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Abstract—In the field of security, attack trees are often used
to assess security vulnerabilities probabilistically in relation to
multi-step attacks. The nodes are usually connected via AND-
gates, where all children must be executed, or via OR-gates,
where only one action is necessary for the attack step to succeed.
This logic, however, is not suitable for including human interac-
tion such as that of social engineering, because the attacker may
combine different persuasion principles to different degrees, with
different associated success probabilities. Experimental results in
this domain are typically represented by regression equations
rather than logical gates. This paper therefore proposes an
extension to attack trees involving a regression-node, illustrated
by data obtained from a social engineering experiment. By
allowing the annotation of leaf nodes with experimental data
from social science, the regression-node enables the development
of integrated socio-technical security models.

I. INTRODUCTION

The complexity of attacks on critical systems increases with

the complexity of the systems themselves [1]. To evaluate

the safety of systems, fault trees were first developed in the

1960s [2]. Attack trees were popularized by Bruce Schneier

[3] and constitute similar tree structures which have been

used since the 1990s to assess security. The root node of

an attack tree depicts the goal of the attacker (e.g. Obtain

Exam). The children of a node in the tree are refinements of

the node’s goal into sub-goals. The leaves of the tree represent

the basic actions to be executed by the attacker. Relations

between siblings can either be: (i) AND-relations for which

all sub-goals have to be executed to satisfy the parent node;

or (ii) OR-relations for which any of the sub-goals has to be

executed to satisfy the parent node (refer to Figure 1 for an

example of an attack tree).

The quantification of attacks is a key component in security

risk evaluation and mitigation. The leaf nodes of attack trees

can be annotated with quantitative information. Values such as

probability of success, costs or frequency of occurrence can

be estimated for each leaf node and propagated up to the root

node. However, the mathematical operations corresponding to

the AND and OR relations differ. In the case of an AND
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Fig. 1. An attack tree for Obtaining the Exam

gate, the probability of success of an attack is represented by

the product of the associated leaf nodes whilst for OR gates

the MAX-function is applied to the leaf nodes. In fact, other

propagation rules exist as well. For the purpose of this paper,

there is no strict need to use a particular set of propagation

rules.

The annotation of leaf nodes is usually done using expert

knowledge. Typical annotations used are dichotomies (e.g. yes-

no) or ordered categories such as 3 or 5-point Likert scales

(e.g. low-medium-high). Although such methods suit experts

because of their elegance, they have some drawbacks. In the

case of ordered categories, reliability can be hampered due to

biases such as the optimism bias [4], anchoring bias [5] or the

overconfidence effect [6]. Another factor to be considered is



that the parent-and-child relation being modelled is context-

dependent. This situation is typical of data from the social

sciences involving human behaviour, such as that of social

engineering experiments, in which the probability of success

depends on the attacker’s changes to the context by e.g.

applying persuasion principles [7], which aim to maximize

the probability of success.

To illustrate the modelling difficulties, a scenario consisting

of an attacker who wants to steal an exam is used (refer to

Figure 1). In the scenario we assume that the exam is in

the office of the lecturer; physically in a printed form and

digitally on the PC. The office is on the second floor of the

building and can only be accessed by the lecturer who has the

key. Furthermore, the PC is connected to the internet and is

protected by a password that is only known to the lecturer.

Finally, when the lecturer is not in the office, the office is

locked. The attacker can obtain the exam by either: (i) hacking

into the PC of the lecturer OR (ii) obtaining a physical copy

from the office of the lecturer. To hack into the PC, the attacker

needs: (a) to bypass the firewall AND (b) then guess the

password of the lecturer. The key, on the other hand, can be

obtained by: (a) manipulating the lecturer (social engineering)

in order to obtain access to the office OR by (b) picking

the lock of the lecturer’s office. The success regarding the

manipulation of the lecturer by means of social engineering

can be influenced by: (a) the attacker using authority; OR

(b) the target having received a preventive intervention; OR

(c) by using both authority and intervention; OR (d) with

neither the use of authority nor intervention.

The example describes both properties in control of the

attacker (e.g. Bypass Firewall, Authority and Pick Lock) and

properties that are in control of the target (i.e. Intervention).

Therefore, the example can be interpreted as an Attack De-

fence Tree (ADTree) [1]. ADTrees and traditional attack trees

have a comparable structure. However, there is a difference

in the children; independent of the AND and OR-gates in

ADTrees. Actions in ADTrees can have refinements (children

of the same type) and countermeasures (children of a different

type). For each refinement, there can be one sibling of a

different type that counteracts the parent. In the ADTree

formalism, Authority would be modelled as an attack node,

whereas Intervention as a defence node.

The challenge involves modelling the node which contains

human interaction (i.e. the ‘Social Engineer Key’ node). To

manipulate the context of the attack, the attacker may use

his knowledge of one or several of Cialdini’s persuasion

principles: authority, commitment, liking, conformity, reci-

procity and scarcity (for a detailed discussion, refer to [7]).

The ‘authority’ principle describes the likelihood of obeying

requests from authoritative figures (e.g. requests made by a

boss or person with a well-defined and known task). On the

other hand, the potential targets can make changes to the

context as well. They can be educated to protect themselves

against social engineering attacks. The ‘intervention’, refers to

an awareness campaign that helped preventing targets against

social engineering attacks (e.g. describing how such an attack

looks like and how to prevent becoming a victim). Such

manipulations of context constitute attack steps themselves.

However, this does not represent the simple type of relation

which is modelled in traditional attack trees using AND or OR

relations. In existing attack tree formalisms, a refinement of

the node ‘Social Engineer Key’ could have, for example, the

children: ‘deploy intervention’, ‘get aware of the risk’, ‘go to

office’, ‘increase authority’ and ‘request key’. In the ADTree

formalism, the children ‘go to office’, ‘increase authority’ and

‘request key’ would be modelled as a refinement, whereas

the children ‘get aware of the risk’ and ‘deploy intervention’

would be modelled as counter measures. However, the node

(‘Social Engineer Key’) would have to be designed as either an

AND or an OR node. In the former case, all ‘children’ would

have to be executed in order to satisfy the goal of the ‘parent’

node (i.e. social engineer key), whilst in the latter case, the

attacker would need to execute only one of the ‘children’.

Such AND or OR form of reasoning does not apply to

social engineering since it would be possible to succeed only

by requesting the key (i.e. applying none of the ‘children’)

but also by requesting the key and executing one or more

of the ‘children’. The particular nature of social engineering

data (as opposed to technical data) implies that all ‘children’

correlate with the ‘parent’ to some extent; therefore, modifying

any of the ‘child’ nodes affects the outcome (i.e. probability

of success). Therefore, in an attack tree’s social engineering

node, combinations of ‘child’ nodes should yield various

probabilities of success. This also means that it is possible

to have a probability of compliance with the request when

none of the context variables are used. A different approach

is therefore needed to incorporate social engineeringhuman

behaviour into attack trees. We therefore propose a ‘regression

node’ to model the ‘parent’ on the basis of the ‘children’

parameters based on correlation coefficients as a method for

incorporating social engineeringhuman behaviour nodes in

attack trees.

Benefits of this method are: (i) the capability to incorporate

context variables that influence probabilities, (ii) data from

experiments can be used to annotate the tree and (iii) the

context variables are incorporated in an compact way.

This paper is structured as follows. First, a brief overview

of the proposed attack trees extension(s) is given in Section II.

Section III describes the proposed regression node for attack

trees. Furthermore, an example to illustrate the use of the

proposed regression node is presented in Section III-A. Finally,

conclusions are drawn and suggestions for future research are

made in Section IV.

II. RELATED WORK

Scholars already have made progress in the extension of

attack trees. For example, multiple gates, relations and nodes

have been proposed for various specific problems [8]. The

extensions are separated in two groups: extensions that could

model our scenario, and extensions that are interesting for

future research, in particular defence nodes. For each extension

method a short description is given.



A. Possible alternatives

(i) Ordered AND-gate satisfies the parent node if all children

are executed according to a given order; the children can be

both leaf and non-leaf nodes. The Priority AND [9], [10] and

the Sequence AND [11], [12] are similar types of gates and

can be used in IDS (Intrusion Detection Systems) to detect

attacks that are in the execution phase but that have not yet

been completed [13].

(ii) A Conditional Subordination (CSUB) gate is as extension

of an AND-gate [10]. It acts as an AND-gate, with an

additional side input that is prioritized over the children. The

parent node is satisfied if: a) all children are executed or b) an

additional side leaf which has higher priority is executed.

(iii) The Time Based Order Connector satisfies the parent node

when the child nodes are executed within a predefined time

frame [14]. The number of child nodes executed is at least

one and the order of execution is of no importance.

(iv) The Inhibit gate is a special case of an AND-gate within

the Fault Trees for Security formalism [9]. The parent’s goal

is satisfied if: (a) all the child nodes are executed; and (b) a

predefined condition is met. The condition has to be of an

environmental nature, such as temperature.

(v) XOR (Exclusive OR) gate, which originates in the Fault

Trees for Security, indicates that exactly one of the children

must be executed to satisfy the parent’s goal [9]. This defini-

tion differs from some of the definitions of the ‘standard’ OR

gate (i.e. at least one of the children must be executed). In

the literature, these two definitions are used interchangeably.

OR gates are defined as ‘any child’ by [3], [11], [15], ‘only

one child’ by [16], [12], [17], [18] and ‘at least 1 child’ by

[1], [9], [13], [19]. It should be noted that the difference in

definition affects the propagation rules.

(vi) OWA (Ordered Weighted Averaging) operators are part

of OWA trees [17]. The aim of OWA is to handle fuzzy

sets of executed child nodes in order to satisfy the parent’s

goal. This implies situations that lie between ‘all children’

and ‘one child’, such as ‘most of the children’ or ‘at least half

of the children’ must be executed to satisfy the parent’s goal.

This means that OWA allows the modelling of situations with

probabilistic uncertainty based on the number of children that

must be executed to satisfy the parent’s goal.

(vii) In a k-out-of-n gate, the parent’s goal is satisfied if a pre-

defined subset (k) of all children (n) is executed, whereas the

order is not important [10], [18]. A common way to present

this is as a k
n

-gate, where k ≥ 1. In the case of k = 1,

the function is the same as an OR-gate. A similar gate is

the Threshold Based Connector, where every combination of

exactly k children out of n is possible [14].

None of the extensions were able to model satisfying the

parent node when none of the children are executed. Exten-

sions (v, vi and vii) assume a minimum of 1 child is executed

in order to satisfy the parent node, whereas extensions (i, ii, iii
and iv) assume that all children are executed in order to

satisfy the parent. It is therefore not possible to model all

the ‘possible’ changes in context of the ‘Social Engineer

Key’ attack step. Our approach differs because attack trees

get enriched by placing basic attack actions (leaf nodes) in a

particular context. The context of the attack can change. The

focus is not on weighting actions per se, but rather on how

attacks change by actions one is able to control.

B. Defence nodes

Next to possible alternatives for modelling social engineer-

ing in attack trees, defence nodes may be combined with social

engineering aspects to model the effect of interventions such

as awareness campaigns. ADTrees are already discussed in

the Introduction. Related to this are Attack Responses, these

are similar to the countermeasures in an ADTree, but they

approach the problem from a different perspective [15]. Attack

trees are based on all possible attack scenarios that are able

to satisfy the goal of the attacker. However, Attack Responses

are based on the attack consequences, (e.g. a SQL crash). The

goal of Attack Responses is to find attack consequences that

lead to the violation of an asset’s security properties therefore,

knowing all possible attack scenarios is not necessary. The

Countermeasure gate can not be used to model our scenario

for the same reason that the Attack Responses can not be used.

The final possible alternative is the Bayesian Belief Network

(BBN). This is an approach that uses a graphical representation

of prior probability distributions, represented in a Directed

Acyclic Graph (DAG) [20]. Each directed edge represents

a dependence relation between 2 variables, meaning that

the variable (B) is stochastically dependent on variable (A),

written as P (B | A). Each node in the graph includes a table

containing conditional probabilities quantifying the influence

strength of the other variables [20]. Since the BBN approach

is ‘further’ away from the approach involving the design of a

new kind of node or gate, we chose not to follow the BBN

option.

III. THE REGRESSION NODE

In traditional attack trees, all ‘children’ (AND-gate) or any

‘child’ (OR-gate) must be executed to satisfy the parent node.

In this paper, we propose a ‘regression-node’ to model the

‘leaf node’ of an attack tree on the basis of the ‘contextual’

parameters, based on correlation coefficients. In this paper, we

a first step involving the regression node modelled as a leaf

node.

Regression analysis is a technique that predicts an outcome

from a model, based on the relation among input variables

[21]. In the ‘Social Engineer Key’ node presented in Figure 1,

this would translate into estimating how context variables that

the attacker is able to exercise or that describe him/her affect

the compliance with the request to hand over the office key.

Logistic regression is used to predict binary outcomes,

whereas a continuous outcome is predicted by linear regres-

sion. This means that the outcome of logistic regression is

limited to the range between 0 or 1, whereas the outcome of a

linear regression is any number between −∞ and +∞. Since

the outcome of social engineering is either complying or not

complying with a request, there is a need to limit the predicted



outcome to a value that is either 0 or 1, thus the need to use

the natural logarithm of the odds of the predictor variable [22,

p. 79-80].

In order to run a logistic regression, the dataset must

fulfill three assumptions: (i) Sufficient sample size, (ii) no

multicollinearity and (iii) no outliers. The dataset should at

least contain 10 events per variable (EPV), which in considered

as a minimum required for running a logistic regression [23].

The VIF statistic below the cut-off value of 10 indicates

absence of multicollinearity [23]. In the case of dichotomous

variables this means that one value should be placed in exactly

one category.

In the regression node, the regression equation will replace

traditional AND and OR-gates. A single regression equation

consisting of: the outcome variable (i.e. dependent variable)

and predictor variables (i.e. independent variables) will be

used to estimate the compliance probabilities. The outcome

variable is considered the construct of measurement, in the

case of social engineering this is Compliance (whether or not a

target complies with the request of the offender). The predictor

variables are the variables that influence the outcome variable,

in the case of social engineering this could be offender using

authority or the target having received an intervention.

The basic logistic regression equation is:

LN

(

p

1− p

)

= β0 + [β1 · x] (1)

Equation 1 can be also written as Equation 2. However, for

readability purposes the format of Equation 1 is preferred.

P (y) =
1

1 + e−(β0+[β1·x])
(2)

where:

β0 is the intercept (i.e. constant);

β1 is the coefficient of the predictor variable x to the

outcome y.

A general mapping from regression equation to attack tree is

as follows: (i) the outcome variable of the regression equation

(y) corresponds to the annotation of the parent node (e.g.

Social Engineer Key) and (ii) all regression predictor variables

(e.g. x) correspond to the child nodes, whereas a combination

of predictor variables corresponds to one specific child node,

as shown in the Example (refer to Section III-1). Only one

combination of context variables applies to the attack situation;

this value (probability of success) represents the final value of

the regression node and is used in the propagation towards

the root node. The regression node is designed as a leaf node

that does not allow further refinements. Unlike in other leaf

nodes, the children in the regression node do not constitute

atomic actions, instead they resemble context and are used in

the calculations to adapt the outcome to specific situations.

The use of the regression node will be illustrated by means

of a data set from a social engineering experiment.

1) Example: Social Engineer Office Key: The dataset that

is used originates from an experiment, where the objective

for the attacker was to social engineer university personnel

and obtain their office key. The dataset contained 3 vari-

ables: Authority, Intervention and Compliance. The ‘predictor’

variable Authority measured the level of formality of the

attacker’s clothing (e.g. jeans, t-shirt) or formal clothing (e.g.

suit, tie). The variable was coded as 0 = informally dressed

and 1 = formally dressed. The ‘predictor’ variable Intervention

measured whether the potential targets have been exposed to

a social engineering awareness campaign. The variable was

coded as 0 = did not receive an intervention and 1 = received

an intervention. The outcome variable Compliance measured

whether the subject complied with the request of the attacker

to hand over the office key, coded as 0 = did not comply and 1

= did comply. For more details regarding the experiment refer

to [24].

The probabilities of compliance are modelled based on the

equation:

LN

(

p

1− p

)

= β0 + [β1 · x] + [β2 · z] (3)

where:

β0 is the intercept (i.e. constant);

β1 is the coefficient of the predictor variable x (i.e. Au-

thority) to the outcome y (i.e. Compliance), when z (i.e.

Intervention) = 0 and;

β2 is the coefficient of the predictor variable z (i.e. Inter-

vention) to the outcome y (i.e. Compliance), when x (i.e.

Authority) = 0.

This equation can be easily extended to include extra

predictor variables. The mapping from regression equation to

attack tree is done in the following way: (i) The outcome

variable of the regression equation (y) corresponds to the

parent node ‘Social Engineer Key’ (refer to Figure 1); (ii) The

children of the node ‘Social Engineer Key’ correspond to the

predictor variables. Depending on the context that applies to

the attack, that value is the ‘final’ value of the regression node

and propagates upwards.

A. Example

Regression analyses aim at making a model based on a given

dataset. To illustrate the procedure and interpret the results of

the regression node the dataset from a real social engineering

experiment in a university environment is used [24].

1) Example: Social Engineer Office Key: Bullée et al.

explored the extent to which (i) an intervention reduces the

effects of social engineering (e.g., the obtaining of access via

persuasion) in an office environment and (ii) the effect of

authority is of influence during such an attack [24]. In total,

the offices of N = 118 employees were visited by thirty-

one different ‘attackers’ who asked each employee (on the

basis of a script) to hand over their office key. Authority, one

of the six principles of persuasion, was used by half of the

attackers to persuade a target to comply with his/her request.

The Authority condition was operationalized by clothing:



the attacker wore either casual clothing (i.e. jeans and a t-

shirt) or wore formal clothing (i.e. buttoned collar shirt and

trousers). This particular dress code was used to mimic facility

management personnel. Prior to the visit, an intervention was

randomly administered to half of the targets to increase their

resilience against attempts by others to obtain their credentials.

The Intervention contained (i) an informing leaflet about the

risks of social engineering attacks, (ii) a small key chain, and

(iii) a humorous poster.

Among the employees that received an intervention, 37.0%

handed their keys while 62.5% of those who were not exposed

to it handed their key over. The intervention significantly

reduced the compliance but this was not the case for authority.

There was a tendency for authority to have the opposite

expected effect (i.e. it works in favour of the target) [24].

Despite the authority result being counter-intuitive, the purpose

is to illustrate the use of the regression-node.

The dataset (obtained from [24]) fulfilled all three assump-

tions needed to run a logistic regression: (i) There are at

least 23 events per variable which is more than the required

minimum of 10, (ii) the VIF statistic for both authority and

intervention is 1.002 which is below the cut-off value of 10,

indicating absence of multicollinearity and (iii) since there

are only dichotomous variables used, thus dataset is free of

outliers.

The outcome of the logistic regression analysis is shown

in Table I. Of interest are the β coefficients, which are input

for the regression equation (refer to Equation 3). The outcome

of the equation are the probabilities of success for the attack

tree’s action ‘Social Engineer Key’, and range between 35%

and 64% (refer to Table II).

TABLE I
OUTPUT REGRESSION ANALYSIS FOR SOCIAL ENGINEER KEY WITH

DICHOTOMOUS PREDICTOR VARIABLES, N=118

β SE p-value 95% CI

Authority -.128 .382 0.739 (-.876 – .621)
Intervention -1.051 .391 0.007 (-1.818 – -.284)
Constant .580 .322 0.071 (-.050 – 1.211)

Although the aspects of cost/benefit are not incorporated

in the regression node, one can assume that the attacker

would make the rational choice to maximize the probability

of success. On the basis of the Rational Choice Theory,

which is used to understand human behaviour, it is assumed

that: (i) the offender is a rational actor, (ii) the offender

makes an end/means or cost/benefit calculation and (iii) the

offender chooses to perform the behaviour based on rational

calculations [25], [26]. Even if the goal of the attacker is

irrational, the methods and choices to achieve it are rational

[25], [27]. Therefore if the attacker manipulates the context by

choosing not to apply Authority in the attack, the probability of

succeeding is either 38% or 64%. Assuming that the attacker

is lucky and that the target did not receive an intervention,

the probability of Social Engineering the Key successfully the

will be 64%.

Using a logistic regression has additional benefits regarding

TABLE II
PROBABILITIES OF SUCCESS FOR SOCIAL ENGINEER KEY WITH

DICHOTOMOUS PREDICTOR VARIABLES

Auth Interv Regression Equation %Success
0 0 LN( p

1−p
) = .58 + [−.128 · 0] + [−1.051 · 0] 64

0 1 LN( p

1−p
) = .58 + [−.128 · 0] + [−1.051 · 1] 38

1 0 LN( p

1−p
) = .58 + [−.128 · 1] + [−1.051 · 0] 61

1 1 LN( p

1−p
) = .58 + [−.128 · 1] + [−1.051 · 1] 35

the representation in the tree. Alternatively, this would be an

OR-gate with the Cartesian product of the context variables,

resulting in an explosion of child nodes, refer to Figure 2. In

the hypothetical case where there are 3 categorical variables

with 3 options each, this would result in 3× 3× 3 = 27 child

nodes.

Social
Engineer

Key

Auth=0
Interv=0

Auth=0
Interv=1

Auth=1
Interv=0

Auth=1
Interv=1

Legend:

OR-gate

Fig. 2. An (exploded) attack tree for Social Engineer Key

B. Further Propagation

This section provides an example of how the Regression

node result can be used to propagate to the root node. For the

annotation of the other nodes in the scenario (refer to the attack

tree in Figure 1) expert knowledge is used. Here we assume:

(i) 80% chance to bypass the firewall and (ii) 60% chance

to guess the password. Since ‘Hack PC’ is connected with

an AND-gate to its ‘children’, the probability of success is

calculated as the product: 80% × 60% = 48%. The probability

succeeding to pick the lock is estimated at 50%.

By applying the OR-gate to Enter Office, the final result

of this gate is 64%, obtained by the MAX-function of 64%

(from the Social Engineer Key) and 50% (Pick Lock). Due to

the higher probability of success, one would assume that the

attacker would choose the option Social Engineer Key where

Authority is not executed and (hopefully) the target got no

Intervention, rather than choosing to pick the lock. The leaf

nodes are subsequently annotated with probabilities of success

(refer to Figure 3).

This regression node enables: (i) to annotate leaf nodes in

the tree with context variables, (ii) incorporate data from a

social science experiment in the tree, (iii) limit the explosion

of terms.

IV. DISCUSSION

This paper contributes to the field of socio-technical vul-

nerability assessment with an attack trees extension which
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allows the use of social science data such as that of social

engineering experiments. This approach enables annotating

the leaf nodes of an attack tree with success probabilities for

context dependent properties which can either involve none,

one, multiple or all children. The process from experimental

observations towards probability of success for the root of

the attack tree was illustrated using a dataset obtained from a

social engineering experiment. The proposed regression node

is demonstrated to work in the context of a Social Engineering

experiment.

One of the main advantages of this approach is that from

a graphics point of view, it can handle the explosion of terms

resulting from having to display all possible combinations of

context variables. Moreover, using a conventional attack tree

depiction, it would not be possible to deal with continuous

predictor variables since there is an infinite number of possible

combinations.

The proposed extension has three limitations: (i) in its

current state, the regression node constitutes a leaf node. Its

output is a probability of success that can be propagated

upwards using propagation rules, (ii) each experiment applied

to the leaf nodes should be independent of other experiments.

Therefore, since in many cases experimental data is population

specific, generalization across the attack tree is not possible.

This would rule out designing a single experiment to develop

success probabilities for several nodes of the attack tree and,

(iii) it is possible that some social science experiments are

deemed unsuitable, not from a research design but from

a regression assumption viewpoint since not meeting data

assumptions means that the results will be unreliable and hence

useless.

Finally, we make recommendations for future research.

So far, a regression node for dealing with social science

experimental data has been proposed. However, a follow up

study should assess whether the regression node, rather than

being an extension of attack trees, could constitute a means

to generalize attack trees. Gates could therefore represent

functions of the input. In the already proposed regression

node, it is already possible to represent AND-gates. When all

variables are dichotomous, it is possible to make a logical

AND relation between parent and child, where the parent

node becomes one if–and only if–all child nodes have of

value 1. In other words, this logical AND would represent an

interaction coefficient. A first step towards generalizing trees

to regressions is to make the regression node available as a

normal node within the tree, instead of being a leaf node.

Furthermore, the integration of the costs for the attacker into

the regression gate should be also explored. This is relevant

since leaving the costs out of the node means that the attacker

would select the highest probability of success. This is not

ideal since using persuasion principles (e.g. buying a suit) have

monetary and time implications. By including these variables

in the regression, the analysis becomes a cost-benefit analysis.

For example, the initial authority level of the attacker with

respect to a particular person in the system could be 3, and

that the additional attacker cost for increasing authority by 1

unit (i.e. to 4), would carry a cost of 100.

One final question that remains is whether to assign vari-

ables to the attacker or to the defender. Authority can be an

example of a property of an attacker, while intervention is

an property of the defender. Since these are related, the attack

tree would specify how attacker and defender properties would

determine the initial values of the variables.
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