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Abstract - The work presents results of numerical 

study of self-similar properties of additive data 

traffic. It is shown that the value of Hurst exponent 

of total stream is determined by the maximum value 

of Hurst exponent of summed streams and the ratio 

of variation coefficient of stream with maximum 

Hurst exponent and other ones. 
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I. INTRODUCTION 

Numerous researches of processes in a network have 

shown that statistical characteristics of the traffic have 

property of time scale invariance (self-similarity). Self-

similar properties were discovered in the local and 

global networks, particularly traffic Ethernet, ATM, 

applications TCP, IP, VoIP and video streams. The 

reason for this effect lies in the features of the 

distribution of files on servers, their sizes, and the 

typical behavior of users. It was found that initially not 

having self-similarity data streams passing on nodal 

processing servers and active network elements became 

self-similar. 

The self-similar traffic has the special structure that 

preserves  on many scales. There are always a number of 

extremely large bursts at relatively small average level 

of the traffic. These bursts are cause significant delays 

and losses of packages, even when the total load of all 

streams are more less than maximal values. In a classical 

case for Poisson stream buffers of an average size will 

be enough. The queue can be formed in short-term 

prospect, but for the long period buffers will be cleared. 

However in a case of self-similar traffic queues have 

more greater length.  

For the majority of networks is actual that without 

restrictions of the incoming traffic, queue on the most 

loaded lines will grow without limit, and eventually will 

exceed the sizes of buffers in corresponding units. This 

can cause the situation, when incoming packets will be 

ignored and thus will have to be transmitted again, that 

leads to irrational expenditure of network resources. 

Thus, an important task to improve the network 

quality of service is the study of the properties of self-

similar traffic. A characteristic feature of computer 

networks is the multiplexing of streams, so 

characteristics of the additive self-similar streams have 

special significance. In [1-2], theoretical and numerical 

properties of self-similar additive processes were 

studied. It was shown that sum of several self-similar 

processes with different values of the Hurst exponent 

has maximal one. In [3-5], the results of experimental 

studies of the properties of additive data traffic which 

confirm the theoretical results are presented. However, 

these studies do not take into account traffic burstability,  

the quantitative characteristic of which is the coefficient 

of variation. 

The purpose of the present work is the numerical 

investigation of the properties of the additive modeling 

self-similar traffic, which have varying degrees of 

burstability. 

II. SELF-SIMILARITY OF NETWORK TRAFFIC 

Stochastic process ( )X t  is statistically self-similar 

with self-similarity parameter H , if the process 

( )Ha X at−  has the same statistical properties of the 

second order as ( )X t . Parameter , 0 1,H H   named 

Hurst exponent, is the measure of self-similarity and 

long-term dependence of the stochastic process. The 

value 0.5H =  denotes the absence of long-term 

dependence.  

One of the most important properties of traffic as a 

random process is the presence of heavy tails of its 

distribution function. The heaviness of the distribution 

tails corresponds to the degree of burstability. The 

coefficient of variation can be considered as the easiest 

quantitative characteristic of the distribution tail: 
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T

E T
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where T  is random variable whose values are the 

numbers of events in the time interval T . 

IV. MULTIPLEXING OF SELF-SIMILAR STREAMS  

Modern information networks are built on the 

multiplex data streams. Consider the mechanism of 

statistical multiplexing of information streams, which is 

widely used in telecommunications, because it allows to 

economical use of the bandwidth of the main channels. 

It consists in the fact that the individual sources are 

added streams in the main channel with saving 

bandwidth. Assuming independence and absence of 

long-term dependence of streams coefficient of variation 
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decrease and the resulting process will be much 

smoother. 

However, if at least one of the streams is self-similar, 

the total stream acquires the property of self-similarity 

[1]. If some self-similar streams with the different Hurst 

exponents are summed, the resulting stream has the a 

maximum one. In this case, the total stream is not 

smoothed and statistical multiplexing algorithm is 

inefficient. 

V. MODEL OF SELF-SIMILAR TRAFFIC  

The main tool for the study and predict the behavior 

of self-similar data streams is simulation, which requires 

a model of self-similar input load. There are many 

models of self-similar traffic. In [6] proposed a model of 

aggregated self-similar stream, taking into account the 

degree of self-similarity and the "heavy tails" of the 

distribution function. The model parameters are the 

intensity of traffic, the Hurst exponent and the 

coefficient of variation, that corresponds to burstability 

in the realizations.  

The modeling traffic realization is 

( ) Exp[ ( )]=  Y t b k X t ,                       (2) 

where ( ), 1,...,=X t t N  is the series of fractal Gaussian 

noise with the Hurst exponent H ; N  is length of 

series; b  and k  are the parameters that regulate the 

frequency and magnitude of the bursts. 

The stochastic process ( )Y t  is a self-similar 

stochastic process as the same Hurst exponent H , as the 

initial fractal Gaussian noise. The variable ( )Y t  has a 

log-normal distribution. 

V. RESEARCH RESULTS  

In the work the investigation of self-similar properties 

of total streams of various types was carried out. Each of 

the modeling realizations was based on the 

transformation (2).   

Consider the sum of two streams: the self-similar one 

1( )Y t  and one with independent values 
2 ( )Y t . Grap of 

typical realizations is represented in Fig. 1. At the top of 

the Fig. 1 the realization of a self-similar stream with the 

theoretical Hurst exponent 
1 0.8H =  and the coefficient 

of variation 
var1 1.2 =  is shown. In the middle part of 

the Fig. 1 the realization of traffic, which has 

independent values is shown. The theoretical Hurst 

exponent 
2 0.5H =  and the coefficient of variation 

var1 1.2 = . The bottom plot shows the realization of the 

total stream ( )Y t


. 

Estimating of Hurst exponent for the total stream 

showed that when relation 
var var1 2   holds  the value 

of Hurst exponent H


 on average equals the Hurst 

exponent 
1H . 
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Fig. 1. Model realizations: self-similar,  

independent values and total  

Similar investigations were conducted for the case 

where the stream 
2 ( )Y t  was the short-term dependence 

process. In this case, the forming process ( )X t  in the 

transformation (2) was autoregressive process 

( ) ( 1) ( )X t X t t=  − + , where  – autoregression 

coefficient, ( )t – white noise. When relation 

var var1 2    is true the value of the Hurst exponent 

H


on average equals the Hurst exponent 
1H  also. 

Thus, the additive process of self-similar and not self-

similar processes acquires the property of self-similarity, 

when the variation coefficients of streams are close 

enough. Similar results are given in [4]. 

Now increase the variation coefficient 
var2  of not 

self-similar stream 
2 ( )Y t . In the case when the ratio  

var

1

var

1

2
R


=


 

becomes much less than unity, Hurst exponent of total 

process H


 gradually decreases, reaching the value 

0.5. 

 Table 1 shows the estimates of the Hurst exponent for 

the self-similar stream  1Ĥ  (theoretical value of the 

Hurst exponent 
1 0.8H = , the length of realization is 

1000) and one of total stream Ĥ


, depending on the 

ratio 
1R . In this case, 

2 ( )Y t  was the stream with 

independent values. 

TABLE 1 

PARAMETERS OF SUMMED AND TOTAL REALIZATIONS  

1Ĥ  0.802 0.788 0.812 0.801 0.795 

1R  1 0.85 0.65 0.5 0.35 

Ĥ


 0.792 0.754 0.632 0.578 0.497 

 



 

 

 

 

 

Now consider the additive stream in the case where 

two self-similar process are summed. In [4,5] is shown, 

that the total process ( )Y t


 of the two self-similar 

processes 
1( )Y t  and 

2 ( )Y t  with Hurst exponents 
1H  and 

2H  is self-similar with Hurst exponent 

1 2max( , )H H H=


. Research was shown that this 

expression is satisfied, when the processes have the ratio 

1 1R  . If you increase the value 
var2 , the Hurst 

exponent of total stream H


 will tend to value 
2H . 

Fig. 2 shows the realization of the process 
1( )Y t  with 

1 0.8H =  (dot) and realization of the process 
2 ( )Y t  with 

2 0.6H =  (solid line). Ratio 
1 0.65R = . The additive 

realization ( )Y t


 has the estimate of Hurst exponent 

ˆ 0.714H =


. 
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Fig.2. Realizations of summed streams 

Table 2 shows the estimates of the Hurst exponents 

for the self-similar streams 1Ĥ  and  
2Ĥ  (theoretical 

values 
1 0.8H =  and 

2 0.6H = , the length of realization 

is 1000) and H


, depending on the ratio 
1R . 

TABLE 2 

PARAMETERS OF SUMMED AND TOTAL REALIZATIONS 

1Ĥ  0.789 0.791 0.809 0.781 0.805 

2Ĥ  0.612 0.594 0.621 0.609 0.587 

1R  1 0.85 0.65 0.5 0.35 

Ĥ


 0.805 0.732 0.714 0.634 0.612 

 

 In [3,5] is shown, that the total process of several self-

similar processes with equal variances and Hurst 

exponents 
iH  is self-similar for which Hurst exponent 

equals to the maximum Hurst exponent of  summed 

streams: max( , 1,..., )iH H i N= =


. In the summation 

of several self-similar streams with different coefficients 

of variation, it is expedient to introduce the coefficient 

var

2 1

var

1

( max)

1
( )

1

N

i

H
R

i
N

−

=


=


−


, 

where N  is  number of summed streams, 
var ( max)H  

is the variation  coefficient of stream with the greatest 

Hurst exponent, 
var ( )i  is variation coefficient of i -th 

stream. 

 Research has shown that in this case the Hurst 

exponent H


 of 
 
total process ( )Y t


 depends on 

how the value 
2R  is less than unity. For values 

2 1R   

the Hurst exponent H


 coincides with the maximum 

value 
iH . 

V. CONCLUSION 

The work presents results of a numerical study of self-

similar properties of the additive data streams. The 

traffic model realizations based on the exponential 

transformation of fractal Gaussian noise were used as 

under study data. It has been shown that it is necessary 

to take into account the ratio of the variation coefficients 

of summed streams when considering the total stream. 

The value of the Hurst exponent of the total stream is 

determined by the maximum value of the Hurst 

exponent of summed streams and the ratio of coefficient 

of variation of stream with maximum Hurst and other 

ones.  
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