Model-Based Approaches for Validating
Business Critical Systems

J. Augusto, Y. Howard, A. Gravell, C. Ferreira, S. Gruner, M. Leuschel,
Declarative Systems and Software Engineering Research Group,
Department of Electronics and Computer Science,

University of Southampton, SO017 1BJ Southampton, UK
Email: {jca, ymh, amg, cf, sg, mal} @ecs.soton.ac.uk

Abstract— Developing a business critical system can involve
considerable difficulties. This paper describes part of a new
methodology that tackles this problem using co-evolution of
models and prototypes to strengthen the relationship between
modelling and testing.

We illustrate how different modelling frameworks,
Promela/SPIN and B/ProB/AtelierB, can be used to implement
this idea. As a way to reinforce integration between modelling
and testing we use model-based tests and trace-driven model
checking. As a result we were able to anticipate problems and
guide the development of our software in a safer way, increasing
our understanding of the system and its reliability.

I. INTRODUCTION

A business-critical system is a software, or software/ hard-
ware, system whose correct operation is crucial to a business
or enterprise. Developing such systems involves dealing with
considerable difficulties such as distributed systems that in-
teract via a/synchronous communication, and security issues
(see for example [1] and [2]). On the other hand, product
development constraints and experience strongly suggest that
a component-based approach is useful and that more agile
methodologies should be used to produce software in the area.
The Declarative Systems and Software Engineering Research
Group is investigating a novel combination of methods for
developing software focused on these particular features.

One of the main aims of the research project is to encourage
the development of reliable software by using formal methods
in industry and business oriented companies. Some of the ac-
tivities carried out by the group that were oriented towards the
research aims consisted of exploring different ways to use and
extend existing tools as well as exercising different methods
that can increase reliability on the software production process.
We report here on how, by extending and modifying the way
we use existing tools and methodologies for validation, we
successfully improved the outcome of the validation process.

The validation process we are reporting about is focused on
the design of models, tests and their interaction. We provide
some details about all these interacting parts in section II. We
used several case studies to explore our ideas, in section III
we describe those that have been developed in more detail:
the travel agency and the mortgage broker case studies.
Some of the modelling frameworks for the validation process
are Promela/SPIN ([3], [4]), B/ProB/AtelierB ([5], [6], [4],
[10]), CSP/FDR ([7], [8]), CSP(LP)/CIA/XTL ([9], [11]), and

StAC/CIA/XTL ([12], [11]). However we will just exemplify
our proposal based on the two first frameworks of the list. See
sections IV-A, IV-B and IV-C for an account on how we use
these modelling frameworks to successtully validate different
aspects of our systems.

We illustrate how models are very helpful to guide the
development and validation process. They can be “executed”
through animation/simulation, and can be comprehensively
checked, at least for specific configurations, by model check-
ing. Here we give a brief description of some of the successful
applications of these tools but particularly on how emphasizing
the interaction between modelling and testing has proved
useful in guiding the development process on critical aspects
and to increase the confidence in our system.

A brief description of other case study we considered
(section V-A), the component-based side of our work (section
V-B), and some lessons learnt and future work (section VI)
are included at the end.

II. MODELLING, TESTING AND THEIR RELATION

As part of a much broader methodology we are exercising
different ways to use modelling techniques and the way that
models relate to the rest of the software development process.
From a methodological point of view, new ways to relate
the model with the prototype were exercised: new terms like
trace-driven model checking and model-based testing were
incorporated to our technical jargon. They are now part of
our new approach to develop business critical systems. These
methodological considerations have shown to be useful uncov-
ering subtle errors when the systems became more complicated
and the chances of having hidden subtleties both in the model
or the code increased.

On one side we take full advantage of existing tools by
exploiting their simulation and model checking facilities in
the traditional way. We also propose novel uses of those
tools so that we can use a model as a continuous guide
to the developing process, aiming to minimize corrections
and revisions in the implementation. So we favour a more
integrated relation between models and prototypes that can
co-evolve in a synchronized way.

Our models are in widely used notations that have defined
semantics and tool support. These notations are capable of
dealing with essential notions for e-business applications like

MACHINE M
SETS Ss
CONSTANTS C
PROPERTIES P
VARIABLES V
INVARIANT [
INITIALISATION
OPERATIONS
y—opl(z) =S

init

END

Fig. 1. Abstract machine structure

concurrency and synchronous/asynchronous communication.
These modelling frameworks allow the creation of simple and
abstract models that can be simulated and rigorously checked.

We used our models and tools as a guide to focus from
the very beginning on critical issues: e.g. absence of dead-
locks, interaction, message passing and synchronization in
a/synchronous communication scenarios. Initially we used
SPIN and ProB for simulation at early stages of the system
while later on we made a more sophisticated use on verifica-
tion by using SPIN and AtelierB for property checking.

A. Promela/SPIN

SPIN [3] has been a particularly successful tool that has
been widely adopted for performing automatic verification
of software specifications. SPIN offers the possibility of
performing simulations and verifications. Through these two
modalities the verifier can detect absence of deadlocks and
unexecutable code, check correctness of system invariants,
find non-progress executions cycles and can verify correctness
properties expressed in propositional linear temporal logic
formulae.

Promela is the specification language of SPIN. It is a
C-like language enriched with a set of primitives allowing
the creation and synchronization of processes, including the
possibility to use both synchronous and asynchronous com-
munication channels. We refer the reader to the extensive
literature about the subject as well as the documentation
of the system at Bell Labs web site for more details:
http://netlib.bell-labs.com/netlib/spin/
whatispin.html Due to its widespread use we assume
some degree of familiarity with this framework from now on.

B. The B Model

B AMN is a model-oriented formal notation that is part
of the B-method developed by Abrial [S]. In the B-method,
a system is defined as an abstract machine which has the
structure presented in Figure 1. The sets clause presents user
defined sets that can be used in the rest of the machine;
those sets can either be enumerated or deferred. The properties
are used to define logical properties of the constants or

sets of the machine. The variables describe the state of a
machine, they are described using set-theoretic constructs,
as for example, sets, partial functions, and sequences. The
invariant is a set of first-order predicates. The invariant pro-
vides typing constraints for the variables of the machine, e.g.
basket € CLIENT — P(BOOK), and may also include
logical properties that must be preserved by the variables. The
initialisation describes the initial values for each variable of
the machine. The initialisation must establish the invariant.
Operations act on the variables while preserving the invariant
and can have input and output parameters. Initialisation and
operations are written in the generalised substitution notation
of B AMN, which includes constructs such as assignment,
guarded statements, and choice. In the assignment statement
z := [, x is a variable and F is an expression that may
use any of the available variables. Simultaneous assignment
z = F ||y := F is equivalent to #,y := F,F. In the
guarded statement SELECT ¢ THEN S END, the
guard G is a condition on the state variables and S is an
AMN statement. This statement will be enabled only when G
holds. The nondeterministic choice between two statements
is written CHOICE S OR 17 END that will be
enabled when either S or T are enabled. The unbounded
choice ANY 2z WHERE P THEN S END
nondeterministically chooses some value « satisfying P and
then behaves like S. This is a subset of the language, as
we only presented the AMN constructs that will be used
through this thesis. The B method has two supporting tools,
Atelier-B [6] from Steria and B-Toolkit [13] from B-Core.

ProB [Leuschel01], [Leuschel03] is a new tool that provides
animation, visualisation and model-checking for B machines.
It is implemented in SICStus Prolog, exploiting advanced logic
programming features such as co-routining and constraint
solving. This gives performance comparable to more mature
tools such as FDR and Spin. The input for ProB is the
XML encoding provided by Bruno Tatibouet’s jbtools B-to-
XML parser. Animation (or interactive state exploration) uses
a TCL/TK interface, and the dot open source graph drawing
software. Model-checking (or exhaustive state exploration) can
be used to check, for example, that a machine’s invariant is
not violated. ProB is currently still under active development.
Improvements planned include the generation of test-cases
from B machines, and model-checking for temporal logic
properties and infinite state systems.

III. SOME CASE STUDIES

We considered several case studies in order to test the
methodological aspects of our proposal. Typical scenarios like
order fulfilment, E-bookstore, travel agency, and mortgage
broker were considered. In the following sections we describe
those that have been given more attention as a way of
exercising all aspects of our methodological proposal.

A. The Travel Agency Case Study

One of our case studies is a travel agency that offers
travel booking services to its customers via the Internet. A

customer logs on to the travel agency welcome page, chooses
the booking service they require (a hotel room reservation, or
a rental car etc) and offers the credit card they will use to
pay for the service when booked. The travel agency contacts
appropriate suppliers and attempts to book the customers
requirements, reporting back to the customer what has been
booked on his behalf.

This case study is interesting for a number of reasons; it
has components (travel agents, hotels and car rentals) that are
distributed over the internet. There are many possible instanti-
ations of the network of components. Each of the participating
components has its own version of the booking data and yet
the versions need to be consistent. And lastly, the case study is
an e-business application and therefore uses the services of a
complex layer of ‘middleware’; web servers, object databases
and java component technology through offered interfaces.

A typical instantiation has a number of travel agents, hotels,
car rentals and customers. From the customer’s perspective,
they only interact with the travel agent, the suppliers of their
hotel rooms or rental cars are hidden. Suppliers only see the
travel agent; they have no direct contact with a customer. From
the travel agent’s perspective they can see their customers
and their suppliers; however bookings made with suppliers by
other travel agents are hidden. The distributed nature of the
travel agency and the complexity of the possible interactions
means that it is not easy to test.

There are business critical features of the system; we are
asking for a credit card payment, we want to be sure that
a reservation for a customer recorded by the travel agent is
also recorded by the supplier of the service, and we want to
preserve commercial privacy of the information.

We implemented the case study as a web application for
Apache Tomcat web servers using Java Server Pages (JSP’s),
Java Servlets and Java Database Connectivity (JDBC). Book-
ing data for the travel agent and supplier components was
stored in Microsoft SQLServer2000 DBMS via JDBC, which
also provided a ‘name discovery’ service for the interacting
components to locate the suppliers of services they need. The
complete Promela model, fully documented, can be seen as an
appendix to [14].

B. The Mortgage Broker Case Study

This case study is currently under development and although
it shares some basic structure with the Travel Agency case
study, the protocol by which transactions are completed is
different. Another very important distinction is that while for
the previous case study we enforced a synchronous commu-
nication hypothesis, for this case we wanted to exercise our
development methodology by considering asynchronicity as
the underlying communication paradigm.

The mortgage broker scenario we considered consisted of
a user interface that allows customers to make requests for a
mortgage to a mortgage broker on the basis of salary, amount
to be borrowed and location of the property to be bought. The
location is passed to several insurers that will assess the risk
of insuring that property and, possibly, offer themselves as

insurers for that particular mortgage request. Other data like
the salary and the amount that is being requested is passed to
several lenders that can potentially offer themselves as lenders.

Although the scenario can be initially shortly described
there are quite a few logical subtleties that have to be con-
sidered. For example, the procedure of making an application
and guaranteeing an answer, which at the same time should be
consistent between all the parts in a distributed environment,
is a well-known source of problems. How can we ensure that
the answers to different requests do not get mixed? How can
we ensure that an acknowledge request is answered and the
answer reaches the intended destination when in the middle
there could be disruption of services?.

We opted to simplify the protocol to the following extent. A
typical session will demand that the user, by using a browser,
apply for a mortgage. The user uses a browser to login in
the system and make the request so this is a synchronous
communication. For each new request the mortgage broker
will broadcast the application to a network of insurers and
lenders. Each of them periodically will check for possible
new applications. After evaluation they will ignore it or will
make an offer. The model broker will periodically check also
for insurers’ and lenders’ offers. These offers in turn will be
passed to the user as they are collected. Each time the user
check the virtual basket, s/he will be presented with the list
of insurers and lenders offering their services for a particular
mortgage application. The user will have the opportunity of
selecting offers provided that the choice comprises a pair
insurer-lender. This selection is passed by the mortgage broker
to those service providers that have made an offer to tell them
if their offers have been accepted or rejected. Insurers and
lenders cannot keep on hold their resources indefinitely so they
will be forced to impose some deadlines on their offers. Hence,
by the time they are contacted by a mortgage broker about
their successful application they probably already dismissed
that offer so that they can use the released resources to make
offers to other customers.

There are plenty of interesting combined behaviours to
explore under this settings. For example, a lender can probably
timeout one offer to make the resources available again but in
principle it could be the case that will always repeat a request
for those same customers. Detecting that will motivate the
decision to prevent it or not and in the first case will trigger the
question of how to do it, e.g. by keeping record of customers’
accept/decline history.

Lenders and Insurers have their own strategies to decide
under which conditions they should offer services and re-
sources. These possible behaviours have to be mixed with
the possible reactions from the user, in order to maximize
their investments. The combination of possible behaviours to
be allowed/implemented is so interesting as difficult. As we
mentioned above we made several simplifications in order to
keep the case study interesting and close enough to reality
but, at the same time, with a level of complexity such that
can be developed within the usual tight time slots assigned to
research experiments.

IV. SYNCHRONIZING MODELLING AND TESTING

Keeping models and prototypes close together demands
inter-leaving of modelling and prototyping as opposed to
developing a complex model that then has to be followed
by the subsequent implementation discovering mismatches
between idealized abstractions with actual tools available.

In this section we use Promela/SPIN and B/ProB/AtelierB to
illustrate the advantages of incorporating this synchronization
idea into the development process and the possibilities that
each one provides for implementing such a step. The relation
between modelling and testing can be explored in two obvious
directions:

1) using the model to generate information that should
prove consistent with the prototype behavior when they
are transformed into test cases.

2) using the prototype to generate traces that can be then
model checked. We explored this idea in two ways
by transforming traces into sub-models and temporal
formulas to be checked.

All these options are usually subject to a possible interme-
diate step for renaming traces to bridge notational differences,
e.g. names for storage structures as used in languages with
different levels of abstraction.

A. Using SPIN to Generate Tests Traces

There are plenty of suggestions in the literature to guide
the process of generating tests cases to test a prototype or
implementation. Here we focus in some options for automatic
generation of tests. Consistently with our proposal, we let the
model to guide the generation of tests so that we can, not
just test correctness in the prototype, but also synchronicity
between the model and the prototype. We have found at least
two ways to inform the prototype by using the model: by
filtering simulations and by transforming temporal formulas
into test cases.

1) Extracting Tests from Simulations: SPIN allows users to
simulate the behavior of the systems modelled in several ways:
a) randomly generated b) user-guided (interactive), and c)
system-guided (by using an error trail after model-checking).

Simulations can be saved, so we complement our models
with printouts whenever a key choice is taken in the model.
These printouts act also as comments for the model and are
practically harmless in computational terms as they are con-
sidered at simulation time but they are not considered by SPIN
when doing model-checking. The simulation can be then saved
and filtered by using a simple program. The filtering process
can be tuned by taking a “dictionary” as a complementary
input providing translation to accommodate the differences
between the model and the prototype terminologies. As a result
we extract a set of steps that can be used as a test to verify
that going through those steps in the prototype will result into
exploring the same, or at least equivalent, states and conditions
than in the model. The following trace gives the description of
part of a simulation where two users login on the system by
using different browsers to book cars in different car rentals.
Notice that their processing is interleaved.

(——>) loginID: 1

(——>) Credit Card MC provided by user
with loginID: 1

(——>) Selection made by the system:
book a car for User:1l

(——>) loginID: 2

(——>) Shop informs: Successful request
to book a car in CarRental0O0 for
User :1

(=—>) TA informs: Your booking of a car
was successful from CarRental 00
for User 1

(——>) Credit Card VISA provided by user
with loginID: 2

(——>) For IndexTravelAgencyDB=0
taDB[IndexTravelAgencyDB]=dbid,
with dbid=1
taDB[IndexTravelAgencyDB] .shopIDl=
dbshopIDl, with dbshopID1=0
taDB[IndexTravelAgencyDB] .shopID2=
dbshopID2, with dbshopID2=0

(——>) TA is redirecting request for
booking a car to Car Rental 00,
request was made by user:1

(——>) Selection made by the system:
book a car for User:2

(——>) Shop informs: Successful request
to book a car in CarRental(Ol for
User :2

(=—>) TA informs: Your booking of a car
was successful from CarRental 01
for User 2

(——>) For IndexTravelAgencyDB=1
taDB[IndexTravelAgencyDB]=dbid,
with dbid=2
taDB[IndexTravelAgencyDB] .shopIDl=
dbshopIDl, with dbshopID1=0
taDB[IndexTravelAgencyDB] .shopID2=
dbshopID2, with dbshopID2=1

(——>) TA is redirecting request for

booking a car to Car Rental 01,
request was made by user:2

An equivalent sequence of steps can then be followed in
the prototype to test if the behaviour obtained is correct and
compatible with the one observed in the model.

2) Temporal Logic Properties as Tests: We used temporal
logic properties as a way to emphasize requirements. Some
properties checked in the Promela Model by using PLTL
temporal logic formulas were:

“If a car is requested and there is a car available
one is eventually booked”

“If a car has been booked and its unbook is
requested then it is eventually unbooked”

“If a car is requested and there is no car available
the request is rejected”

“If unbooking a car is requested and has not been
booked the request is rejected”

“Booking do not produce unbookings and viceversa”

“It is true that if a car is booked that is what the
user gets”

“Never a car is booked to more than one customer
at the same time”

“All recorded bookings for cars and rooms are also
recorded in the Travel Agents’ DB”

“No record in the Travel Agents’ DB is made if
before it was not recorded in CarRental’s and
Hotel’s DB”

“If a car is booked by user N and s’he request
another car, and there are cars available in both
shops then the previous shop will be selected”

“No operation goes ahead without Credit Card
approved”

“The credit card check eventually finishes”
“No resource is booked for ever”
“A user cannot operate for another user”

“Is not true that first come first served”

EXAMPLE [: consider we want to check the following
property: if a car is requested and there is no car available
the request is rejected.

If we want to check the property by using SPIN we have
to use PLTL (Propositional Linear Temporal Logic) notation
which in ASCII, as used in SPIN, will be written using the
following notational conventions for temporal and boolean

operators:
[] means "always in the future”
<> means "sometime (s) in the future”
|| means "or"
&& means "and"
-> means "implies"

The mapping from propositions mentioned in the temporal
formulas and conditions holding in the Promela model is de-
fined by using definitions with the following general structure:
#define p (c) means that proposition “p” mentioned in

“c” istrue in

the temporal logic formula is true when condition “c

the Promela model. Typical conditions are that a variable has
a particular value. Conditions usually relay on two symbols:
“=="for equal and “!=" for not equal but other usual relational
symbols can be used.

Then we translate the original statement as the following
temporal logic sentence:

[1 ((bcd43 && cO0b && clb) —-> <> bc4d3rej)
which has to be supplemented by the following definitions:
#define bc43 (bookCarFor3==true)
#define c0b (cars00[0]!=0)
#define clb (cars00[1]!=0)
#define bcd3rej (bookRejected==true)
A
These definitions can be used to set the equivalent condi-
tions in the prototype and to guide the testing procedure to
explore that given the same conditions in the antecedent of
the rule we obtain in the prototype the conditions described
in the consequent of the rule.

B. Using SPIN to Analyse Traces

We focus here on two different ways of using this model
checker to process traces produced by the prototype. One
approach we followed was rewriting the trace in Promela and
then checking that the trace was consistent with an associated
PLTL formula, see section IV-B.1 below. We also use trace
sequences to build a PLTL formula that allowed to check if
equivalent steps can be made by SPIN executing a Promela
specification, see section IV-B.2 below.

1) Using Temporal Logic Formulas as Partial Specifica-
tions: One way to check consistency between the traces
obtained from the prototype with the basic properties of the
system is by first transforming the traces into Promela code,
i.e., a sequence of steps that mimic those taken in the prototype
and then checking they are consistent with a related PLTL
formula. In this case the PLTL formula can be seen as a
simplified specification of an aspect of the system.

EXAMPLE 2: Lets suppose we consider the problem of
asking a resource (e.g. a room from a hotel) for the second time
when the first booking provoked exhaustion of the resource
in the provider shop. Because the reservation strategy as
implemented at some stage of the prototype was incomplete,
the system was not able to attempt booking in a different shop
after it failed to book in the one that was used for the first
time.

The traces considered below focus on a sequence of two
steps. The first step is a successful attempt to book a room
in Hotell that as a side effect provokes the Hotell to be full.
The second attempt to book a room will be addressed to the
same hotel and will fail. The formula to be checked is:

[1 ((<>(requested && available))

==> <> allocate)
more informally: “always when a resource is
requested and there is one available, then one

should be eventually allocated”. Here “requested”
means ((BookType=0) or (BookType=1l)),
“available” means (RoomsAvailableHotell>0) and
(RoomsAvailableHotel2>0) and “allocated” means
that a room has been effectively booked (allocated=true).
These definitions can be used to build the PLTL formula to
be checked with SPIN. The specification below contains a
trace with one booking and we can check with SPIN the
sequence of states visited in the trace is consistent with the
formula.

Some explanation of the wvariables involved follows.
UserID is a number identifying a user. e.g. between 1 and 10,
BookType is the choice made by the user (0:“car”, 1:“hotel”,
etc), CCType is a credit card brand. (0:“VISA”, 1:“MC”,
2:“WRONG”), SupplierName is identifying a shop
(1:*Hotell”, 2:“Hotel2”, etc), RoomsAvailableHotell
is the number of available rooms in Hotell (0..),
RoomsAvailableHotel?2 is the number of available
rooms in Hotel2 (0...), RoomBooked is a number identifying
a room, e.g., between 1 and 5, ShopAnswer is the shop
can inform the TA about the status of the operation, e.g.,
0:“impossible”, 1:“done”, etc.

byte UserID,
BookType,
CCType,
SupplierName,
RoomsAvailableHotell,
RoomsAvailableHotel2,
RoomBooked,
ShopAnswer;

bool requested, available, allocated;
/* boolean variables used to identify
states of interest during the trace */
init{ /* first login */
UserID=2;
BookType=1;
requested=true;
CCType=1;
SupplierName=1;
RoomsAvailableHotell=1;
RoomsAvailableHotel2=1;
available=true;
RoomBooked=1;
ShopAnswer=1;
allocated=true;}

But, if we add to the above specification the rest of the
trace registering that a second booking is requested and the
situation is such that 1) a second booking is requested also to
Hotell when it is full and 2) Hotel2 has a room available:

/* second login */
UserID=2;
BookType=1;

requested=true;
CCType=1;
SupplierName=1;
RoomsAvailableHotell=0;
RoomsAvailableHotel2=1;

available=true;
ShopAnswer=0;

allocated=false

SPIN will prove that the enlarged sequence of steps does
not validate the formula, i.e. will detect that despite there is a
room available in Hotel2 the system will not allocate that room
to the user as it reaches the state “allocated=false”. A

2) Using Traces as Temporal Logic Formulas: We can
use information produced by traces to verify that we obtain
consistent behaviour when we explore the corresponding paths
in the Promela model. We have several options that will
accomplish this. We can

1) use the results witnessed during implementation testing

2) use interactive (user guided) simulation

3) transform the testing conditions into a formula written
in Linear Temporal Logic (L'TL) and check its validity.

We have explored a method that combines these options in
an automated or semi automated manner. We can transform
a sequence of actions taken while testing the prototype into
a temporal formula and then by using SPIN check that an
equivalent sequence of actions can be taken in the model. In
order to automate the link between the output traces from the
implementation and the input traces required by the model
checker, we created a file that allows us to automatically
translate implementation trace variable names to names used
in the model. For example;

corresponds ([cctype, mc],
[[ccbitl,1]1, [ccbit2,011)
corresponds ([cctype, wrongl],
[[ccbitl,1]1, [ccbit2,111)

where, the first line should be read as “if variable cctype
has value mc in the implementation then variables ccbitl
and ccbit?2 in the model have values 1 and 0 respectively”.

EXAMPLE 3: We carried out a test to determine whether it
was possible to make the same number of credit card inputs
as in the implementation. Firstly, we manually tested in the
implementation that we can enter first three “wrong” credit
card brands before entering a valid one, “mc”. Then we used
a program to build an LTL formula that allows us to check
if that is a possible scenario in the model. The resulting file,
“formula.1ltl”, will have the following content:

fdefine pl (ccbhitl==1 && ccbit2==1)
fdefine p2 (ccbhitl==1 && ccbit2==1)
fdefine p3 (ccbhitl==1 && ccbit2==1)
fdefine p4d (ccbhitl==1 && ccbit2==0)
/* * Formula As Typed:

<> (pl && (<>p2 && (<>p3 && (<>p4d))))

*/

Finally, we used the formula in the LTL Property Manager
section to generate the “never claim” (by pushing just two
buttons). Using SPIN’s “No Executions (error behaviour)”
option to force a counterexample that confirms the sequence
is possible. A

The main problem faced whilst exercising the interaction
between the prototype and SPIN is the synchronization of out-
put/input traces. Filters and translators can be written to help in
making these steps as automatic as possible but, as discussed
earlier, close co-operation of modellers and implementers in
naming reduces the amount and complexity of the translation.

C. B model of the Travel Agency Case Study

For the travel agency we have defined an abstract machine
where the state contains information about user sessions, hotel
and car rental bookings, and most operations replicate the
interface presented to the user by the travel agency, like login
and enterCard. Besides those the machine has operations that
perform in a single step the service requested by the user (for
example: bookRoom and unbookCar), which abstracts from
the complexity of the implementation that requires several
operations to implement a request.

The abstract machine has several invariant clauses; each of
the clauses describes a property that must be preserved by the
travel agency at all times. Next, we describe informally each
one of the six invariant clauses:

1) “if a user has a booking, then it must have an as-
signed hotel where all the bookings have to be done.
Conversely, if a user has an assigned hotel, then s/he
must have a booking”

2) “the same property is valid for the car rentals”

3) “all hotel bookings of a user must be done in the hotel
assigned to that user”

4) “the same property is valid for the car rentals bookings”

5) “if a session does not have a valid card, the travel
agency will not perform any service (booking or un-
booking)”

6) This clause states that if a session has a valid card,
the travel agency will attempt to provide the requested
service”

A useful property that does not appear in the invariant is

the one that states that:

if a user wants to book a room and there are
available rooms, a room will be booked for that user

Modelling this property in B raises problems, as it contains
a temporal ordering of events: if in ¢4 there is a room available,
then in ¢, one of the available rooms will be booked. To
overcome this problem we modelled instead a similar property:
if the request for booking a room was not fulfilled,
then there must not be any rooms available
By modelling the implementation, rather than a specifica-
tion, we capture the behaviour of the implementation and can
use the model to check that behaviour. If we want to use
a model and model checker to explore the behaviour of our
implementation, we should be sure that the models faithfully

represent some abstraction of the implementation. Directing
the modelling to aspects of the behaviour of the implementa-
tion and instrumenting our implementation to produce traces
of tests, we were able to use the model checkers to test whether
those traces violated any of the desired properties.

We ensure convergence of the behaviour of model and
implementation by

1) co-evolution of model and implementation

2) traditional quality assurance methods like formal inspec-
tion

3) and, finally, checking implementation traces in the ProB
model checker to compare the behaviour of the model
and implementation

An example of the use of co-evolution of the model and
implementation is described by the following description of
convergence of the implementation and the model.

Changes in state in the B machine are caused by B oper-
ations. By manual inspection, we inserted trace beans in our
instrumented version of the implementation at points where the
change in state of our implementation corresponded to changes
in state in the B machine. This means that we capture a trace
in our implementation at the same point that a B operation
will be enabled in the B machine.

Originally designed for theorem proving rather than model
checking and animation, the B language and method on its
own cannot provide the trace checking for our higher level
testing approach. We used the animation and model checking
capabilities of ProB to check our B model. Our novel trace-
checking method is as follows:

1) Execute the application, either by traditional manual
testing, or by an automated test harness simulating
randomised user interaction

2) Select the relevant trace data from the database using
SQL to provide input for a ProB animation of the B
model

3) Load the model B machine and the trace into ProB and
allow the animator to re-play the steps of implementation
trace in terms of the currently available operations in the
ProB animation of the B machine.

4) The higher level test is passed, if the ProB animation
was possible. The higher level test failed if there was
no combination of available B-machine operations that
could reproduce the test run described by the implemen-
tation trace

EXAMPLE 4: An example of a set of trace data selected
from the trace database and the subsequent history of its
animation in ProB follows. Note that the name of the B
machine and its initialisation has been added.

machine (' TravelAgency’) .
initialise_machine.

login (userl) .
choice(ssl).
chooseService (ssl,H) .

enterCard (ssl).
redoCard(ssl).

choice (ssl).
chooseService(ssl,U).
enterCard (ssl).
pickShop(ssl).

r—=>' (respUnbookCar (ssl),_) .
choice (ssl).
chooseService(ssl,U).
enterCard (ssl).
pickShop(ssl).

r—=>' (respUnbookCar (ssl),_) .
logout (ssl) .

This is a subset of the trace data from an execution of
the implementation, the whole trace is richer, but only this
subset is required for B and ProB, and matches exactly the
input requirements for each B operation and outputs from a
B operation. The first part of each record is the name of the
B operation, the part in brackets is the input parameters or
outputs. The parameters are derived from captured trace data.
For example: chooseService (ssl,H).

The B operation ’chooseService’ takes the session number
(ssl) and booking service (H) as parameters. "H’ is directly
derived from other trace data and indicates that the user has
chosen to make a hotel booking, but the session numbers
automatically assigned to the different web service sessions
that track a customer’s transaction, at 32 characters long, are
cumbersome for animation so we use a translation program to
provide a B operation parameter with the same format as its
initialised set of sessions. A

Early results show that we can successfully use model-based
trace-checking in two ways:

1) Firstly, to ensure behavioural correspondence between

the model and implementation in preparation for

2) Secondly to detect failures and property violations in the

implementation

As an example of the first case, we detected a mismatch
between the B model of the Travel Agency and the imple-
mentation; a failure of convergence.

ExXAMPLE 5: The following is a fragment of an implemen-
tation trace that proved to be unsuccessful when checked in
ProB. In this example, a user has already logged in, we show
the trace from the point that they choose the booking service
they require (in this case a room). They then enter their credit
card details, which were invalid and the user is returned to the
point at which they re-input their booking choice followed by
another attempt at entering a valid credit card. On the second
occasion they are successful and go on to book a room.

chooseService (sessionl, br) .
enterCard (sessionl) .
again (sessionl) .
chooseService (sessionl,br).
enterCard (sessionl) .
pickShop (sessionl) .

‘——>' (respBookRoom (sessionl),_) .

Upon investigating the reasons for the trace failing in
ProB, we discovered that whereas the ‘again’ record in the
implementation trace returns users to the state where they
may re-input the booking service (chooseService) they require
after a failed credit card attempt (enterCard). The ‘again’
operation in the B machine returns a user to the state where
they may make another booking after a booking has been
completed. There is no equivalent operation in the B machine
to the ‘again’ method in the implementation. This means
that the implementation and the B model do not have the
same behaviour; they have not converged, even though the
implementation and B model had been previously formally
reviewed.

The team of modellers and implementers used the results
of the trace checked through ProB to change the B model
to match the behaviour of the implementation and ensure
behavioural correspondence. The name of the again method
in the implementation was changed to ‘redoCard’ (to avoid
any further confusion) and an operation with the same name
and equivalent behaviour was added to the B machine. A

Our continuing work focuses on using ProB in the second
manner, to check implementation traces for invariant violations
of the B model which, because of the convergence of the
behaviour of the model and implementation, will indicate that
the desired properties of the implementation have also been
violated.

We have only shown fragments of traces to illustrate this
paper, but we have successfully run large traces generated from
automated testing.

V. ONGOING AND FUTURE WORK
A. Achievements in the Mortgage Broker Case Study

With this case study we wanted to make a complementary
exercise which involved similar conceptual entities than in
the Travel Agency case study but, enriched with a more
difficult interaction protocol and an emphasis on asynchronous
communication.

Again, different models and modelling approaches
were used. One of the model has been developed under
the Promela/SPIN framework and another by using
B/ProB/AtelierB. These two models focused on different
aspects of the system. The Promela model focused in the
traditional synchronization of activities between the many
parts of the system and the general protocol for requesting
services, making offers and reaching agreement between the
parts, while the B model focused on the subtleties of message
communication by exploring the possibilities arising from
message 1oss.

Both models were used to guide the prototyping activities
by anticipating problems to come and supporting crucial deci-
sions that increase the balance between desirable and feasible
features. At an earlier stage, by using Promela, we detected
the complexity of the communications protocol considered
and from the B model the need to compromise on some

crucial steps of that communication. These facts helped us to
outline the general agreement protocol imposing synchronous
communication between the mortgage broker with lenders and
insurers at the time of making a final confirmation to commit
on a previous offer.

One other important practical challenge is related to com-
putational complexity associated to model checking. It is well-
known that one of the weaknesses in the model checking
approach is state space explosion. The complexity of this
particular case study, characterized by heavy communication
between the different units (user, mortgage broker, lenders,
and insurers) makes mandatory to model check the speci-
fication by partitioning the problem on functional subunits,
e.g. the communication between user and mortgage broker or
the communication between the mortgage broker and either
one generic lender or insurer. Once some local properties
of these subsystems have been checked some compositional
verification should be applied in order to infer properties about
the system in general.

It must be observed that this complexity issues are more
closely related with model checking but not with the sim-
ulation facilities we use at early stages of the system to
study the general behaviour or when we use simulations to
extract traces from models. Using traces extracted from the
prototype to confront them with the models can be affected by
computational complexity depending on the size of the trace.

B. Components

We are also interested on exploring the correspondence
between components as seen in the modelling languages,
e.g. proctypes in Promela, and components as seen in the
prototype, e.g. classes. We included component identifiers
in the traces obtained from the prototype in order to easily
identify faulty components when tracking errors. The models
are built following the components structure used in the
prototype as suggested by the meaningful classes and the
traces are produced in a way that makes this relation explicit
but this side of our proposal has not been yet fully exploited.

VI. CONCLUSIONS

This work reports on our experience using models to
validate software. In our approach we prefer to use models in
connection with testing. This increases the role of the model
on guiding the development and foreseeing problems ahead.
In this scenario the way that success of a model is measured
is not by discovering big problems in the prototype but by
warning with anticipation of difficulties and by guiding in an
iterative process of small steps the development of the final
product.

Instead of developing a complex model that then has to
be followed by the subsequent implementation discovering
big mismatches between idealized abstractions and the imple-
mentation, we inter-leaved modelling and prototyping. Here
pair-programming and pair-modelling by a team that combines
programmers and modellers came naturally. In that way both,
model and prototype, co-evolve keeping conceptually close

and the development team has higher chances to discover
problems when it is cheaper to fix them. This strategy is
especially well equipped to do the cheapest of all problem
fixings: preventing them from occurring.

Here we described how to use mainly two modelling
frameworks in that way, Promela/SPIN and B/ProB/AtelierB,
but other modelling frameworks can be used as well. [14] [15]
On one side we used the model to inform the prototype by
generating traces but we also used the prototype to inform
the model by what we call trace-driven model checking. [4]
Under this framework, one extra source of requirements is
used by considering temporal logic properties specification as
declarative requirements.

VII. ACKNOWLEDGEMENTS

This work forms part of the ABCD project, which is funded
by the EPSRC (GR/M91013/01), whose support we gratefully
acknowledge. The idea of model and prototype co-evolution is
mostly the intellectual achievement of Yvonne Howard, Andy
Gravell and Peter Henderson.

REFERENCES

[1] P. Henderson, Systems Engineering for Business Process Change (Col-
lected Papers from the EPSRC Research Programme), P. Henderson, Ed.
Springer Verlag, 2000.

[2]1 ——, Systems Engineering for Business Process Change (New Direc-
tions), P. Henderson, Ed. Springer Verlag, 2002.

[3] G. Holzmann, “The spin model checker,” IEEE Trans. on Software
Engineering, vol. 23, no. 5, pp. 279-295, 1997.

[4] Y. M. Howard, S. Gruner, A. M. Gravell, C. Ferreira, and J. C. Augusto,

“Model-based trace-checking,” 2003, Proceedings of UK Software Test-

ing Workshop, York, United Kingdom, 4-5 September.

1. Abrial, The B-Book: Assigning Programs to Meanings.

University, 1996.

[6] Atelier-B User Manual, Steria — Technologies de L’Information, 1998.

[71 A. W. Roscoe, The Theory and Practice of Concurrency. Prentice-Hall,

1999.

M. Leuschel, T. Massart, and A. Currie, “How to make fdr spin: Ltl

model checking of csp using refinement,” in Proceedings of Formal

Methods Europe FME’2001 LNCS 2021(DSSE-TR-2000-10), 2001, pp.

99-118.

[9]1 M. Leuschel, “Design and implementation of the high-level specification
language csp(lp) in prolog,” in Proceedings of PADL’0I. editor I. V.
Ramakrishnan, LNCS 1990, Springer Verlag, 2001, pp. 14-28.

[10] M. Leuschel, M. Butler, “ProB: A Model Checker for B,” in Proceedings
of FME 2003: Formal Methods, editor K. Araki, S. Gnesi, D. Mandrioli,
LNCS 2805, isbn 3-540-40828-2, Springer Verlag, 2003, pp. 855-874.

[11] 1. C. Augusto, C. Ferreira, A. Gravell, M. Leuschel, and K. M. Y.
NG, “Exploring different approaches to modelling in enterprise in-
formation systems,” Electronics and Computer Science Department,
University of Southampton, Tech. Rep., 2003, technical Report,
http://www.ecs.soton.ac.uk/~jca/rm.pdf.

[12] M. Chessell, C. Griffin, D. Vines, M. Butler, C. Ferreira, and P. Hen-
derson, “Extending the concept of transaction compensation,” 2001,
technical Report. Declarative Systems and Software Engineering Re-
search Group, Dept. of Electronics and Computer SCience, University of
Southampton. To appear in IBM Journal of Systems and Development.

[13] B-Toolkit User’s Manual, B-Core (UK) Ltd, 1996.

[14] 1. C. Augusto, C. Ferreira, A. M. Gravell, M. A. Leuschel, and
K. M. Y. NG, “The benefits of rapid modelling for e-business system
development,” In Proceedings of 4th International Workshop on Con-
ceptual Modeling Approaches for e-Business (eCOMO2003), pp. 17-28.
Chicago, Illinois, USA. October 13-16, 2003.

[15] 1. C. Augusto, M. Leuschel, M. Butler, and C. Ferreira, “Using the
extensible model checker xtl to verify stac business specifications,” in
Pre-proceedings of 3rd Workshop on Automated Verification of Critical
Systems (AVoCS 2003), Southampton (UK), 2003, pp. 253-266.

[5

—_

Cambridge

[8

[t}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

