
The Nature of Evidence in Empirical Software Engineering

Judith Segal
Department of Computing, Faculty of Mathematics and Computing, The Open

University, Walton Hall, Milton Keynes MK7 6AA, UK
j.a.segal@open.ac.uk

Abstract

In this paper, we argue that the gap between
empirical software engineering and software
engineering practice might be lessened if more attention
were paid to two important aspects of evidence. The
first is that evidence from case or field studies of actual
software engineering practice is essential in order to
understand and inform that practice. The second is that
the nature of evidence should fit the purpose to which
the evidence is going to be put. One type of evidence is
not per se better than another. For example, the
evidence required to persuade a manager to change an
aspect of practice might be totally different in nature
from that required to deepen the academic community's
understanding of such practice.

1. Introduction

The empirical software engineering community
seeks to conduct empirical studies so that the practice of
software engineering might be informed by the
evidence resulting from these studies, similar to the way
that the practice of conventional engineering disciplines
is informed by the laws of science. As Shepperd says in
[1]:

 ‘… systematic empirically based research is essential in
order to move software engineering on from an
advocacy based discipline to an evidence based
discipline’ [1: p.37]

It is clear, however, that this aspiration has not yet
been achieved. Zelkowitz et al., [2] put the situation
starkly:

‘Clearly the research community is not generating
results that are in tune with what industry needs to hear,
and industry is making decisions without the benefit of

good scientific developments. The two communities
are severely out of touch with one another’. [2: p.231]

One has to consider why the empirical software
engineering community is apparently having such little
effect on practice. Is it simply the fact that software
engineering hasn’t been practised for long enough to
accrue the laws, techniques, assumptions and heuristics
which inform the practice of other engineering
disciplines? Or is it the fact, as suggested by the quote
from [2] above and also in [3], that empirical studies
often fail either to address the concerns of practitioners
or to produce results which are directly usable by them?
That is, is the evidence produced by such studies, of the
wrong type, in some sense?

In this paper, we explore two partial answers to this
latter question. Firstly, we assert that the evidence
produced from empirical studies of software
engineering practice is essential in order to deepen our
understanding of such practice and hence to devise
studies which are directly relevant to practitioners.
Furthermore, we believe that not enough emphasis has
been placed on this type of study in the past. Secondly,
we argue that empirical software engineers should be
aware of the need to match evidence with its intended
purpose: evidence which satisfies academic criteria may
be different from that which persuades practitioners and
their managers to participate in studies or to apply the
results thereof to their own practice. Zelkowitz et al.
begin to explore this latter point in [2]:

‘The research community is more concerned with
theory confirmation and validity of the experiment and
less concerned about costs, whereas the industrial
community is more concerned about costs and
applicability in their own environment...’ [2: p.256]

As we shall discuss in section 5 below, we believe
that in the field of empirical software engineering,
quantitative evidence has historically been valued over
qualitative. For example, Lanubile argues in [4] that

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The Open University. Downloaded on July 15, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

‘Empirical [software engineering] research assumes
that all constructs of interest must have observable
features that we can measure, although imperfectly’ [4:
p.98]

More recently, Seaman, has argued cogently in [5]
that quantitative studies alone give an impoverished
view of software engineering and that

'In software engineering, the blend of technical and
human behavioral aspects lends itself to combining
qualitative and quantitative methods, in order to take
advantage of the strengths of both' [5: p.577]

Petre, as quoted in [6], argues that the research
question should determine the nature of the evidence
required. She asserts that the important point is to
determine the research question, then to determine the
type of evidence that will answer the question, and
finally, to determine the research method which will
deliver the right sort of evidence.

In this paper, we go beyond Petre's position to
suggest that it is not just the research question which
determines the type of evidence, but also the intended
audience for the evidence, that is, the people whom the
evidence is intended to persuade. To reiterate the point:
we take for granted herein the fact that, in the field of
empirical software engineering, one type of evidence is
not per se better than another. Rather, the decision as to
which type of data should be collected and how it might
be analysed, interpreted and presented to form evidence,
depends on the use to which the evidence is going to be
put.

We structure this paper by means of the following
simple taxonomy of the possible aims of an empirical
study of software engineering: An aim might seek to
promote

- the development of an understanding of the nature
of software engineering practice. (We argue in
section 2 below that this should be a central aim of
empirical software engineering.) ;

- an exploration of how this practice might be
improved;

- an evaluation of the effects of introducing a
conjectured improvement into practice.

In sections 2 to 4 below, we shall explore for each
aim, the type of evidence which will further the aim,
and the type of study which will produce this evidence.
We shall also, where relevant, explore the different
types of evidence required for different types of
audience. In section 5, we shall discuss the results of
our exploration.

2. The aim: the development of an
understanding of the nature of software
engineering practice

In this section, we shall firstly defend our position
that this aim should be central to empirical software
engineering, and then consider the nature of the
evidence required in support of this aim.

2.1. The importance of this aim: study of
practice versus laboratory experiments

We alluded above to the concern expressed, for
example, in [2] and [3], about the gap between
empirical software engineering and practice. This gap
is not unique to empirical software engineering: Glass
et al. in [7] describe a survey of over 300 papers in
software engineering over a period of 5 years and
conclude that

'There is a severe decoupling between research in the
computing field and the state of the practice in the field'
[7: p.505]

Given this concern, it is surprising to us that
developing an understanding of the nature of practice
does not enjoy a more central position within empirical
software engineering.

Indeed, some empirical software engineers appear to
believe that the nature of software engineering practice
– what actually happens in the real world when software
is developed – is unimportant and that experiments
within a laboratory suffice. For example, Munch et al.
[8] claim that:

‘Laboratory experiments have been proved as an
essential means for determining the effects of software
engineering technologies’

and Kitchenham, Linkman and Fry observe in [9] that

'Many software experiments take place in a
classroom setting often in the context of an examination
or test' [9: p.12]

The major problem with laboratory experiments in
the software engineering context is that they factor out
the human dimension, how people actually work in an
actual context, and hence ignore what Seaman describes
in [5] as

'the central role of human behavior in software
development' [5: p.577]

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The Open University. Downloaded on July 15, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

Given this central role, we should not be surprised
that traditional scientific laboratory experiments,
designed to test hypotheses by the use of dependent and
independent variables, experimental and control groups,
and statistical analyses of the resultant quantitative data,
are difficult to carry out in the context of empirical
software engineering. Kitchenham et al. in [10] and
Segal in [11] discuss some of these difficulties, such as
the identification, precise definition and
interdependence of relevant variables. We should also
not be surprised that, even when such an experiment is
carried out to an acceptable standard of scientific rigour,
its results might fail either to transfer to an actual
development environment or to convince practitioners,
as Zelkowitz et al. note in [2]:

‘… the industrial community is generally wary of
laboratory research results…’ [2: p.255]

Kitchenham, Linkman and Fry in [9] identify some
problems (situational effects) with laboratory
experiments: treatments on small tasks may not scale
up to realistically-sized tasks, whereas treatments which
have overheads (for example, of learning) making them
unsuitable for laboratory-sized tasks, may be eminently
suitable for larger tasks; people in a real-world setting
can take advantage of informal knowledge networks,
and so on. They conclude that, despite the prevalence
of laboratory studies in empirical software engineering,

'…. in our view, industrial case studies may be the best
way to address the situational effects likely in software
engineering studies' [9: p.12]

We should note that concern about the effectiveness
of controlled laboratory experiments in closing the gap
between research and practice is not confined to
empirical software engineering. For example, Rogers
makes the following point about human-computer
interaction in [12]:

‘The stark differences between a controlled lab
setting and the messy real world setting, [means] that
many of the theories derived from the former [are] not
applicable to the latter'

We believe this point to be just as relevant to
software engineering as to human computer interaction.

So far in this section, we have argued that
understanding the nature of software engineering
practice should be central to the discipline of empirical
software engineering, since it is only through this
understanding that studies can be devised which
produce evidence which is both relevant to, and usable
by, practitioners. We have also argued that laboratory

experiments are a poor substitute for a study of practice
if the aim is to understand that practice. However, we
recognise that studies of practice might be both difficult
and resource intensive to carry out; practitioners and
their managers may be loath to expose the details of
their practice to external investigators, and the gains
from such a study may not repay the resources
expended. In such cases, laboratory studies may be all
that is possible. In addition, a laboratory study may also
act as a valuable precursor to a study of practice in vivo,
by providing evidence which persuades practitioners
and their managers to permit such a study.

We now turn our attention to the nature of the
evidence which might enhance our understanding of
practice.

2.2. The nature of the evidence which might
further this aim

Here, we shall firstly discuss how the underlying
data might be collected, and then how it might be
analysed, interpreted and presented to form evidence.

We believe that data relevant to pursuing this aim
can best be collected by studying practice itself as a
richly contextualised whole. This may be achieved by
means of ethnographically based studies. Such a study
may be either a field or an in-depth case-study: the
difference between the two is not clear-cut though the
former may involve a greater length of time and degree
of immersion than the latter, see, for example, Klein and
Myers in [13]. Pure ethnography is often impractical,
involving as it does, immersion in the domain of study
over a long period of time and collection of a plethora
of data, with no item of data being given primacy over
any other. In [14], we suggest ways in which
ethnography might be modified in order to fit the
purposes of empirical software engineering.

Any ethnographically-based study must adhere to
two basic principles: the data must occur naturally as
people go about their ordinary business (that is, it may
consist of videos of work meetings, or of the artefacts of
work, such as documents or code, but it does NOT
occur as the result of some intervention by the
investigator, as in traditional scientific experiments),
and the investigator must be detached enough from the
situation under investigation to be able to identify and
question taken-for-granted knowledge and tacit
assumptions, values, beliefs – what is referred to by
Cook and Brown in [15] as ‘tacit group knowledge’. In
addition to these two basic principles, and cognisant of
the fact that there is no such thing as “pure” observation
– what any observer sees in a particular situation and
how s/he interprets what s/he has seen depends on
her/his experience, expectations, mental model of the
situation, see, for example, Klein and Myers in [13] and

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The Open University. Downloaded on July 15, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

Chalmers discussing the philosophy of science in [16] –
we strongly advise that the investigator/observer has
enough understanding of software engineering to know
what is, and is not, likely to be significant. For
example, someone with some understanding of the
context will recognise that the fact that a particular
software engineer wears a yellow jumper is unlikely to
be significant, whereas the fact that her/his machine is
covered by aide-memoires might well be. A pure
ethnographer might give equal status to both facts.

If ethnographically based studies are impracticable,
then other qualitative methods might be used in order to
probe the nature of practice. Such methods include
interviews conducted by the researcher with the
software engineer, think-aloud and retrospective
protocols. None of these are ethnographic methods in
that they require intervention from the researcher or
place constraints on normal ways of working. Of
course, in her/his everyday practice, the software
engineer might be involved in interviews (with other
software engineers or with customers, for example), or
might talk aloud as s/he follows a procedure (for
example, if s/he habitually talks aloud, or if s/he is
explaining what s/he is doing to a colleague). In this
case, the data which arise are truly ethnographic.

With non-ethnographic qualitative methods, it is
important to confirm one’s findings explicitly through
‘triangulation’, that is, data from more than one source.
Data from a single source (for example, from interviews
or from documents or from protocols) can be suspect, as
is discussed in Bratthall and Jorgensen, [17]. For
example, the cognitive effort required to think aloud
while performing a task might effect how the task is
undertaken; in retrospective protocols, a software
engineer might forget why s/he did what s/he did at a
particular point; finally, with the best will in the world,
software engineers might not give truthful answers to
survey or interview questions because their perceptions
may not match with the actuality.

Examples of software engineers’ perceptions not
matching with the reality captured by observational,
ethnographically based studies, include the following.
Jorgensen, as cited in [17], describes a situation in
which the time software engineers claimed to spend on
fault correction, was about twice that actually observed.
Singer et al. [18] found that although the software
engineers observed said they focussed on
documentation, in fact, they mostly searched and read
source code. Finally, Visser et al., [19], found that, at a
time when ‘top-down software design’ was de rigueur
and assumed without question to be the way that expert
designers worked, in fact, observations showed that
many such experts worked in a far less structured, more
opportunistic way.

For these reasons – the effect that the research
method has on the work process (for example, the non-
natural production of talk-aloud data); the frailty of
human memory in retrospectives; the possible gap
between perception and reality – and also because
ethnographically based studies can reveal the taken-for-
granted and the tacit (as discussed in [14]), we feel that
ethnographically-based studies provide richer
information about the reality of practice than non-
ethnographic methods. In ethnographically-based
studies, triangulation is not an issue: ethnographic data
are likely to be a mixture of documents, transcripts,
notes of investigator observations, photos, work
products, and, perhaps, some quantitative data (for
example, the average length and frequency of particular
meetings; how frequently someone has consulted a
reference).

Having discussed how the data might be collected,
we now consider how they might be analysed,
interpreted and used. This depends on the use to which
the data are going to be put.

Seaman in [5] and Lee in [20] both discuss how field
study/case study data might support a natural science
view of software engineering (Seaman) and information
systems (Lee) Seaman describes how such data might
be analysed so as to provide hypotheses/conjectures and
Lee discusses how such hypotheses can be confirmed or
disconfirmed using naturally occurring events and
controls. In Lee’s exemplar case-study, the hypothesis
confirmed is that resistance to the implementation of a
particular information system is related to the way that
the system effects the distribution of power within the
organisation; the hypotheses disconfirmed are that this
resistance is related to technical inadequacies in the
system or to individual human factors.

Klein and Myers in [13] take an interpretivist rather
than a natural science view, and discuss some principles
by which case studies might be conducted in order to
provide plausible and cogent accounts of the situation
under investigation. These principles include:

- the need to reflect on the context (social and
historical) of the situation;

- the recognition of the effect of interactions between
the researcher and the participants;

- the fact that understanding of parts both informs
and is informed by understanding of the whole;

- the necessity for multiple interpretations of the
same data.

Interpretivist accounts may both enhance
understanding and persuade practitioners to try
something new. Richly contextual case studies, where
practitioners can recognise a situation similar to their
own, might evoke the gut instinct ‘it worked there; it

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The Open University. Downloaded on July 15, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

will work here. I must try it’. For example, we
speculate that the rapid growth in agile methodologies is
not due to the presentation of any hard empirical
evidence (of which there is currently not very much),
but to practitioners’ gut reactions on hearing of other’s
experiences: ‘yes, this makes sense. This is how it
should be done’. One interpretivist study which
provides a rich account of eXtreme programming
practice, is that of Robinson and Sharp [21].

To summarise this section: we have argued that
studies of practice are essential both to spur
conjectures/hypotheses as to how such practice might
be improved, and to provide cogent and plausible
accounts of such practice. Such accounts will not only
serve to deepen our understanding of the nature of
practice but also might persuade practitioners to reflect
on, and try out conjectured improvements in, their
practice. We have also argued that, where possible,
ethnographically-based studies are best suited to
elucidate practice, and have described some studies in
which assumptions or perceptions have been
confounded by observations.

3. The aim: exploring how practice might be
improved

As we have noted above, Seaman in [5] discusses
how evidence from ethnographically-based studies of
practice can be used to spur conjectures/hypotheses
about how such practice might be improved. However,
these studies are not the only source of suggestions as to
how practice might be improved. Such evidence may
also come from:

- Traditional empirical software engineering
sources, such as researchers’ reflections and ideas,
tested in the laboratory;

- workshops or other practitioner gatherings;
- individual practitioners reflecting on their practice;
- studies of the software product.

As an example of the last-named, Cartwright and
Shepperd in [22] describe the study of a large object-
oriented code-base in order to investigate the
distribution of defects, and identified classes that were
part of inheritance structures as being particularly error-
prone. This led to the writers making two suggestions
for the improvement of practice: firstly to argue for
concentrating software verification effort on these
classes, and secondly, to suggest that developers
consider seriously for each particular project whether
inheritance is necessary.

Having produced conjectures/hypotheses as to how
the practice of software engineering might be improved,
we suggest that the empirical software engineer should

now consider how the conjectured improvement, the
intervention, might be introduced into practice.
Previous studies on effecting anything other than minor
changes in software engineering practice, for example,
the introduction of a software process improvement or
of a reuse program, have stressed the need for
management support, see for example, Curtis [23] and
Hall and Wilson [24] looking at software process
improvement, and Morisio et al. in [25], looking at
reuse. In addition, we speculate that change in practice
cannot be sustained over a period of time without
support from the practitioners themselves. So we
believe that the empirical software engineer, having
convinced himself/herself of the value of a particular
intervention, should now determine whether the
evidence which convinced him/her might also suffice to
persuade management and practitioners to adopt the
intervention, or whether further evidence is necessary.

In order to convince management that it is worth the
investment necessary to introduce the intervention, it
might be desirable to appeal to financial considerations.
Ideally, we should like to be able to say ‘we have
evidence that if you institute this particular
tool/technique/method, then you will save money. We
have found that adopting this intervention means your
percentage of code defects will reduce or your
production rate will increase or you will be able to
produce a certificate which will make it easier to attract
customers or…..’ We are now in the world of metrics,
and the quantitative evidence supporting our assertions
may come from laboratory experiments.

As to convincing practitioners, we argued in 2 above
that practitioners might be persuaded by cogent
plausible accounts afforded by case-studies of contexts
which they recognise. They may also be persuaded by
the highly unscientific, unreliable but sometimes
compulsively persuasive, evidence provided by peer
anecdotes or by vendors, as recognised in [2].
Interpretivist case studies, for example, the results of
ethnographic studies, differ significantly from anecdote
in aiming to provide a rounded, unbiased account, by
adhering to the kind of principles described in 2.2.
above, such as seeking multiple interpretations of the
same phenomenon, and being aware of how data is
filtered and interpreted through interactions between the
researcher and the subject. See Klein and Myers, [13],
for details.

4. The aim: an evaluation of the effects of
introducing a conjectured improvement
into practice

Here we wish to ask questions such as:

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The Open University. Downloaded on July 15, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

1. has the intervention improved practice or the
product in any tangible, quantitative way?

2. has the intervention improved practice or the
product in some less tangible way?

3. is the intervention sustainable? That is, is the
intervention fully embedded as part of practice?

In order to answer question 1, we are back in the
world of metrics and comparing the value of some
quantitative measure taken before and after the
intervention was introduced, as in the standard pattern
for software process improvement.

As to question 2, Kitchenham et al. in [10] warn
against concentrating on quantitative data at the expense
of qualitative, using as an example a number of
quantitative studies which suggested that inspection
meetings are not necessary to maximise defect
detection, but ignored the qualitative benefits of such
meetings, such as on-job training and the promotion of
teamwork.

Boehm and Turner in [26] stress the importance of
question 3, noting that one shouldn’t get carried away
by the initial euphoria of early adopters. In their
discussion of how agile and plan-based methods might
be melded, they note that the C3 project, which acted as
a catalyst for the development of eXtreme Programming
and which was initially very successful, was eventually
cancelled. The adoption and diffusion throughout an
organisation of new technologies and procedures
continues to be an active topic of research in the
Information Systems and Business Management
communities.

Answers to questions 2 and 3 can best be sought, we
believe, through field or extended case-studies, as
described in section 2 above.

5. Discussion and conclusions

This paper has been concerned with two issues: the
importance of studies of software engineering practice,
and the nature of evidence.

We have argued that without understanding the
nature of practice, empirical software engineers will
find it difficult to identify and promote potential
improvements in practice. We have suggested that
ethnographically-based studies provide the richest
picture of practice, while accepting that they might
sometimes be impracticable, and that other qualitative
methods, suitably triangulated, should then be used.

As to the nature of evidence, we have argued here
that what constitutes evidence depends on the purpose
to which the evidence is going to be put. For example,
if one wants to persuade an executive manager that his
workforce should adopt a particular
practice/tool/method, one appeals to hard evidence,

produced, perhaps, within a natural science
experimental framework, and presented in terms of
financial considerations. However there is plenty of
evidence in the literature of executive management
being influenced by social, political or organisational
pressures, and making decisions on the basis of, for
example, ‘jumping on the bandwagon’ rather than on
the basis of any hard evidence, see, for example, Hall
and Wilson [24], discussing the making of decisions
relating to software process improvement initiatives,
and Waterson et al. [27], considering decision making
about the use of CASE tools and outsourcing. If one
wants to ascertain why executive management doesn’t
make a particular decision in the face of seemingly
compelling hard evidence, then one might appeal to the
qualitative evidence produced by an ethnographically-
based field study.

We argue that, in empirical software engineering,
there is no ‘pyramid of data’ (a phrase we have heard in
the context of evidence-based medicine). That is, one
type of data does not per se have primacy over another:
quantitative data is not necessarily superior to
qualitative.

Seaman in [5] describes qualitative data as having
“an image problem” in the context of empirical software
engineering. Perhaps the cause of this image problem
is the widespread view that, firstly, only quantitative
data is purely objective in truly reflecting the world
without investigator bias, and secondly, that only
quantitative data contributes to hard science, and that
empirical software engineers should aspire to be hard
scientists.

Regarding the first point, Lanubile in [4] asserts that
objectivity is independent of whether data are
quantitative or qualitative.

‘The objectivity of empirical research comes from a
review process that assures that the analysis relies on all
the relevant evidence and takes into account all the rival
interpretations. This can be done (or not done) in both a
quantitative and a qualitative analysis’. [4: p.102]

In [9], Kitchenham, Linkman and Fry point out
several potential sources of bias in quantitative data.
For example, there is potential bias involved in
measurement (measurements may be rounded to fit in
with the investigator’s model; bias might be introduced
unwittingly through deficiencies in the measuring
instrument), to say nothing of the potential bias in
applying statistical tests (for example, the identification
by the investigator of outlier data, to be ignored,
depends on the investigator’s subjective expectation of
what the data should be like). We have already
discussed how bias might be mitigated in

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The Open University. Downloaded on July 15, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

ethnographically-based case studies by consideration of
multiple interpretations and the like.

There is also the fact that not all aspects of the world
are quantifiable: Bannon, as quoted in [6], describes the
ignoring of aspects which can’t be measured, as
“suicide”.

With regard to the relationship between objectivity,
hard science and software engineering, philosophers of
science question just how objective ‘hard science’ really
is (see, for example, Chalmers in [16]). Some
philosophers contend that the validity of observations,
theories and hypotheses in a particular scientific culture
at a particular point in time depends on the consensual
agreement of the members of the scientific community
at that time and in that culture, rather than on any hard
and fast evidence. Finally, we agree with Seaman in [5]
that software engineering is not ‘hard science’, in the
sense that it is not independent of contextual factors
such as that provided by the human dimension.

We should reiterate that, in challenging the perceived
primacy, historically, of quantitative over qualitative
data in empirical software engineering, we are not
arguing for the reverse primacy, of qualitative over
quantitative. Rather, we argue that hard quantitative
data is not, of itself, better than soft qualitative data, and
neither is qualitative data always better than
quantitative. Different purposes demand different sorts
of data, and different sorts of analysis, interpretation
and representation of that data to provide evidence.

We have argued in this paper that the purpose of
understanding the practice of software engineering
should be central to empirical software engineering, and
that it is not enough for an investigator to convince
herself/himself of the efficacy of some change in
practice, s/he must also convince practitioners and their
managers, and this might demand quite different types
of evidence from that which convinced the investigator
and his/her community. Both the development of an
understanding of the practice of software engineering
and an appreciation of the fact that evidence must be
appropriate to its purpose and intended audience, should
go some way towards closing the gap between empirical
software engineering and software engineering practice.

References

[1] M.Shepperd, "Empirically-based Software Engineering",
UPGRADE, IV (4), Aug. 2003, 37-41.

[2] M.V.Zelkowitz, D.R. Wallace, D.W. Binkley,
‘Experimental validation of new software technology’, in
Lecture Notes on Empirical Software Engineering, N.Juristo,
A.M. Moreno (eds.), World Scientific Publishing Co., 2002,
pp. 229-263.

[3] D.E.Perry, A.A.Porter and L.G.Votta, "Empirical studies
of software engineering: a roadmap", in Proceedings of the
International Conference on The Future of Software
Engineering, A. Finkelstein (ed.), ACM Press, 2000, pp.345-
355.

[4] F. Lanubile, ‘Empirical evaluation of software
maintenance technologies’, Empirical Software Engineering,
2, 1997, pp 97-108.

[5] C.Seaman, "Methods in empirical studies of software
engineering', IEEE Transactions on Software Engineering,
25(4), 1999, pp.557-572.

[6] S.E.Sim, J.Singer and M-A Storey, "Beg, Borrow or Steal:
Using Multidisciplinary Approaches in Empirical Software
Engineering Research", Empirical Software Engineering, 6,
2001, pp.85-93

[7] R.L. Glass, I. Vessey and V. Ramesh, "Research in
software engineering: an analysis of the literature",
Information and Software Technology, 44, 2002, pp.491-506.

[8] J. Munch, D.Rombach and I.Rus "Creating an advanced
software engineering laboratory by combining empirical
studies with process simulation", Proceedings of Prosim 2003,
Portland, Oregon, 2003.

[9] B.Kitchenham, S.Linkman and J.Fry, "Experimenter
induced distortions in empirical software engineering",
Proceedings of the 2nd workshop in the Workshop Series on
Empirical Studies in Empirical Software Engineering,
Jedlitscha A and Ciolkowski M. (eds.), 2003, pp.7-15

[10] B.A.Kitchenham, S.L.Pfleeger, L.M.Pickard, P.W.Jones,
D.C.Hoaglin, K. El Eman, J.Rosenberg, "Preliminary
Guidelines for Empirical Research in Software Engineering",
IEEE Transactions on Software Engineering, 28(8), 2002,
pp.721-734.

[11] J. Segal, "Some parallels between empirical software
engineering and research in human-computer interaction",
technical paper, EASE & PPIG joint conference, University of
Keele, UK, 2003, 63-72.

[12] Y. Rogers, "New theoretical aproaches in HCI." To
appear in ARIST, Annual Review of Information Science and
Technology, 38, 2004.

[13] H.K.Klein and M.D.Myers, "A set of principles for
conducting and evaluating interpretive field studies in
information systems", MIS Quarterly, 23(1), 1999, pp.67-93

[14] H.Robinson, J.Segal and H.Sharp, "The case for
empirical studies of the practice of software development",
Proceedings of the 2nd workshop in the Workshop Series on
Empirical Studies in Empirical Software Engineering,
Jedlitscha A and Ciolkowski M. (eds.), 2003, pp. 99-108.

[15] S.D.N. Cook and J.S. Brown "Bridging epistemologies:
the generative dance between organizational knowledge and

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The Open University. Downloaded on July 15, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

organizational knowing", Organization Science, 10(4), 1999,
pp. 381-400.

[16] A.F Chalmers. What is this thing called science? 2nd

edition, Open University Press, Milton Keynes, UK, 1982.

[17] L. Bratthall and M. Jorgensen, ‘Can you trust a single
data source exploratory software engineering case study?’,
Empirical Software Engineering, 7, 2002, pp. 9 -26.

[18] J. Singer, T. Lethbridge, N. Vinson, N. Anquetil, ‘An
examination of software engineering work practices’. Centre
for Advanced Studies Conference (CASCON), Toronto,
Canada, 1997, pp. 1-15.

[19] W. Visser, J-M Hoc, ‘Expert Software Design
Strategies’, in Psychology of Programming, J-M Hoc,
T.R.G.Green, R. Samurcay, D. J. Gilmore (eds.), Academic
Press, London, 1990, pp. 235-249.

[20] A.S.Lee, "A scientific methodology for MIS case
studies", MISQ, 1989, pp.33-50

[21] Robinson H. and Sharp H., ‘XP practice: why the twelve
practices both are and are not the most significant thing’,
Proceedings of Agile Development Conference, IEEE Press,
2003, pp. 12-20.

[22] M. Cartwright, M. Shepperd, "An empirical investigation
of an object-oriented software system", IEEE Trans. On
Softw. Eng., 26(8), 2000, pp.786-796.

[23] B. Curtis, "Which comes first, the organisation or its
processes?", IEEE Software, 15(6), 1998, pp. 10-13.

[24] T. Hall and D. Wilson, "Views of software quality: a field
report", IEE Proc-Softw.Eng. 144(2), 1997, pp. 111-118.

[25] M. Morisio, M.Ezran and C.Tully, "Success and failure
factors in software reuse", IEEE Transactions on Software
Engineering, 28(4), 2002, pp.340-357.

[26] B. Boehm and R. Turner, Balancing Agility and
Discipline A Guide for the Perplexed, Addison Wesley, 2004.

[27] P.E.Waterson, C.W.Clegg and C.M.Axtell, "The
dynamics of work organization, knowledge and technology
during software development", Int. J. Human-Computer
Studies, 46, 1997, pp. 79-101.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The Open University. Downloaded on July 15, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

