
Managing Security Control Assumptions
using Causal Traceability

Armstrong Nhlabatsi∗, Yijun Yu†, Andrea Zisman†, Thein Tun†, Niamul Khan∗, Arosha Bandara†,
Khaled M. Khan∗ and Bashar Nuseibeh†‡

∗Department of Computer Science and Engineering, KINDI Lab, Qatar University, Doha, Qatar
Email: {Armstrong.Nhlabatsi,Niamul.Khan,K.Khan}@qu.edu.qa

†Department of Computing and Communications, The Open University, Milton Keynes, UK
Email: {y.yu,andrea.zisman,t.t.tun,a.k.bandara,b.nuseibeh}@open.ac.uk

‡Lero, University of Limerick, Dublin, Ireland
Email: {bashar.nuseibeh}@lero.ie

Abstract—Security control specifications of software systems
are designed to meet their security requirements. It is difficult
to know both the value of assets and the malicious intention of
attackers at design time, hence assumptions about the operational
environment often reveal unexpected flaws. To diagnose the
causes of violations in security requirements it is necessary to
check these design-time assumptions. Otherwise, the system could
be vulnerable to potential attacks. Addressing such vulnerabilities
requires an explicit understanding of how the security control
specifications were defined from the original security require-
ments. However, assumptions are rarely explicitly documented
and monitored during system operation. This paper proposes
a systematic approach to monitoring design-time assumptions
explicitly as logs, by using traceability links from requirements
to specifications. The work also helps identify which alternative
specifications of security control can be used to satisfy a security
requirement that has been violated based on the logs. The work is
illustrated by an example of an electronic patient record system.

KEYWORDS: Traceability, Assumptions, Security

I. INTRODUCTION

While developing requirements into specifications, software
engineers have to make assumptions about the runtime op-
erational environment. The gap between a system and its
operational environment is bridged conceptually by explicit
and implicit assumptions [1]. In reality, not all assumptions
are documented explicitly at design-time, or even validated at
runtime. Traceability links can be used to address the problem
of explicitly documenting assumptions [2], and monitoring
can be used to validate assumptions at runtime [3]. Since
changes to the operational environment could render design-
time assumptions invalid, it is necessary to provide support for
both approaches, which is even more important for security re-
quirements and their respective security control specifications.

The invalidation of an assumption may have undesirable
consequence on the behaviour of the application, which of-
ten denies security requirements [4] [5], and may leave an
application vulnerable to attacks. For example, consider the
requirement of protecting the bank balance of a credit card
from an unauthorised user, and the implementation of this
requirement by a security control specification that requires
personal identification number (PIN) authentication. Assume

that only the owner of the card knows the pin. In this case,
a disclosure of the PIN to another user who has access to
the card could cause loss of money on the associated bank
account.

Monitoring assumptions is useful, and necessary, to identify
runtime alternatives for security control specifications that
are more effective. Examples of alternative security control
specifications are (i) limiting the balance of the credit card,
or (ii) introducing two-factor authentication such as short
messages with onetime codes to verify that the user also owns
the registered phone.

Addressing these types of violations requires a good un-
derstanding of how security control specifications are defined
from security requirements. More specifically, there is a need
to analyse and document assumptions by asking questions
such as Why an assumption was made? and What are the
implications of an assumption on the satisfaction of security
requirements?

In this paper, we propose an approach to identify alternative
security control specifications of violated requirements in
order to support adaptation of the system in the face of
violations. More specifically, the approach monitors assump-
tions continuously to generate logs about the system and
its environment [6]; and uses predefined traceability links to
identify the security control specifications associated with the
requirements. In the event that a security requirement is not
satisfied, the approach identifies the associated security control
specifications by traversing the traceability links, and uses the
log files to analyse the assumptions that hold.

The approach combines three techniques, namely (i) en-
tailment relations of requirements problems [7], (ii) problem
progression [8] [9], and (iii) causality relations [10] [11]. The
entailment relation technique is used as the basis for relating
requirements and specifications through documentation of the
assumptions associated with the security control specifications.
The problem progression technique is used to help with the
identification of the specifications which are related to the
requirements. These relations are represented explicitly by
traceability links based on causality. We call these links Causal
Traceability. The causality relations between the logged events



are used during the monitoring of assumptions. Compared to
plain relationships between specifications and requirements,
such traceability links are enriched with behavioural semantics
of the application. The paper proposes an approach to manag-
ing assumptions using traceability links based on causality.

The remainder of the paper is structured as follows.
Section II introduces an example to motivate the problem.
Section III gives the background on problem progression,
entailment and causality. Section IV describes the approach.
Section V illustrates the approach through the example de-
scribed in Section II. Section VI summarises related work and
Section VII concludes the work.

II. EXAMPLE: ELECTRONIC PATIENT RECORDS SYSTEM

Our approach is illustrated using the access control require-
ments of a cloud-based electronic patient record (EPR) system.

A. Design assumptions about the runtime operation

Bob is a doctor who wants to access the medical records
of his patients stored on the EPR system. A policy of the
hospital is that Bob should only access the medical records
when he is on duty. Assuming that the EPR system has already
authenticated Bob, whether he is on duty or not depends on
the combination of three contextual attributes, namely: his
location, the time of day, and the identity of the network
he is using when accessing the medical records. Furthermore,
these attributes are determined respectively by three sensors:
GPS, Clock, and WiFi. The availability of these three sen-
sors is indicated by the values of three Boolean contextual
variables: isWithinGPSRange, isWithinWorkingHours, and is-
CorrectSSID, respectively. The combinations of these three
variables are used to compute ConfidenceLevel to indicate the
trust the system has that the doctor is on duty (see Table I). The
values can be VERY LOW, LOW, MEDIUM, or HIGH (e.g., if
the GPS sensor provides accurate coordinates and the doctor is
connected to the hospital WiFi, but not during working hours
(i.e. Row 7), the confidence level is HIGH).

ConfidenceLevel is used by Adam, the administrator of the
system, to determine which access privileges of patient records
are granted to Bob (see Table II). The privileges can either be
Read, Write, or Share (e.g., if ConfidenceLevel is VERY LOW,
no privilege is allowed).

TABLE I
CONTEXT VARIABLES AND CONFIDENCE LEVEL

Row isWithin
GPSRange

isCorrect
SSID

isWorking
Hours

Confidence
Level

1 False False False VERY LOW
2 False False True LOW
3 False True False LOW
4 False True True MEDIUM
5 True False False MEDIUM
6 True False True HIGH
7 True True False HIGH
8 True True True HIGH

Based on the information in Tables I and II, Bob’s access
privileges depend on the sensors available on his device. For

TABLE II
CONFIDENCE LEVEL AND PRIVILEGES

Confidence Level canRead canWrite canShare
1 VERY LOW No No No
2 LOW Yes No No
3 MEDIUM Yes Yes No
4 HIGH Yes Yes Yes

example, Bob’s iPad has a built-in GPS receiver while his
laptop has none, which results in different privileges for him.

B. Runtime violation of access control policy requirement

Suppose Bob is denied the privilege to share a medical
record when using his laptop but the he is granted the same
privilege when using his iPad. After Bob complains to Adam
about variation in his access privileges, Adam introduces a sep-
arate external GPS device that determines Bob’s location when
accessing a medical record from his laptop. The EPR system
access control policies are then updated such that whenever
Bob is accessing a medical record from his laptop, his location
is determined by the external GPS device. Meanwhile, if he
accesses the system from the iPad, his location is determined
by the built-in GPS device of the iPad.

For the new access control policy specification to work, a
key assumption is that Bob is always carrying the GPS device
when accessing medical records using his laptop. However,
this assumption may not always hold. For instance if Bob left
his GPS device in the hospital while retrieving medical records
outside the hospital, the EPR system may conclude that the
confidence level of Bob being on duty is HIGH (see Row 6
of Table I) when it should have been LOW (see Row 2 of
Table I). As a result, Bob is granted all the privileges as if
he was physically present at the hospital simply because his
external GPS device indicates to the access control that he
was at the hospital. However, since he is accessing the record
from outside the hospital premises he should be allowed only
to Read.

This scenario is a violation of the hospital policies that
Bob should only access full privileges when in the hospital,
and results from the invalidation of the assumption that the
doctor always carries the external GPS device. The violation
represents a vulnerability.

The EPR system as designed has no control over this
assumption and has no way of verifying its validity. It has to
trust that Bob will always behave in a way that ensures that the
assumption holds. The scenario also demonstrates that one of
the critical requirements for an application designed to satisfy
security requirements is the capability to monitor the validity
of assumptions at runtime.

III. BACKGROUND

Our approach for explicitly documenting assumptions is
based on three key concepts, namely (i) entailment rela-
tions of requirements problems [7], (ii) causality in temporal
logic [11], and (iii) problem progression transformations [10].
We use the entailment relation as the basis for relating re-
quirements and specifications, causality to model the semantics



of traceability links, and problem progression as a systematic
technique for eliciting traceability links and assumptions.

After the elicitation, we show how each explicit assumption
can be monitored during system operation using attributes of
the context. Explicit assumptions that cannot be monitored
in their current form are transformed until they are in a form
that they can be monitored. When the explicit assumptions are
monitored, the reasoning of the security requirements satisfac-
tion may involve switching the security control specification to
an alternative one, if it exists. If all alternatives are exhausted,
the system operator has to record the incident and resort to the
designer for further investigations on the assumptions. In the
rest of this section we describe the three key components of
our approach: entailment, causality, and problem progression.

A. The entailment semantics

Entailment is a relationship between three sets of descrip-
tions, namely: the requirements R, the specifications S and
the domain properties W .

The set of requirements R describes the properties of the
software system as desired by its users, customers, and other
stakeholders. Requirements are optative in that they describe
how the world would be once the envisioned system is in
place. In the EPR system, for example, a security requirement
is to control the access to medical records stated as: a doctor
can read, write, or share the medical records of patients only
when s/he is on duty.

The set of domain properties W describes the behaviour
of the contextual domains of the environment that interacts
with the system-to-be. The attributes of a domain may have
values that determine the behaviour of the adaptive application.
Unlike requirements, domain properties are indicative in that
whether these properties hold is independent of the behaviour
of the system-to-be. In the EPR example, an indicative prop-
erty is: working hours at the hospital are from 8am to 5pm.

The set of specifications S describes how the computer
should behave in order to satisfy the domain properties de-
scribed in R, given that the domain properties in W hold. The
specification for the EPR system could be: after a successful
authentication, the doctor can read, write, or share a medical
record only when s/he is accessing the record while on duty.

In general, the problem-solution relationship between the
three sets of descriptions explained above is given as the
following:

S,W ` R

where ` is the entailment operator.
In order to support the entailment, one needs to know the

details about the specific behaviour of S and W .

B. The causality semantics

One way to further describe the three properties (S, W , and
R) in the entailment semantics is in terms of events and fluents,
borrowed from temporal logic such as the Event Calculus [12].

The cause and effect relationships between events and
fluents in the domain descriptions are causality relations. A
causality relation describes how the occurrence of one event

e1 leads to the occurrence of a second event e2 as the effect of
changing a fluent [11]. For example, when the time-of-the-day
becomes 8am, the event isWorkingHours occurs. This is
related by the causal relation:

ClockStrikes8am ↪→ isWorkingHours

Note the effect of time in this causality relation.
The event ClockStrikes8am and the change of fluent
isWorkingHours do not happen simultaneously, but con-
secutively. If event ClockStrikes8am happens at some
time t0, then the fluent isWorkingHours becomes true at
a later time t1.

C. The problem progression

The definition of a specification is achieved through suc-
cessive transformations of a requirement using problem pro-
gression [10] until the requirement is concrete enough to be
implementable as a machine specification.

The premise is that software problems are deeply rooted in
the problem world and that in order to solve such problems
should be re-expressed through the properties of the context
until solutions can be found.

Fig. 1. Requirement Transformation through Problem Progression

Figure 1 illustrates the gradual transformation of a require-
ment through problem progression to a specification. R3[e3]
is the initial requirement expressed in terms of effect e3 which
is caused by event e2 in W2. The causal relation, e2 ↪→ e3, in
W2 suggests that R3 can be expressed using only e2, instead of
being expressed using e3. Using this relation R3 is transformed
into R2. The same process is repeated to transform R2 into R1.
R1 is expressed only in terms of phenomena of the machine
and it is the most concrete form of the original requirement
R3. The causal relations e1 ↪→ e2 and e2 ↪→ e3 form the
traceability link between the requirement and specification.
Each causal relation ei ↪→ ei+1 is guarded by an assumption
AWi such that: AWi ⇒ (ei ↪→ ei+1). This states that the
causality can only happen if the assumption holds.

IV. COMBINING CAUSALITY WITH TRACEABILITY

In this section, we describe how to identify the assumptions
of the contextual properties from the entailment semantics of
traceability links between security requirements and security
control specifications, during problem progression process.



We show how the causality semantics between runtime be-
haviours referenced by the contextual properties can be used
in analysing and monitoring the identified assumptions.

A. Step 1. Documenting traceability links with entailment and
causal semantics

We leverage the entailment relation to link security require-
ments R to security control specifications S given context
W , assuming that S satisfy R. The specifications and the
requirements are usually expressed in different terms, which
makes it more difficult to relate the two (R and S).

In order to tease out the assumptions, one can start chal-
lenging every traceability link recorded during the problem
progression. In Figure 2 the bold doubled-arrow line represents
the traceability between R and S. Conceptually, a traceability
link between a requirement and a security control specification
has two parts. The first part is between the requirements

Fig. 2. Relating Requirements and Specifications through Domain Assump-
tions in the Context

and contextual domains, as indicated by (L1) between R
and W in Figure 2. According to the entailment relation, a
requirement is defined as some property that must be exhibited
by an application in order to solve some problem in the real
world. For this reason, the requirement can be expressed as
the conditions one would like to be true in terms of the
attributes x of the context once the system-to-be is in place.
The second part, indicated by (L2), between W and S is the
traceability between domains in the solution space, i.e. context
and specification.

Relying on the assumptionsAW about the behaviour of the
context, denoted by y, the solution implements the behaviour
x that satisfies the requirements. The reliance of the security
control specification on assumptions of the context is used to
establish a causality between the two (x and y). In forward
traceability the requirement is the source artifact and the spec-
ification is the target; in reverse traceability the specification
becomes the source and the requirement is the target.

B. Step 2. Monitoring assumptions as logs at runtime

Suppose that one has documented the assumptions explicitly
as part of the design rationale through problem progression
during the definition of alternatives to satisfy the security
requirement. Typically the trade-offs decisions to prefer one
specification to another is based on some assumptions. When
a chosen specification has a problem in achieving the security
requirement as complaints from users arise, it is necessary

to adapt to the right alternative if possible. Therefore, every
explicit assumption made during the trade-off needs to be
validated.

After documenting the assumptions of traceability links in
terms of referenced contextual attributes x and causally reliant
behaviour y, the next step is to determine which of them
needs to be monitored and based on what property at run-
time. Logging every single property is impractical and creates
overhead for large systems. To avoid such overhead, we make
use of the semantics of traceability links guided by the security
requirements.

In this approach, we assume that there are multiple security
control specifications for a security requirement. Otherwise,
there is a single point of failure. For the current context, the
system executes the security control specification that satisfies
the security requirements. According to the causality between
behaviours of domains in the security control specifications,
one needs to enact the monitors of the reliant behaviour to
generate logs. These logs are used for the next analysis step
to reason about adaptation.

C. Step 3. Adapting security control specifications

At runtime, when an incident report about violation of a se-
curity requirement arises, the adaptation mechanism searches
the logs to identify events with timestamps around the time the
incident happened. The traceability links are used to identify
the security control specifications involved, especially to filter
the log for the ‘current’ security control specification that was
active during the incident.

After that, the assumptions and the domain attributes as-
sociated with the logs of the current specification and the
alternative specifications are fetched. The logs are used to
classify three situations:

• All the assumptions of the current specification s0 are
satisfied. In this case, an alarm will be created to indicate
that there is a potential misunderstanding of the domain
assumptions;

• Some assumptions of the current specification are indeed
false, but all the assumptions of at least one of the
security control specifications (e.g., s1) hold. In this case,
the system could have adapted to the security control
specification. If the system failed to adapt to s1, then
there could be a fault of the adaptation mechanism;

• None of the alternative security control specifications at
the time of the incident could satisfactorily meet their
assumptions. In this case, the system should have sent an
alarm to the system administrator. The absence of such
alarms could indicate a fault of the adaptation mechanism.

As one can see, adaptation is not the automated panacea to
the problem. All the above situations could involve either (a)
taking the system offline to investigate the assumptions on the
traceability links; or (b) tolerating the risks of future violation
of security requirements if the likelihood of a similar incident
is low and the impact is negligible.



V. ASSUMPTION MANAGEMENT: A FEASIBILITY STUDY

In this section, we go through the three steps in the approach
using the same running example from Section II.

A. Step 1. Documenting traceability links with entailment and
causal semantics

The security requirement, Rs, of protecting the confiden-
tiality of medical records can be stated as: doctors can access
medical records only while on duty.

In satisfying this requirement two sub-problems, Authen-
tication and Location, need to be solved. Solving these two
sub-problems and composing their solutions essentially solves
the confidentiality problem. Figure 3 shows an initial security
control specification of the EPR system resulted from the
progression of the problem.

Fig. 3. An initial security control specification

Next, every assumption recorded during the problem pro-
gression should be challenged. The Authentication sub-
problem is about how to determine that the doctor is who
s/he claims to be? Initially, we have chosen to use authen-
tication based on credentials (user name and password). In
the process of problem progression, one can make a number
of assumptions to justify the choice of solution for this sub-
problem. Figure 4 shows a transformation of the authentication
requirement Rauth into the specification Sauth.

Fig. 4. Authentication problem progression with associated assumptions at
each step

Starting with the initial authentication requirement Rauth0

which says authenticating a doctor, the satisfaction of this
requirement assumes ACredentials. ACredentials is the as-
sumption that the doctor knows the correct credentials. This
assumption is based on the following causality:

ACredentials ⇒ (hasCorrectCredentials() ↪→ isDoctor())

ACredentials helps transform Rauth0 into Rauth1: if cre-
dentials entered on the keypad are correct then the subject
entering them is the legitimate owner of the credentials. The
assumption placed on the keypad, AKeypad, is based on the
following causality:

AKeypad ⇒

(isCredentialsOwner() ↪→ hasCorrectCredentials())

The weakness of this assumption is that even if credentials
received by the system are correct, it is difficult to tell
whether they were entered by the legitimate owner or by an
attacker who has stolen them. Therefore, one cannot rely on
the credentials entered on the keypad as the single way to
identify the doctor. In addressing this issue one may consider
a fingerprint scanner alternative, which is associated with its
own assumptions. This transforms AKeypad to AFingerprints:
(every individual has unique fingerprints). With this transfor-
mation, the requirement Rauth1 becomes R′auth1, which says
that if finger prints read by the scanner match that of the
doctor, then this is the doctor. This requirement transformation
is based on the following causality:

AFingerprints ⇒

(matchingF ingerPrints() ↪→ isCredentialsOwner())

The problem progression from Rauth1′ ends with the re-
quirement Rauth2, which states that if the fingerprints read
by the scanner match that of the doctor then authentication
is successful. Thus, the authentication specification Sauth

becomes:

IF (matchingF ingerPrints() == true)THEN

AunthenticationSuccessful

Similarly, solving the Location sub-problem is about an-
swering the following question: What does ‘on duty’ mean
in the security requirement? One may explain that the doctor
is on duty if s/he is within certain GPS coordinates, using
the hospital WiFi for connection, and the time of day is
between 8am and 5pm. Based on this, isOnDuty (x1) is
a property referred by the requirements, and GPS, WiFi,
and Time-of-Day are attributes from the context (x2).
For example, one of the assumptions on GPS made in the
progression of this sub-problem is that the doctor is always
carrying the GPS device when requesting access and hence
his/her location may be determined from the coordinates of
the GPS device.

The documentation of the causality relations and assump-
tions is performed as part of the process of refining a require-
ment into a specification - a task that the analyst performs
through problem progression. Given that traceability is based
on causal relation in the context, any change in either the
requirement or specification has minimal impact on the trace-
ability. This is because both the requirement and specification
are based on properties of the context which scopes the extent
to which they can change.



B. Step 2. Monitoring assumptions as logs at runtime

Assumptions need to be monitored at runtime. To facilitate
the analysis later on, one should log contextual data at runtime.

For example, AWithDoctor is the assumption that the doctor
always carries the GPS device when making a request for
accessing medical records. Hence the coordinates given by
the GPS device are assumed to be the location of the doctor.
Although it is possible to log the coordinates of the GPS device
into the system, it is not always sufficient to check the validity
of this assumption. In fact, having a GPS device reporting the
office location is not sufficient to tell whether it is with the
doctor or not. The assumption can be challenged by asking
what if the doctor is not carrying the GPS device.

An alternative security control specification is designed to
consider the IP address of the subnet of doctor’s WiFi device
and the known subnet range assigned to the hospital. If the two
addresses are in the same subnet, according to the assumption,
it is the doctor who is trying to access. Therefore, the IP
address of the GPS device and device requesting access must
be logged such that by examining the two IP addresses one
may monitor whether the doctor is carrying the GPS device
when requesting the access.

Figure 5 shows some of the data logs collected at run-time.
Each entry has an associated time-stamp, and the recorded
values for a list of monitored variables. These values will be
used to validate the AWithDoctor assumption.

Fig. 5. Concrete Contextual Data Logged at Run-time

Next we explain how such logs can be used and what to do
even when an adaptation is insufficient.

C. Step 3. Adapting security control specifications

When a monitored assumption becomes invalid at run-
time according to the logs, the system administrator needs to
diagnose the specific point in the definition of a specification
from a requirement where the assumption was made. For
example, the security requirement was reported to be violated
by Bob at 0931 HRS. By analysing the logs between 0900
HRS and 0930 HRS, it shows that AWithDoctor was invalid
but access is granted.

The monitoring mechanism enacted earlier could have iden-
tified this situation and reported it to the administrator. How-
ever, neither the administrator was alarmed nor the alternatives
of the security control specifications were invoked, indicating
that there is a design flaw in the system. Narrowing the scope
from this log would help the administrator diagnose the flaw.

As an alternative, the administrator may fix this by adding the
GPS and access device’s IP addresses in the security control
specification as additional contextual attributes for determining
the doctor’s location.

Fig. 6. Revised Specification with Assumption Monitoring

Figure 6 shows the revised access control specification with
monitored assumptions used as a guard condition. If the condi-
tion isWithGPSDevice(Doctor) is false, then access will not be
granted. By checking whether the two IP addresses are in the
same subnet, the revised specification solves the design flaw.
This additional guard condition strengthens satisfaction of the
security requirement and reduces the risk of vulnerability.

VI. RELATED WORK

Traceability has been used as a technique for supporting
software maintenance activities [13], [14], [15], [16], [17]
by linking artifacts. The links are often based on common
keywords between the artifacts [15], [18]. However, while
effective in maintaining explicit relationships between arti-
facts, these links do not contain adequate semantic information
about the relationship between requirements (problems) and
specifications (solutions) using satisfaction arguments [19].
Using rule-based representation, the proposed links can also
be generalised in the same style as the requirement-to-object-
model rules [20] or as bidirectional transformation rules [21].

Attempts have been made to establish semantically rich
traceability links [22], [23], [24], [25]. However, such links are
not sufficient for managing runtime assumptions in software
development. The traceability links proposed in this paper are
based on domain-specific and intrinsic information, relating
security requirements to security controls, through causality
[11], [9]. This representation is motivated by the observation
that security requirements are stated in terms of the conditions
that need to hold to protect assets from harm, and security
controls are expressed in terms of the actions that need to be
performed in order to satisfy the conditions stated by security
requirements [7].

In earlier work we proposed to use causal traceability for
explaining the behaviour of adaptive systems [26]. We are
not the first to address the problem of managing assumptions.
Ali et. al. [4] outlined an approach to monitor, at runtime, the
assumptions in a requirements model, and to evolve the model
to reflect the validity level of such assumptions. Although
our approach is similar, we emphasise that understanding
traceability between requirements and specifications is a key
feature in monitoring and transforming assumptions.

Moreover, some approaches have been proposed in which
traceability links are used to support software agile develop-



ment [27], and even in medical applications [28]. However,
to the best of our knowledge, the use of traceability links to
support security of applications is novel.

VII. CONCLUSION AND FUTURE WORK

Assumptions made about the operating environment may
become invalid during system operation resulting in vul-
nerabilities. We have proposed an approach to monitoring
assumptions for security controls. In the approach we have
combined the entailment and causality semantics to model
traceability between requirements and specifications so that
problem progression techniques can be used for systematically
eliciting assumptions alongside traceability links. We have
illustrated how our approach can be used for diagnosing vul-
nerabilities through an access control example of an electronic
patient records system.

In ongoing work we will explore the possibility of using
cause-to-effect and effect-to-cause rules [10] to enrich forward
and reverse traceability links for forward and reverse engineer-
ing. Specifications based on weaker assumptions are currently
discarded in our approach. We plan to retain and invoke them
at run-time in the event that the default specification fails to
satisfy the requirement. We also plan to provide an automatic
way to identify traceability links, and to evaluate the approach
in real-life case studies.

ACKNOWLEDGEMENT

This work was made possible by the support of a grant
(NPRP 05-079-1-018) from the Qatar National Research Fund
(QNRF). The statements made herein are solely the responsi-
bility of the authors.

REFERENCES

[1] M. Lehman and J. Ramil, “Software evolution in the age of component-
based software engineering,” Software, IEE Proceedings -, vol. 147,
no. 6, pp. 249–255, 2000.

[2] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Trans. Softw. Eng., vol. 27, no. 1, pp. 58–93, Jan.
2001. [Online]. Available: http://dx.doi.org/10.1109/32.895989

[3] Y. Wang, S. A. McIlraith, Y. Yu, and J. Mylopoulos, “Monitoring and
diagnosing software requirements,” Autom. Softw. Eng., vol. 16, no. 1,
pp. 3–35, 2009. [Online]. Available: http://dx.doi.org/10.1007/s10515-
008-0042-8

[4] R. Ali, F. Dalpiaz, P. Giorgini, and V. E. S. Souza, “Requirements
Evolution: From Assumptions to Reality,” in Enterprise, Business-
Process and Information Systems Modeling, ser. Lecture Notes in
Business Information Processing, T. Halpin, S. Nurcan, J. Krogstie,
P. Soffer, E. Proper, R. Schmidt, and I. Bider, Eds. Springer Berlin
Heidelberg, Jan. 2011, no. 81, pp. 372–382. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-642-21759-3-27

[5] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security Requirements
Engineering: A Framework for Representation and Analysis,” IEEE
Transactions on Software Engineering, vol. 34, no. 1, pp. 133–153, Jan.
2008.

[6] M. Salifu, Y. Yu, A. K. Bandara, and B. Nuseibeh, “Analysing
monitoring and switching problems for adaptive systems,” Journal of
Systems and Software, vol. 85, no. 12, pp. 2829–2839, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2012.07.062

[7] P. Zave and M. Jackson, “Four Dark Corners of Requirements Engineer-
ing,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 1, pp. 1–30, Jan.
1997. [Online]. Available: http://doi.acm.org/10.1145/237432.237434

[8] M. A. Jackson, Problem frames and methods: structuring and analyzing
software development problems. Harlow: Addison-Wesley, 2000.

[9] L. Rapanotti, J. Hall, and Z. Li, “Deriving specifications from require-
ments through problem reduction,” Software, IEE Proceedings -, vol.
153, no. 5, pp. 183–198, Oct. 2006.

[10] Z. Li, J. G. Hall, and L. Rapanotti, “On the Systematic Transformation
of Requirements to Specifications,” Requir. Eng., vol. 19, no. 4, pp. 397–
419, Nov. 2014. [Online]. Available: http://dx.doi.org/10.1007/s00766-
013-0173-8

[11] R. Scherl and G. Shafer, “A logic of action, causality, and the temporal
relations of events,” in Fifth International Workshop on Temporal
Representation and Reasoning, 1998. Proceedings, May 1998, pp. 89–
96.

[12] E. T. Mueller, “Automating commonsense reasoning using the event
calculus,” Commun. ACM, vol. 52, no. 1, pp. 113–117, Jan. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1435417.1435443

[13] M. Hirzalla, A. Zisman, and J. Cleland-Huang, “Using Traceability
to Support SOA Impact Analysis,” in 2011 IEEE World Congress on
Services (SERVICES), Jul. 2011, pp. 145–152.

[14] M. Mirakhorli and J. Cleland-Huang, “Using tactic traceability informa-
tion models to reduce the risk of architectural degradation during system
maintenance,” in 2011 27th IEEE International Conference on Software
Maintenance (ICSM), Sep. 2011, pp. 123–132.

[15] G. Bavota, A. De Lucia, R. Oliveto, and G. Tortora, “Enhancing
Software Artefact Traceability Recovery Processes with Link Count
Information,” Inf. Softw. Technol., vol. 56, no. 2, pp. 163–182, Feb.
2014. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.2013.08.004

[16] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and A. Zisman,
“Software traceability: trends and future directions,” in Proceedings
of the on Future of Software Engineering, FOSE 2014, Hyderabad,
India, May 31 - June 7, 2014, 2014, pp. 55–69. [Online]. Available:
http://doi.acm.org/10.1145/2593882.2593891

[17] J. Cleland-Huang, O. Gotel, and A. Zisman, Eds., Software and Systems
Traceability. Springer, 2012. [Online]. Available: http://dblp.uni-
trier.de/db/books/daglib/0028967.html

[18] H. Asuncion, A. Asuncion, and R. Taylor, “Software traceability with
topic modeling,” in 2010 ACM/IEEE 32nd International Conference on
Software Engineering, vol. 1, May 2010, pp. 95–104.

[19] E. Kang and D. Jackson, “Dependability Arguments with Trusted
Bases,” in Requirements Engineering Conference (RE), 2010 18th IEEE
International, Sep. 2010, pp. 262–271.

[20] G. Spanoudakis, A. Zisman, E. Prez-Miana, and P. Krause, “Rule-based
generation of requirements traceability relations,” Journal of Systems
and Software, vol. 72, no. 2, pp. 105–127, Jul. 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121203002425

[21] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Montrieux, “Main-
taining invariant traceability through bidirectional transformations,” in
2012 34th International Conference on Software Engineering (ICSE),
Jun. 2012, pp. 540–550.

[22] H. Schwarz, J. Ebert, J. Lemcke, T. Rahmani, and S. Zivkovic, “Using
Expressive Traceability Relationships for Ensuring Consistent Process
Model Refinement,” in 2010 15th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), Mar. 2010, pp.
183–192.

[23] A. Marcus and J. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in 25th International
Conference on Software Engineering, 2003. Proceedings, May 2003, pp.
125–135.

[24] W. Jirapanthong and A. Zisman, “Xtraque: traceability for product line
systems.” Software and System Modeling, vol. 8, no. 1, pp. 117–144,
2009.

[25] L. Lamb, W. Jirapanthong, and A. Zisman, “Towards a formalization
for traceability relation,” in 7th International Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE11), Hawaii, 2011.

[26] A. Nhlabatsi, T. Tun, N. Khan, Y. Yu, A. K. Bandara, K. M.
Khan, and B. Nuseibeh, “Why cant I do that?: Tracing Adaptive
Security Decisions,” EAI Endorsed Transactions on Self-Adaptive
Systems, vol. 1, no. 1, p. e2, Jan. 2015. [Online]. Available:
http://eudl.eu/doi/10.4108/sas.1.1.e2

[27] J. Cleland-Huang, “Traceability in agile projects,” in Software and
Systems Traceability., 2012, pp. 265–275.

[28] F. McCaffery, V. Casey, M. S. Sivakumar, G. Coleman, P. Donnelly,
and J. Burton, “Medical device software traceability.” in Software and
Systems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman,
Eds. Springer, 2012, pp. 321–339. [Online]. Available: http://dblp.uni-
trier.de/db/books/daglib/0028967.html


