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Abstract— This paper evaluates four semantic segmentation
models in Search-and-Rescue (SAR) scenarios obtained from
ground vehicles. Two base models are used (U-Net and PSPNet)
to compare different approaches to semantic segmentation, such
as skip connections between encoder and decoder stages and
using a pooling pyramid module. The best base model is mod-
ified by including two attention mechanisms to analyze their
performance and computational cost. We conduct a quantitative
and qualitative evaluation using our SAR dataset defining
eleven classes in disaster scenarios. The results demonstrate that
the attention mechanisms increase model performance while
minimally affecting the computation time.
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I. INTRODUCTION

Natural disasters, human-made accidents, and humanitar-
ian crises are critical events where an effective and fast
response is imperative. These scenarios face challenges such
as hazardous environments, access limitations, and time
constraints. Disaster robotics has emerged in recent decades
to increase the capabilities of human rescue teams in tasks
such as victim search and assistance [1]–[3] or reduce the
risk of first-responders while on duty [4], [5]. Detecting and
identifying distinct objects, structures, and potential hazards
in complex disaster situations in terrain scenes is a valuable
capability for victim search, risk management, and rescue
team organization in a Search and Rescue (SAR) mission.

Semantic segmentation involves assigning specific classes
to individual pixels within an image. This process has been
made efficient through the utilization of convolutional neural
networks (CNNs) such as ResNet [6], an architecture featur-
ing five stages and employing residual connections which
is widely used as an encoder within semantic segmentation
architectures. The architectures of semantic segmentation
networks involve reducing image dimensions by extracting
features (encoder) and subsequently restoring image spatial
size while enhancing semantic-level detection (decoder).

The first semantic segmentation (encoder-decoder) archi-
tecture was the Fully Convolutional Network (FCN) [7],
which replaces fully connected layers with 1 × 1 convo-
lutional layers, thereby preserving more significant spatial
information. U-Net [8] is characterized by the use of skip
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Fig. 1: Model with attention mechanism architectures: (a)
between the encoder and the decoder, (b) between multiple
skips that connect the encoder and decoder, (c) between
each stage of the encoder. The yellow block is the attention
mechanism block

connections that connect the encoder and decoder to uphold
layer-specific information and ensure accurate predictions.
SegNet [9], on the other hand, distinguishes from U-Net by
storing the location and shape information of detected fea-
tures in its feature maps. PSPNet [10] introduced a pyramid
pooling module that employs parallel clustering layers with
diverse filter sizes to capture information at various scales.

To enhance semantic recognition without excessive im-
pact on the computational overhead [11] various researchers
have introduced attention mechanisms [12], [13]. This novel
method, inspired by cognitive processes, consists of integrat-
ing a dedicated attention block between 1) the encoder and
the decoder as shown in Figure 1a, 2) multiple skips that
connect the encoder and decoder (Figure 1b), or 3) each
stage of the encoder (Figure 1c).

For instance, Hu et al. [12] introduced the Squeeze and
Excitation block (SE), which employs global average pooling
(squeeze) to capture contextual information, and a sigmoid
activation function (excitation) to model channel-wise depen-
dencies. Another attention mechanism was proposed by Woo
et al. [13] with their convolutional block attention module
(CBAM), which incorporates two distinct attention mecha-
nisms: channel attention, emphasizing crucial information,
and spatial attention, focusing on relevant locations within
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an image.
While these models have found application in tasks

spanning indoor and outdoor scenes [14], urban environ-
ments [15], and synthetic scenarios [16], there remains a
need for further research to apply these models to search-
and-rescue (SAR) scenes.

Therefore, in this work, we evaluate the performance of
two base models (i.e., PSPNet and U-Net) and U-Net with
two attention mechanisms (i.e., SE and CBAM) in a SAR
dataset, a segmented dataset developed for search-and-rescue
purposes. Our main contributions are summarized as follows:

• We add two attention mechanisms to the U-Net model to
compare their performance over the U-Net base model.

• We replace the cross-entropy loss function of the orig-
inal PSPNet and U-Net for two known loss functions
(focal loss and dice loss functions).

• We conduct a quantitative and qualitative evaluation of
the four models on the SAR dataset.

• We develop a computational analysis for the four mod-
els.

These studies show the effectiveness of attention mechanisms
to increase the recognition of different classes while mini-
mally affecting computational performance.

The remainder of this article is organized as follows. Sec-
tion II introduces the SAR dataset used to train the models.
Section III describes the architectures of the four models.
Section IV specifies the training methodology. Section V
shows and discusses the tested results obtained from the four
models. Finally, Section VI offers conclusions.

II. SAR DATASET

To evaluate the behavior of a network in a specific field, a
set of images along with their corresponding masks (ground-
truth) is needed. Labelled datasets have been created for
object detection [17]–[19] and semantic segmentation [20]–
[22] in different application domains. In the search-and-
rescue (SAR) domain there are a few datasets such as
UMA-SAR [23] designed for object detection, VHTA [24]
and RescueNet [25] designed for unmanned aerial vehicles
(UAV), or DISC [26], a synthetic object detection dataset.
However, none of them have segmented masks on terrain
scenes.

For this work, we developed a SAR semantic segmen-
tation dataset (see Figure 2), that contains 349 images with
their respective hand-labeled segmented annotations split into
70:20:10 ratio (i.e., 70% of images to train, 20% to test,
and 10% to validate the models). This dataset has eleven
classes in SAR scenarios: first-responder, civilian, vegetation,
building, dirt-road, road, sky, civilian car, response-vehicle,
debris, and command-post.

III. MODELS DESCRIPTION

This section describes the models considered to evalu-
ate their performance on the semantic segmentation SAR
dataset: two base models: PSPNet (Figure 3b) and U-Net
(Figure 3a), and two models with attention mechanisms
(Figure 3c): U-Net-SE and U-Net-CBAM.

Fig. 2: Two examples from the Semantic Segmentation SAR
Dataset: RGB image (left) and ground-truth (right).

The two encoder-decoder base models are designed using
as backbone the ResNet-152 network [6] pre-trained on
ImageNet [17], where the last average pooling and its fully
connected layer are removed. In the case of PSPNet, the
pyramid pooling module is added after the previous ResNet-
152 stage (i.e., the fifth convolutional layer) as shown in
Figure 3b. In the U-Net model, skipped connections are used
to concatenate each ResNet-152 stage with its corresponding
decoder stage, as shown in Figure 3a. Both models use the
same decoder architecture (i.e., each decoder stage is up-
sampled by two to restore the original pixels dimension for
pixel-wise classification).

With respect to U-Net with attention mechanisms illus-
trated on the Figure 3c, the attention mechanism module
can be SE and CBAM. The module is added after the skip
connections of each encoder-decoder stage (i.e., between
each encoder stage). This is done to preserve the original
feature map of the encoder stage that has to be concatenated
with its corresponding decoder stage.

IV. TRAINING METHODOLOGY

A. Implementation details

The models were implemented on a DGX station with
one NVIDIA Tesla® V100 32GB GPU using Pytorch 1.3
toolbox. We used the stochastic gradient descent (SGD) with
a learning rate of 0.04, momentum of 0.9, weight decay of
0.0005, and a batch size of five. We resized the images
to 480x640 pixels and for data augmentation, all training
images were flipped, cropped, and cropped out, in addition,
brightness was applied to all the trained images. Each model
was trained using the early stopping technique [27] with a
patience of 40.

The original PSPNet and U-Net use the well know cross-
entropy loss function. Nevertheless, in this work we adapt
these networks by using two loss functions added together:
the dice loss [28] and the focal loss [29] functions, where
each of them has a weight of 0.5. Both loss functions
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Fig. 3: Model architectures: (a) PSPNet, (b) U-Net, (c) U-Net with SE or CBAM attention mechanisms, and (d) Nomenclature

were designed for highly unbalanced datasets (as our SAR
dataset).

B. Evaluation metric

To evaluate the performance of the networks, the mean
accuracy (mAcc) and the intersection-over-union (mIoU )
are used as precision scores. To evaluate the computational
performance we measure the floating point operations per
second (FLOPS), the number of parameters, inference time in
milliseconds (ms), and inference speed in frames per second
(fps).

V. RESULTS AND DISCUSSION

This section discusses quantitative and qualitative results
obtained from the training process. It also presents a com-
putational and time complexity analysis that illustrates the
number of FLOPS, parameters, inference time, and inference
speed consumed by the models.

A. Quantitative results

Table I shows the quantitative results of the two base
models (i.e., PSPNet, and U-Net), and the U-Net model with
the two attention mechanisms (i.e., SE, and CBAM). First,
the results obtained in the base models are analyzed. Next,
the scores between the U-Net base model and U-Net with
both attention mechanisms are compared. Then, the values
obtained from U-Net-SE and U-Net-CBAM are analyzed.
Finally, a general overview is given.

As for the base model comparisons, Table I shows that
the IoU of U-Net is better in all the classes where the
more significant scores are obtained from first-responder
class (approximately 12% greater), and both the response-
vehicle and command-post classes (around 5% greater). As
a result, the mIoU score of U-Net is 3.5% greater than
PSPNet. In addition, the results show that the Acc of U-
Net is better in almost all the classes with the exception
of the dirt-road class which is 1% less than the PSPNet
model. The more significant classes predicted by U-Net
are first-responder (around 7%), road (around 5%), and
response-vehicle (around 4%). Due to this, the U-Net mAcc
score is approximately 3% better than PSPNet. These scores
indicate that the most suitable model for this kind of dataset
(i.e., small and unbalanced dataset) is U-Net with its skip
connections between encoder-decoder layers, compared with
the pyramid pooling module of PSPNet.

Regarding the scores obtained from the U-Net base model
and U-Net with an attention mechanism, they show that,
as expected, U-Net with an attention mechanism increases
the prediction percentage in almost all the classes with
the exception of the vegetation class (where in U-Net-SE
is around 0.2 % lower and in U-Net-CBAM is around
0.8 % lower). The classes that considerably increase their
predictions in U-Net-SE are civilian cars (approximately 5%)
and debris (approximately 3%), and in U-Net-CBAM are
road (approximately 5%) and dirt-road (approximately 2%).



TABLE I: Quantitative results(%) on the SAR test set. Values in red indicate the best results.

Classes

Base models U-Net with attention mechanisms

PSPNet U-Net U-Net-SE U-Net-CBAM

Acc IoU Acc IoU Acc IoU Acc IoU

Background 60.90 51.37 67.34 57.32 68.39 57.16 70.14 57.73
First-responder 85.19 67.24 91.99 79.41 91.70 79.99 91.41 80.14
Civilian 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Vegetation 88.04 74.59 90.14 77.62 91.40 77.47 90.89 76.99
Road 57.26 49.77 62.59 51.97 60.99 52.19 64.28 56.43
Dirt-road 87.36 75.20 86.90 76.18 86.51 76.57 87.32 77.78
Building 93.21 88.33 95.58 90.69 94.86 91.25 95.64 91.43
Sky 98.84 94.84 99.12 95.81 99.14 96.01 99.18 95.93
Civilian car 93.25 81.38 96.42 83.98 95.33 88.85 95.49 84.81
Response-vehicle 65.18 59.91 69.16 64.57 69.11 64.21 68.86 65.01
Debris 82.29 71.67 82.72 73.76 85.16 76.27 81.59 74.10
Command-post 96.03 86.11 97.30 91.13 96.78 91.23 98.07 90.93

mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU

75.63 66.70 78.27 70.20 78.28 70.93 78.57 70.94

Because of those predictions, the mIoU scores of U-Net
with attention mechanisms increase by 0.7% approximately
with respect to the U-Net base model. This increment is
related to the main objective of attention mechanisms which
is allowing the network to focus on important features and
learn more discriminate representations [11].

A comparison between U-Net-SE and U-Net-CBAM
shows that in reference to IoU values, on the one hand, U-
Net-SE outperforms in the civilian car class with around 4%,
debris with around 2%, and in classes such as vegetation, sky,
and command-post with a slight increase of around 0.5%; on
the other hand, U-Net-CBAM outperforms in five classes:
road with around 4%, dirt-road and responder-vehicle with
around 1%, and in building and first-responder in around
0.2%. These balance IoU predictions result in similar mIoU .
The same behavior occurs with Acc, resulting in a slight
mAcc difference of 0.29% favorable to U-Net-CBAM.

In contrast to the classes mentioned above, the civilian
class shows no recognition neither in Acc and IoU , which
can be explained by two reasons: the similarity that this class
has with the first-responder class and the unbalance of the
dataset.

All in all, the use of attention mechanisms improves the
accuracy for all classes, with the exception of vegetation,
which offers a very similar metric. Furthermore, both atten-
tion mechanisms offer equivalent mAcc and mIoU , even if
U-Net-CBAM outstands for classes related to autonomous
navigation such as road, dirt-road, and response vehicles.
Conversely, U-Net-SE outstands for situational awareness
purposes in SAR scenarios with classes such as civilian-car,
command-post, or debris.

B. Qualitative visualization of experiments

We carry out a qualitative analysis of the evaluated meth-
ods by comparing the ground-truth, the predicted images
from PSPNet, U-Net, U-Net-SE, and U-Net-CBAM for five
images from SAR dataset as shown in Figure 4.

All the evaluated models detect almost all the classes with

the exception of the civilian class. As there was mentioned
before it can be due to the similarity that this class has with
the first-responder class as shown in the figure of the first
row (i.e., the ground-truth defines the person as a civilian
class but the models predicted it as a first-responder).

A comparison between PSPNet and U-Net predictions
indicates the effectiveness of U-Net to define better bound-
aries for the predicted classes. Additionally, U-Net with both
attention mechanisms defines boundaries slightly better than
U-Net alone.

Moreover, the examples also present classes that are
detected better in U-Net-SE than U-Net-CBAM such as the
third and fourth rows where they show a better detection of
the response-vehicle and the debris classes. In contrast, the
fourth row shows images where the dirt-road class is better
defined by U-Net-CBAM rather than U-Net-SE. Thus, these
visual comparisons reinforce the scores obtained in Table I.

The final example (i.e., the fifth row) visually indicates
the importance of attention mechanisms, it shows the correct
prediction of air cables as background which are not even
segmented in the ground-truth.

C. Computational performance analysis

Table II presents the results related to the computational
performance where PSPNet compared with U-Net has better
results in the number of FLOPS (around half of U-Net), and
the number of parameters (around 15M less than U-Net);
however, U-Net shows better performance in the inference
speed, inference time, mAcc, and mIoU . Therefore, It
can be said that in this specific task (SAR dataset), skips
connections worsen the computational cost of a model but
outperforms the time complexity and the prediction scores
compared with the use of a pyramid pooling module.

As for the use of attention mechanisms, both SE and
CBAM slightly increase the computing consumption and
time complexity but enhance the prediction scores. There-
fore, for this specific task, it is important to consider the
addition of attention mechanisms to base models. It is true
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Fig. 4: Predictions on SAR dataset: (a) RGB images, (b) Ground-truth images, (c) PSPNet, (d) U-Net, (e) U-Net-SE, and
(f) U-Net-CBAM.

TABLE II: Computing and time complexity analysis on SAR test set. The inference speed was measured by running a test
on a single GPU

Network FLOPS (G) Params (M) Inference Inference mAcc mIoU
speed (fps) time (ms)

PSPNet 108.74 91.72 32.27 30.99 75.63 66.70
U-Net 219.46 106.51 34.49 29.00 78.27 70.20
U-Net-SE 219.47 107.20 31.20 32.06 78.28 70.93
U-Net-CBAM 219.47 107.20 31.40 31.84 78.57 70.94

that the values of the computational and time model cost are
penalized; however, it significantly increases the prediction
scores of specific classes for SAR scenarios such as debris,
civilian car, and command-post.

VI. CONCLUSIONS

This paper presents an evaluation of four semantic seg-
mentation models in Search-and-Rescue (SAR) scenarios.
Two different base models corresponding to different se-
mantic segmentation approaches have been used: U-Net,
based on skip connections between encoder and decoder,
and PSPNet, which rely on a pyramid pooling module. The

best of the two base models is modified by integrating
two different attention mechanisms, the convolutional block
attention module (CBAM) and the Squeeze and Excitation
block (SE). To evaluate their performance the mean accu-
racy (mAcc) and the intersection-over-union (mIoU ) are
used as precision scores, and to evaluate the computational
performance we measure the floating point operations per
second (FLOPS), the number of parameters, inference time in
milliseconds (ms), and inference speed in frames per second
(fps). The four models have been trained on our manually
labeled SAR dataset with eleven classes. The quantitative



and qualitative results show a better performance of the U-
Net model, detecting classes with more accurate boundary
precision, and the effectiveness of attention mechanisms to
increase the model performance while minimally affecting
the computational cost.

As future work, we are interested in augmenting and
balancing the SAR dataset, and including different visual
modalities such as thermal infrared or depth information.
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