∈ ha
∧ ‖habest

− hai
‖ = dhmin

: PC = 1

0 : PC = 0

dhmin = min
∀j∈[1,nha ]−{i}

∥∥haj
− hai

∥∥
(12)

The minimization in Eq. (12) corresponds to the selection
of the nearest communicating agent. Hence, VC points to the
nearest communicator.

C. Motion Controller

The robot movements are decided by a controller based
on the following velocity equation, obtained by combining
the position vectors from all the sensors and for a robot i,
the resultant control vector Vcon is computed as,

Vconi
= (VTi

+ VCi
+ VPi

+ VRi
)(1− PCLi

)− VCLi
(13)

Considering the velocity limits on an the agent, we compute
a unit vector along Vconi

and multiply it with the Robot-
MaxSpeed scalar as follows,

vconi = V̂coni ×RobotMaxSpeed (14)

Further, in Eq. (13), VRi
is a random walk vector of ith

agent, given by

VRi = VR(Hi) =



[vx, vy] ∈ R |vx, vy ∈ [−1000, 1000]
:PTSi

= 0

∧ PTLi
= 0

∧ PTCi
= 0

∧ PCLi
= 0

0 : PTSi
= 1 ∨ PTLi

= 1

∨ PCi
= 1 ∨ PCLi

= 1
(15)

Retrieval vector VPi
points to the nearest collection point

after the target is retrieved, A target point is picked up when,
PTS = 1. i.e., when a target falls within the short range target
detector’s vicinity and the agent has not picked up any target.
This can be defined by a probability Pp, given by

Pp =

{
1 : PTS = 1 ∧ no target on board
0 : PTS = 0 ∨ target on board

(16)

Further, we define a collection point as a square region in
the configuration space and retrieval vector VP is defined as

VPi = VP (C,Hi) =


Cbest −Hi | Cbest ∈ C

∧ ‖Cbest −Hi‖ = dcmin

: Pp = 1

0 : Pp = 0
(17)

where, dcmin = min
∀j∈[1,nc]

‖Cj −Hi‖
The minimization in Eq. (17) ensures that VP points to

the nearest collection point.

D. Heterogeneous Multi-Robot System
The heterogeneous group in our study is a mix of searchers

and rescuers. In this section, we define the searcher and
rescuer behaviors and introduce the differences between
them to establish the heterogeneity in the group. The sensor
models defined in the previous section are common to both
searchers and rescuers making them structurally similar.
However, we maintain the distinction in controller responses
making them functionally different.

1) Searchers: Searcher robots are the simplest type of
agents in the current study. A searcher exists in either of the
five states depending on which velocity term of the Eq. (13)
is active. A searcher in the absence of any response from
its sensors remains in a random walk state (state - 0). A
searcher starts moving towards a target once detected by its
long range sensor switching to state - 1 or move towards
another agent upon receiving a beacon signal about a target
from another agent in state - 2. A searcher switches to state
- 3, when a target is detected by its short range sensor, stops
nearby (VP = 0) and transmits a beacon signal.



2) Rescuers: Rescuers, on the other hand are similar
to searchers, except for that they can pick up the target
and can move it to one of the nearest collection points or
otherwise VP 6= 0. Further, we maintain a distinction in the
behavior of rescuers by modifying the rescuer abilities called
strategies for our study. We present the generic rescuer and
searcher behaviors through Behavior Tree representation [18]
in Fig. 2, and pseudo-code for the controller in Alg. 1.

Algorithm 1 Agent Behavior

1: function AGENTCONTROL(AgentType,AgentSpeed)
2: VCL, PCL ← CollisionSensor()
3: PTS ← TargetShortRange()
4: VTL, PTL ← TargetLongRange()
5: VC , PC ← Communication()
6: VR ← RandomWalk()
7: if AgentType is ’Rescuer’ then
8: VP , PP = Retrieve()
9: else if AgentType is ’Searcher’ then

10: VP ← 0
11: PP ← 1
12: end if
13: Vcon ← (VTL +VC +VR +VP )× (1−PCL)−VCL

return vcon ← VCTRL

|VCTRL|
14: end function
Note: Sensor outputs and actuator commands are repre-
sented as functions with their corresponding names.

Further, it can be noted that a Long-range detector points
a vector to the nearest target for both searchers and rescuer
when the short-range one detects no target. This is in contrast
to a short-range detector, which does not generate a vector;
however, it flags the presence of treasure in the vicinity of the
robot (detection range) for pickup in case of rescuers, stop,
and transmit in case of searchers. This order of preference
is according to the behavior tree presented in Fig. 2.

E. Rescuer Strategies
The models presented so far, are for generic rescuers.

However, for the current study, we slightly modify the be-
havior of the rescuers to act selfish or blind. The selfishness
factor is decided by the accessible agents set ha. We model
the strategies for rescuers as follows. It must be noted
that, all the rescuers demonstrate some amount of searching
abilities also, demonstrating functional overlap between the
agents. Here S and R are the sets of searchers and rescuers,
respectively.

Strategy 1. All agents (S, R) have all sensors enabled and,

∀S ∈ H ∧R ∈ H,ha = H (18)

In Strategy 1, the rescuers are as good as searchers in
searching targets and also communicate among themselves.

Strategy 2. All agents (S, R) have all sensors enabled and,

∀S ∈ H,ha = H, (19)
∀R ∈ H,ha = H −R = S (20)

Here, the ha sets for searchers and rescuers are exclusive.
Which means, while all the searchers communicate with
other searchers and rescuers, rescuers on the other hand are
selfish and listen only to other searchers. Here, all the sensors
on the rescuers are enabled.

Strategy 3. All the searchers have all the sensors enabled,
for rescuers in addition to having ha defined by Eqs. (19)
and (20), the long range target sensors are also disabled i.e.,
PTL = 0 always.

In Strategy 3, the rescuers are blind to long range targets
and also are selfish like in Strategy 2.

III. PROPOSED APPROACH

A. Measure of Heterogeneity

For our study on the effect of heterogeneity, we segregated
the rescuer and searcher combinations into three different
groups called scenarios. In the first scenario, we considered
a pure homogeneous system with only rescuers and their
population was varied from a high to a low value. The second
scenario was with a constant number of rescuers but with
increasing searchers starting from zero. Finally, in the third
scenario, we maintained the total population of searchers and
rescuers constant (nr + ns = nH = constant), and varied
the ratio of composition between them. Also, rescuers with
different strategy types introduced in the previous section
were tested in all three scenarios. A summary of these agent
combinations is presented in Table I.

TABLE I: Simulation Hyperparameters

Scenario Agent Combination

1 nr = 5 : 5 : 50, ns = 0 (Homogeneous)
2 nr = 25, ns = 0 : 5 : 50
3 nr + ns = nha = 50, ns = 0 : 5 : 45

Target Points 250
Collection Points 4

Rescuer Strategies 1,2,3
Trials 10

Trial Duration 300 s @ 0.02s/ Iteration (Frame)

We computed a heterogeneity measure for all the scenarios
and strategies obtained from Twu et al. [10] work, in which
they quantified heterogeneity in multi-agent systems as a
product of complexity and disparity. Their complexity mea-
sure corresponds to group’s entropy and disparity is given by
Rao’s quadratic entropy [20] based on inter-species distance.
In these lines, we compute the entropy of the current search
and rescuer groups as,

E(pH) = −(pr log pr + ps log ps) (21)

here, pr = nr

nH
and ps = ns

nH
.

Rao’s quadratic entropy is defined as,

Q(pH) = 2prpsd
2
rs (22)

And, heterogeneity measure as,

H(pH) = E(pH)Q(pH) (23)



Fig. 2: Behavior tree (BT) summarising searcher and generic rescuer models. The distance values for every BT node (d0, ...dn)
are used to calculate the inter-species distance in Eq. 22 and Heterogeneity in the HMRS.

Here, drs is the distance between the two species types
(searchers and rescuers). For computing the distance, we
assigned a score to each of the robot actions represented in
the form of a behavior tree as shown in Fig. 2. The score
assignment was based on the complexity of the task involved.
For example, a target retrieval task is more complex than
random walk in the configuration space. Also, for a robot
receiving a beacon, a selfish robot masks the other rescuers
and hence has lesser number of robots in its list to compute
the minimum distance (d6 = 0.5 < d7 = 1). We added the
scores of all possible actions of the robots in a strategy and
computed its ratio to the total maximum score (here its 8.5).

For example, a searcher across all the strategies has no
change in its behavior and hence the possible actions are
A0, A1, A4, A5, A7, A8, which corresponds to a total score
of 5. On the other hand, a rescuer of Strategy 1 has a
possible action set of A2, A3, A4, A5, A7, A8 and a score of
7. Similarly for rescuers of strategies 2 and 3, the scores
are 6.5 and 5.5 respectively. The heterogeneity measures
computed for all the rescuer strategies in the scenarios 2 and
3 is presented in Fig. 3. It must be noted that, Scenario 1
has a homogeneous group and hence we did not present the
heterogeneity measure graph.

Also, Fig. 3 shows that the heterogeneity peaks for com-
binations with an equal number of searchers and rescuers but
drops as one agent type dominates the group.

B. Simulation Setup

We developed a simulator in Unity game engine for
studying the current SAR problem. The robots were modeled
as game objects and the sensors were designed as cylindrical
Colliders. An intermittent State Manager game object man-
ages the sensor data and their states and communicates with
a modelled controller. The final velocity vector vcontroller
computed by the controller is sent to the actuator game
object, which executes the lateral movements and target
retrieval actions on the robots. We designed the configuration

(a) Heterogeneity in Scenario 2 vs. {R:S} ratio.

(b) Heterogeneity in Scenario 3 vs. {R:S} ratio.

Fig. 3: Heterogeneity Measures for Strategies 1, 2 and 3. (x-
axis denotes Rescuer and Searcher combinations - R:S).



Fig. 4: The designed configuration space has four collec-
tion points (green), with targets (yellow) randomly placed.
Searchers and rescuers are colored magenta and red re-
spectively. A ray projecting from the agents indicates the
direction of heading and their color represents the agent’s
state (Red - Long range target, Green - Communication,
White - Collection or Random Walk.

space to have four collection points and their locations were
predefined. Also, the targets were placed randomly for each
trial. A snapshot of the configuration space designed for the
simulations is presented in Fig. 4.

C. Experiment Settings

We conducted experiments on all strategy and scenario
combinations and each combination 10 trials were run. In
each simulation trial, the target points and the searchers were
randomly initialized in the configuration space and rescuers
on the other hand were initialized in a zone near the right
top corner of the configuration space in Fig. 4. Further, we
maintained that the ten different target configurations (for
10 different trials) were the same across all the scenarios
and strategy combinations for uniformity in analysis. This
maintains that, the target placement changes across trials but
remains constant across different scenarios. A total of 250
target points were placed in the configuration space across all
the trials. A summary of the simulation hyperparameters is
presented in table I. A game manager was designed to run the
simulations for all the hyperparameters read from a text file
and it also logged the simulation data in a .csv file. A video
demonstration of the experiments is available in at http:
//hero.uga.edu/research/heterogeneity/

IV. RESULTS AND DISCUSSION

The data recorded for all the trials across the scenario and
strategy combinations primarily consisted of the number of
targets retrieved. The data collected across all the trials was
averaged for each of the scenario and strategy combinations.
Sample graphs for the average number of targets retrieved
over time is presented in Fig. 5 and snapshots of the
simulation run for 25 rescuers (Strategy 1) and 25 searchers
are presented in Fig. 6.

Figure 5, shows the time series graph of rate of retrieval
of targets, for different agent combinations from Scenario 3
(constant populations) with rescuers following type Strategy

Fig. 5: Graph shows the average number of targets placed at
the retrieval points over iterations, for rescuer strategy 1 and
scenario 3. x scale limited to 10000 iterations.

(a) Iteration 1 (b) Iteration 2000

(c) Iteration 4000 (d) Iteration 6000

Fig. 6: Snapshots of the simulation at different intervals for
25 rescuers (Strategy 1) and 25 Searchers.

1. Note that the worst performing combinations were of those
with the least number of rescuers. This directly correlates to
the fact that lesser rescuers means lesser retrieval rates.

Further, for a better comparison of performance, we con-
sider the average time constant across all the trials in each
scenario and strategy combinations. Here, we define a time
constant as the amount of time taken to retrieve 63% of the
targets (158).The mean and standard deviation graphs of the
time constants values computed for different strategy and
scenario combinations are presented in Figs. 7, 8, and 9.

http://hero.uga.edu/research/heterogeneity/
http://hero.uga.edu/research/heterogeneity/


A. Time Constant Analysis
The time constant results for Scenario 1 across all the three

strategies involving homogeneous groups with no searchers,
is shown in Fig. 7. It can be noted that with the decreasing
number of rescuers, the time constant increased, as there
are more targets and lesser workers. And further, of all the
strategies, Strategy 3 rescuers performed the worst due to
their lack of ability to communicate with other rescuers, and
locate long range targets by themselves. This is followed
by the Strategy 2 rescuers’ performance, where the rescuers
have all the sensors enabled, however, lack the ability to
communicate with other rescuers.

Fig. 7: Average time constants for different strategies in
scenario 1, for (rescuer, Searcher) combinations.

Fig. 8: Average time constants for different strategies in
scenario 2, for (rescuer, Searcher) combinations.

Further, in Scenario 2 (ref. Fig. 8), with a constant rescuer
population and varying searchers, the addition of searchers
to a homogeneous system showed some fluctuations in the
beginning. However, the values settled at significantly lower
average time constant in the end across all the strategies. Of
all, strategy 3 showed the highest change as the rescuers were
solely dependent on the searchers for the target locations as
they were blind to long range target detection. Also, the time

constant values not changing with additional rescuers after
a certain threshold, indicates that the system reached satura-
tion and this also correlates to the change in heterogeneity
measure in Fig. 3a.

Fig. 9: Average time constants for different strategies in
scenario 3, for (Rescuer, Searcher) combinations.

In Scenario 3, we kept the total population constant at
50 and varied the ratio of rescuer to searcher population.
This graph best explains the importance of heterogeneity
in a multi-agent system. The first combination in the graph
shows a homogeneous configuration, with only rescuers in
the group. In Strategies 2 and 3, the time constant con-
stantly dropped until 15 searchers and steadily increased
there after. It can be noted that the heterogeneity measure
for this scenario increases towards the center of the graph
while it is more homogeneous towards the ends as also
observed in Fig. 3b. This means a dip at the center is an
indicator of a better performing heterogeneous system. Also,
in some instances, Strategy 3 showed a lower time constant
compared to Strategy 2, though the rescuers were blind,
clearly demonstrating the benefits of heterogeneity. However,
this does not hold good for the Strategy 1 type rescuers.

In Strategy 1, the rescuers are more capable than searchers
compared to the rescuers in the other two strategies. Hence,
any drop in the rescuers count was counter acting the
heterogeneity benefits as the overall capability of the group
was hampered. This also indicates the distribution of func-
tionalities as a major factor of mission efficiency. A team
with a no functional overlap showed a better performance
compared to larger functional overlap between the agents
i.e., rescuers with more searcher capabilities.

B. Cost and Efficiency

We further analyzed the efficiency of the system by
associating a cost to each of the robots, for scenario 3
and all strategies. This cost is proportional to the functional
abilities of the robots. From the definition of the rescuer and
searchers, it can be clearly understood that a searcher costs
lower than a rescuer, as a rescuer also has to perform the
target retrieval task , which involves a pickup and delivery
process. We combine this cost factor with the time constant



Fig. 10: Efficiency estimate of scenario 3
from the previous graphs and we define efficiency as

Efficiency =
1

τ(c.nr + ns)
, (24)

where τ is average time constant, c is a cost factor, which
was varied across strategies for our current study.

For the analysis presented in Fig. 10, the cost ratios of
rescuers (Cr) searchers (Cs) were chosen as 5:1, 7:5 for
strategy 1, 3:1, 6.5:5 for strategy 2, and 1:1, 6.5:5 for strategy
3. These values were chosen proportional to the total inter-
species distance computed in section III-A, also expecting
the searcher robots cost to be only a fraction of rescuer.And,
in Strategy 3, we made rescuers cost closer to searchers as
the inter-species distances are comparable.

Though strategy 1 showed higher rate of retrieval as
observed in the time constant graph (Fig. 9), the efficiency
values were significantly lower when a cost was associated
with the composition. Further, across the strategies, when the
rescuer abilities were diminished along with the costs, the
efficiency increased significantly. Also, in all the strategies,
the peak efficiency was close towards the combinations with
high heterogeneity measure.

V. CONCLUSIONS

In this study, we questioned whether heterogeneity is ben-
eficial in a heterogeneous multi-robot system. We modeled
an search and rescue problem for analyzing this influence.
Our simulations and analysis indicate faster retrieval times
proportional to the growth in heterogeneity measures in a
searcher-rescuer team of robots. This supports our hypothesis
that heterogeneity in a multi-robot system is beneficial in
general for enhancing system-level performance and also
reducing global costs. However, there are exceptions. For
example, in our Strategy 1, heterogeneity had a nega-
tive effect, where the high-performing rescuers reduces the
searchers ability making the overall system less efficient
when searchers replaces rescuers in Scenario 3.

In other words, distribution of capabilities can play a
significant role in enhancing performance through hetero-
geneous agent partnerships, a phenomenon demonstrated

by symbiotic relationships between species in nature [21].
Further, our analysis study showed that robots of limited
capabilities combined with other heterogeneous types can
enhance the overall performance both in terms of cost and
performance. This points to a new challenge of selection
of right heterogeneity in functionalities across robots for
maximising group efficiency, which can be treated as a multi-
constraint optimization problem.
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