
Effects of Virtual Development on Product Quality:

Exploring Defect Causes

J.C. Jacobs

Philips Semiconductors

Eindhoven,The Netherlands

jef.jacobs@philips.com

J.H. van Moll

Philips Semiconductors & Sioux

Technical Software Development

Eindhoven, The Netherlands

jan.van.moll@philips.com

P.J. Krause

University of Surrey

Guildford, UK

p.krause@eim.surrey.ac.uk

R.J. Kusters

Eindhoven University of

Technology

Eindhoven, The Netherlands

r.j.kusters@tm.tue.nl

J.J.M. Trienekens

Eindhoven University of

Technology

Eindhoven, The Netherlands

j.j.m.trienekens@tm.tue.nl

Abstract

This paper explores the effects of virtual development

on product quality, from the viewpoint of "conformance

to specifications". Specifically, causes of defect injection
and non- or late-detection are explored. Because of the

practical difficulties of obtaining hard project-specific

defect data, an approach was taken that relied upon
accumulated expert knowledge. The accumulated expert

knowledge based approach was found to be a practical

alternative to an in-depth defect causal analysis on a
per-project basis. Defect injection causes seem to be

concentrated in the Requirements Specification phases.

Defect dispersion is likely to increase, as requirements
specifications are input for derived requirements speci-

fications in multiple, related sub-projects. Similarly, a
concentration of causes for the non- or late detection of

defects was found in the Integration Test phases. Virtual

development increases the likelihood of defects in the
end product because of the increased likelihood of defect

dispersion, because of new virtual development related

defect causes, and because causes already existing in
co-located development are more likely to occur.

Keywords: Virtual development, Product Quality,

Defect injection, Defect detection, Defect Causal

Analysis

1 Introduction

The objective of this paper is to investigate the

possible effects of virtual development on the quality of

the delivered product, in particular the exploration of

defect causes. Virtual development is the development of

a product (or product family) by a virtual team. A virtual

team is a team distributed across space, time, and

organization boundaries, and linked by webs of

interactive technology [13]. We prefer the term “virtual

development” over the term “global software

development” as used by Karolak [12], Carmel [3] and

Herbsleb et al. [9], because the scope of development is

not necessarily restricted to software only, and because

the development team need not necessarily be scattered

around the globe. Being in another building or on a

different floor of the same building, or even at the other

end of a corridor, can be sufficient to label it as global

development [9].

Both Karolak and Carmel describe the issues that

cause virtual development of products to be much more

complex than even the most complex project managed

entirely in house [3, 12]. They also suggest possible

solution strategies, derived from case studies in virtual

development projects. The works of Karolak and Carmel

are focused on the managerial and collaboration aspects

of the organization and execution of virtual development

projects. The emphasis is on timely delivery of the

product within budget. In this paper, we address the

effects of virtual development on product quality, as this

is not or only marginally addressed in frequently cited

literature on virtual development, e.g. [3, 9, 12].

However, product quality is a complex and multi-faceted

concept, pointed out already in 1982 by Garvin [6]. He

identified five different views of quality: the

transcendental view, the manufacturing view, the

product view, the user's view, and the value-for-money

view. In the context of this paper, we will consider the

manufacturing view, usually encapsulated in the phrase

“conformance to specification”, as our base view on

product quality. Non-conformances to specifications

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

2

(which we shall call defects) will typically have a

negative impact on product quality whatever the point of

view.

Section 2 introduces virtual development and its

specific problems. It leads to the recognition of four risk

categories that, given the unique aspects of virtual

development, are crucial to success or failure of virtual

development projects. Section 3 reports on an

explorative investigation into the effects of virtual

development on product quality. Practical problems to

get hard defect data forced an approach relying upon

accumulated expert knowledge concerning defect causes

in virtual development projects. In "Defect Causal

Analysis"-like meetings a team of experts took a

lifecycle-centric view on virtual development to address

typical causes of the injection and non- or late-detection

of defects. Section 4 discusses the suitability of the

alternative approach and the findings of the explorative

investigation. Finally, section 4 summarizes the

conclusions.

2 Problem Areas of Virtual Development

To investigate the effects of virtual development on

product quality, the associated problems and risks as

reported by Carmel [3] and Karolak [12] can be used as

a point of departure. Carmel performed a case study, the

Globally Dispersed Software Development (GDSD)

study, to find the aspects in which global development

differs from traditional, entirely in-house development

[3]. The GDSD study concerned 17 software companies

engaged in virtual development of products. Eventually,

Carmel recognises the following three unique aspects:

Distance between development sites has a direct

impact on project control, coordination and

communication

Time zone differences between development sites

make it even harder to communicate, impacting project

control and coordination

Cultural differences between development sites may

lead to mistrust, mis-communication and lack of

cohesion.

On the basis of these findings, Carmel identified five

problem areas that act as “centrifugal forces, driving the

global development team apart”. We interpret Carmel’s

statement of problem areas that are “driving the global

development team apart” as problem areas that

potentially threaten the delivery of the product in time,

within budget and with the specified or implicitly

expected product quality. The problem areas that Carmel

recognized are:

(1) geographic dispersion, (2) control and

coordination breakdown, (3) loss of communication

richness, (4) loss of “teamness” and (5) cultural

differences.

We interpret Carmel’s unique aspects as causes and

the problems as their effects. In this view, the problem

area “Geographic dispersion” seems peculiar, as it is a

direct implication of the “distance” aspect. Hammar et

al. also came to the same conclusion [8]. These authors

replaced the problem area “Geographic dispersion” by

“Differences in knowledge”, that they consider to be an

effect caused by Carmel’s unique aspects Distance and

Culture. However, distance or cultural differences do not

necessarily cause differences in knowledge.

Karolak’s work [12] has a lot in common with that of

Carmel [3]. However, Karolak uses the word “risk”

where Carmel uses the word “problem” (or problem

area). We prefer the term “risk”, because it implies that

the issue it addresses might be a problem, not that it

necessarily is a problem.

Karolak distinguishes three risk categories:

Organizational risks, concerning decision authorities,

responsibilities, tasks and project structure, impacting

project control, coordination and team behavior,

Technical risks, concerning methods and tools used

to solve technical problems, impacting development

methodology, architectural choices and eventually

product quality,

Communication risks, that may lead to mistrust,

misinterpretations and inadequate communications.

Although Karolak and Carmel view virtual or global

development from a different perspective, they both

arrive at more or less the same risks or problem areas.

Nevertheless, to study the effects of virtual development

on product quality, we favor Karalok's risk view,

because we consider the risk categories more

implication-neutral and coherent.

In one aspect Karolak and Carmel differ markedly:

where Karolak considers technical aspects as a potential

risk, Carmel seems to consider them as a solution. A

possible explanation of these seemingly opposed views

may be found in a study by Maidantchik et al. [14]. They

report the experiences of managing a global

development project, in which advanced technology was

used to minimize, or even eliminate some of the risks.

The collaborating groups that together formed the virtual

development team differed in process maturity levels (as

measured by CMM). They realized that for low maturity

organizations it might be difficult or even impossible to

introduce advanced methods and technology. For

organizations with a higher level of process maturity,

advanced methods and technology can be a solution,

while for low maturity organizations the same methods

and technology can be a problem. The study by

Maidantchik et al. identifies the differences between

software processes used by collaborating groups and

associated process maturities as a risk category for

virtual development projects [14]. Earlier, McMahon

already warned for the potential danger of differences in

processes and process maturities of collaborating parties

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

3

in distributed development [16]. The observations of

these authors are in line with our own experiences in

virtual development. Consequently, we consider process

risks as an additional risk category for virtual

development.

Karolak’s risk categories apply to both virtual and

co-located projects. However, the likelihood of risks

occurring in virtual development projects is greater [12],

due to the three unique aspects of virtual development as

identified by Carmel [3]. This is equally so for the

additional process risk category.

In first instance, we wanted to investigate in-depth

the causes of defects in a number of virtual development

projects. However, early in the preparation stage of the

investigation it became apparent that such an approach

was unfeasible: either the necessary defect data for

determining defect root causes is unavailable, or

organizations refuse to provide them. A similar

observation has been reported by Chulani [5]. Moreover,

a quick scan learned that organizations limit the extent of

defect classification and analysis to only collect defect

data for solving problems at hand; root cause analysis to

eventually prevent defects from recurring in the future is

hardly practiced. If applied at all, defect classification

schemes like the Hewlett Packard Scheme [7], the IEEE

1044 Standard Classification for Software Anomalies

[10] or Orthogonal Defect Classification [4] are rarely

employed on such a scale that their scope includes the

entire virtual development context (i.e. the entire set of

related projects contributing to the development of the

product).

These practical problems forced us to explore an

approach to our investigation of defects, alternative to

that of an in-depth causal analysis on a per-project basis.

The problem of lack of hard data was also faced by

Briand et al., albeit in a different context [1]. They

successfully investigated the cost-effectiveness of

inspections by relying upon expert judgments. Likewise,

our alternative approach is based upon accumulated

expert knowledge concerning defect causes in virtual

development projects.

3 An Exploratory Investigation of Defect

Causes

3.1 Investigation Goals

Apart from the goal of determining the suitability of

the approach, this exploratory investigation aims at

answering the research questions:

1. What are typical causes for the injection of

defects in virtual development? These may

either be (a) ‘new’ causes, i.e. additional to

causes already present in co-located

development, or (b) causes also present in co-

located development but with a much higher

probability of occurrence in a virtual

development context.

2. What are typical causes for non- or late-
detection of defects in virtual development? I.e.

why is it that defects are not detected at all or

late?

We use the word defect here, as a generic term for

any discrepancy between:

- product information specifying the product's

behavior and the behavior requested by the

product development principal

- actual product behavior and the specification of

its behavior

- information intended for the verification &

validation of the product and its specified and

requested behavior.

3.2 Investigation Approach

Outline. Six analysis meetings, with selected experts as

participants, were conducted to identify causes for defect

injection and non- or late-detection. The meetings very

much resembled the causal analysis meetings as seen in

the Defect Causal Analysis (DCA) process [2] and

Defect Prevention Process (DPP) [15]. A major

difference was the way in which defects to be analyzed

were gathered, as shown in figure 1. Instead of selecting

a sample from a project’s problem database as in regular

DCA, an inventory was made of defect types and

associated causes on basis of the accumulated experience

of the participating experts.

Figure 1. Context of the Causal Analysis Meeting:
Standard DCA (left) vs. this investigation (right).

Selection of participants. Participants in the analysis

meetings were carefully selected on the basis of their

professional background and expertise. Each participant

Software

Production

Software

Testing

Causal

Analysis

Meeting

Problems to fix Problems identified

Sample of
problems

Recommended actions

Software

Problem

database

Product

Development

Projects

(industry-wide)

Product

Testing

Projects

(industry-wide)

Defects identified
by expert experience

Defects identified
by expert experience

Defects

(industry

-wide)

Software

Causal

Analysis

Meeting

 Causes for injection
and non (or late) detection

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

4

had to have over three years of experience in the area of

virtual development.

They had to be directly involved in product testing,

technical product support, defect causal analysis or

project management. Of these areas, defect causal

analysis experience was a prerequisite for participation.

An additional criterion was that they had been directly

involved in multiple virtual development projects in the

last two years. To ensure a sufficiently wide experience

base, we have set the minimum number of experts to

five. Actually, six experts participated. The selected

experts, all at senior level, included two test managers,

one test architect, one software architect, one project

manager and one service engineer. They had all acquired

experience in multiple organizations, and so

correspondingly their accumulated knowledge about

defect causes covered multiple organizations.

Moderatorship. A moderator chaired and guided the

analysis meetings. His tasks included introducing the

meeting participants to the purpose and set-up of the

meeting. To safeguard the duration of the meetings, he

also intervened in discussions preventing them getting

too extensive. At the end of a meeting, the moderator

evaluated the meeting.

Meeting and analysis process. In each meeting, a

lifecycle-centric view on product creation was taken. A

lifecycle-centric view was reported valuable for the

investigation of the effects of virtual development on

product quality: virtual development projects are

typically structured as a hierarchy of lifecycles,

reflecting the decomposition of projects into sub-projects

[17]. An example of a generic V-lifecycle, deployed in a

virtual development setting is given in figure 2.

Figure 2. Generic V-lifecycle as deployed in a typical
virtual development context.

For each lifecycle phase, the participants discussed

about typical defects arising in that specific phase,

adversely affecting product quality. Subsequently,

possible causes were identified for those defects of

which there was a substantiated opinion that their

injection (or non-detection) is significantly influenced by

the nature of the project (i.e. in a virtual development

context). Identification of causes was supported by

brainstorming about what possibly could go wrong in the

area of communication, process, organization and

technology (i.e. the risk categories). Substantiation was

to be provided either by statements found in literature on

defect detection and prevention or by the participants’

own experiences gained from the outcomes of defect

causal analyses in earlier projects. By using the cause-

effect graphing technique [11], the participants tried to

systematically identify all possible causes for injection

and non-detection. Causes were assigned to one of the

risk categories: communication, process, organization or

technology. Only in case of irresolvable doubts, it was

allowed to assign the cause to multiple risk categories.

To ensure focus and attention from the participants, the

duration of the meetings was limited to a maximum of

three hours. Six analysis meetings were held, each with

a different combination of the six experts. The number of

participants in a meeting was deliberately kept small, as

to avoid negative group effects like cognitive inertia,

dominations and production blocking [18]. Each meeting

built upon the results obtained in previous meetings. In

this way, the collection of causes was gradually

reviewed, refined and inter-subjectively extended. At the

end of a meeting, an evaluation was held in which the

experts were invited to give their opinion about the

analysis process and how they perceived the results.

3.3 Investigation Results

Figure 3 and 4 show examples of the cause-effect

graphing performed during the causal analysis meetings.

Figure 3 is an analysis example of defect injection

showing causes for the injection of specification defects

(e.g. wrong, missing, unclear). Figure 4 is an analysis

example of non-detection and lists causes for defects not

being detected at system testing. For illustrative purposes

the cause-effect graphs have been simplified.

Technical

Requirements

Specification

High-level

Design

Detailed

Design

Implementation

Unit Test

Integration

Test

System

Test

System

Architectural

Design

System

Technical

Requirements

Customer

Requirements

Specification

Integration

Test

System Test

Acceptance

Test

SYSTEM

SUB-SYSTEMS

Project X

Project Y

Project Z

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

5

Figure 3. Example of a fish-bone diagram showing
causes for injection of specification defects.

Figure 4. Example of fish-bone diagram showing
causes for non- or late-detection at system testing.

A summary of the analysis results for the injection of

defects is given in Appendix 1, answering research

question 1: What are typical causes for the injection of
defects in virtual development? The rows represent the

various lifecycle phases given in Figure 2, while the

columns represent the risk categories. Each table cell

contains potential causes for the injection of defects

during the corresponding lifecycle phase.

The table given in Appendix 2 has a similar

construction as the table given in Appendix 1, but here

the cells contain causes for non- or late-detection of

defects during the corresponding lifecycle phase. It

contains answers to research question 2: What are

typical causes for non- or late detection of defects in

virtual development? Note that the same cause can

appear in multiple cells. However, the cause is mostly

only mentioned in the cell where it was found to be most

significant (i.e. present in practice). Also note explicitly

that causes that would be appearing in co-located

development as well are left out. Causes like these are

only mentioned if their likelihood of occurrence was

considered to be higher in a virtual development context

than in a co-located development context.

4 Discussion

4.1 Discussion of the approach

The alternative approach yielded tangible

information about defect causes in virtual developments.

The evaluations, held at the end of each analysis

meeting, learned that the participating experts considered

the results representative for defect causes in virtual

development projects. In later meetings, experts

recognized and confirmed the causes that had been

identified in previous meetings by different experts,

without any exception.

An issue discussed was whether people can retrieve

information easily and reliably from long term memory.

The prevailing opinion was that the systematic lifecycle-

based brainstorming, the extended cause-effect

reasoning, the usage of risk categories and the

interaction of participants with different viewpoints

effectively stimulated the retrieval of long-term memory

information. Participants independently expressed their

confidence in the completeness of the results. We

conclude that determination of defect causes based upon

accumulated expert knowledge can be considered as a

practical and valid alternative to an in-depth defect

causal analysis on a per-project basis.

Future application of this approach may benefit from

the following observations:

Participants Involvement. Overall, the participating

experts exhibited great interest in the investigation and

were highly motivated to take part in the analysis

meetings. The opportunity to brainstorm in-depth about

the root causes of defects was perceived as a strong

motivator: in actual projects there is hardly any

possibility to do so, because of time and cost constraints.

Some of the experts also mentioned that the discussions

with fellow-participants contributed favorably to their

understanding of the problems encountered in virtual

development. All expressed the interest in receiving a

copy of the final investigation report.

Role of the Moderator. Strong moderatorship was

needed to ensure focus in the analysis meetings.

Participants tended to continue discussing issues

deviating from the analysis goals. A recurrent issue

SPECIFICATION
DEFECT

COMMUNICATION PROCESS

TECHNOLOGYORGANISATION

Bad traceability
of requirements

over projects

No change control
authority installed

Changes in
requirements not
communicated to
related projects

Unclear responsibilities
between projects for
implementation of

requirements

Conflicting
requirements between

projects

Implicit assumptions
not communicated to

other projects

Different interpretation of
implicit requirements

Delayed
communication of

changes in
requirements to
related projects

Poor
organisation

Unjust trust in
expertise of other

project's staff

No support for
reviewing in distributed

projects

DEFECTS NOT
DETECTED AT

SYSTEM TESTING

COMMUNICATION PROCESS

TECHNOLOGYORGANISATION

Blind spots
in test coverage

No deliberation on test
approach between

projects

Unjust reuse
of test specs
from other
projects

Changes in test object
not communicated by

other projects

Bad regression testing

No stakeholder
involvementof related

projects

Locally insufficient
technology
available

Insufficient local
domain knowledge

Unjust trust in
test effectiveness of
other project's staff

Responsibilities not
assigned

Inadequate test
organization

Bad duplicate of test
environment of related

project

No representative
environment available

Insufficient local
knowledge about

environment

Inadequate provision
of test information

Hiding policy

Bad test specs
Different interpretation

of test results

Unjust trust in pretesting by
other projects

Unclear test
conditions of
other projects

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

6

concerned the division of defect-finding responsibilities

between developers and testers. Another issue tending to

extensive discussions was the question of whether

certain defect types can be detected at all in a specific

lifecycle phase.

Cause-Effect Graphing. Cause-effect graphing was

found to be a useful tool for experienced based root-

cause determination. However, cause-effect graphing

turned out to be a laborious process, because of the

length and inter-relation of the cause-effect chains. A

cause can be the effect of another cause (or a

combination of other causes). Eventually, a root cause

might be a complex interaction of elements pertaining to

one or more of the risk categories. This makes the

assignment of a cause to one single risk category at least

disputable. Either objective discrimination criteria are

needed for assigning a cause to a single risk category, or

it should be clearly allowed to assign causes to multiple

risk categories.

4.2 Discussion of the results

Injection of defects. Previously, Van Moll et al. [17]

reported a case study indicating that transitions between

lifecycles of sub-projects are particularly sensitive to

defect injection. While their study focused on the

locations of defect injections, the current study explores

the causes of defect injections at the transitions. The data

from the current investigation amplifies the finding that

the transitions between lifecycles of sub-projects from

virtual development projects are defect sensitive. The

table in Appendix 1 shows a concentration of causes in

the Technical Requirements Specification and

Integration Test phase (of system project X). The

Technical Requirements Specification shows a relatively

high number of causes, and may inherently be more

sensitive to injection than other phases. As in this phase,

information is being processed that has been transferred

from one context (that of Project X) to another context

(that of Project Y), the phase is said to be situated at a

transition between lifecycles. A relatively high number

of potential causes increases the likelihood of defects

being injected at such lifecycle transitions.

Defect injection occurring in the Technical

Requirements Specification phase can be considered

severe as in an actual virtual development project, a

given Requirements Specification is a source for derived

Requirements Specifications to multiple sub-projects.

This means that defects are likely to disperse in a virtual

development context.

Regardless of the project context (i.e. virtual or co-

located), defects are typically injected in either

requirements, design or implementation phases. In

virtual development, no new types of defects (i.e.

exclusively occurring in virtual development context) are

to be expected. Rather, virtual development increases the

likelihood of defect injection because new defect causes

occur and causes already existing in co-located

development are more likely. Consequently, dispersion

of defects as well as an increased likelihood of injection

may lead to a higher number of defects in the delivered

product.

Defect injection is significantly increased in

situations where changes in the requirements, design or

implementation are being handled. Proper handling

includes change control authority, impact analysis and

the communication of changes. It was observed that a

multitude of causes relates to the handling of changes.

An example is that changes are not, or not clearly

communicated to the appropriate parties involved or are

not unanimously agreed upon. While non-adequate

handling of changes is already severe in co-located

development, virtual development projects even seem to

aggravate the effects, resulting in additional defect

injection causes.

Non-detection or late-detection of defects. Causes of

non- or late-detection are concentrated in the Integration

Test phase of the system-level project (project X). At

this lifecycle transition, the components developed in the

sub-projects are integrated and subsequently tested.

Dispersed defects (especially from the Requirements

Phase transitions) will become painfully visible here.

Appendix 2 shows that defects that should have been

found earlier, are causing integration difficulties and

project delays. Lacking or insufficient test coordination

(over the entire virtual development project) seems to be

the major cause of non or late-detection of defects.

Project delays threaten the execution of a proper

integration test. Projects tend to rely upon the subsequent

system test as a fall-back, not or insufficiently realizing

that certain types of integration related defects cannot be

detected at this later phase.

The danger of non- or late-detection of defects

especially lurks in situations of unclarity about test

coordination. Test coordination includes the action of

distributing test focus over the product by the various

parties involved, the assigning of test responsibilities and

processing of test results. Even in co-located projects,

insufficient attention for test coordination and test

approach by project management often results in

problems with product quality. In virtual development

projects the effects of lacking or insufficient test

coordination seem to be aggravated, resulting in

additional causes for non- or late-detection.

5 Conclusions

In this paper, we have explored defect causes in

products developed by virtual teams. Because of the

practical difficulties of obtaining hard project-specific

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

7

defect data, an approach was taken that relied upon

accumulated expert knowledge. This approach was

found to be a practical alternative to an in-depth defect

causal analysis on a per-project basis.

In causal analysis-like meetings, experts identified

causes for defect injection and non- or late detection of

defects, considering the individual phases in a hierarchy

of related projects constituting a virtual project. Causes

were assigned to risk categories Communication,

Process, Organization and Technology.

Causes for defect injection were primarily found at

the Technical Requirements Specification phases around

the transitions from one project to another, early in the

lifecycle. Causes for non- or late detection of defects

were primarily found at the Integration Test phases

situated at the transitions from one project to another,

late in the lifecycle.

A main limitation of this study is the relatively small

number of participating experts. Furthermore, the results

depend on expert judgement, assuming that people can

retrieve information reliably from long term memory,

and that the influence of negative group effects is

negligible. However, we don't have indications that these

limitations invalidate the results.

Acknowledgements

We owe many thanks to all experts who participated

in our analysis meetings. They sacrificed many hours of

their free time, discussing and analyzing defect causes

and contributing to the execution of our investigation.

We are also indebted to Maggie Larragy (Philips

Semiconductors-RTG, Einhoven, The Netherlands) for

her helpful comments.

References

[1] Briand, L.C.,Freimut, B., and Vollei, F.,

Assessing the Cost-Effectiveness of Inspections

by Combining Project Data and Expert Opinion,

Proceedings of the 11th International

Symposium on Software Reliability

Engineering, San Jose, 2000, pp. 124-135.

[2] Card, D., Learning from our Mistakes with

Defect Causal Analysis, IEEE Software, Jan.

1998, pp. 56-63.

[3] Carmel, E., Global Software Teams:

Collaborating Across Borders and Time Zones,

Prentice Hall PTR, 1998.

[4] Chillarege, R., Bhandari, I., Chaar, J., Halliday,

M. , Moebus, D., Ray, B., and Wong,

M.,Orthogonal Defect Classification-A concept

for in-process measurements, IEEE Transactions

on Software Engineering, vol.18, Nov. 1992, pp.

43-956.

[5] Chulani, S., Bayesian Analysis of Software Cost

and Quality Models, PhD Dissertation,

University of Southern California, May 1999.

[6] Garvin, D., What does “Product Quality” really

mean? Sloan Management Review, Fall 1984,

pp. 25-43.

[7] Grady, R.B., Practical Software Metrics for

Project Management and Process Improvement,

Prentice Hall, 1992.

[8] Hammar, M., Heverius, J., Centrifugal Forces in

Global Software Development – Applying the

Hammerius Model in the Collaboration between

IFS Sweden and IFS Sri Lanka, Master Thesis,

University of Linköping, Sweden, 2000.

[9] Herbsleb, J.D., and Moitra, D., Global Software

Development, IEEE Software, March/April

2001, pp. 16-20.

[10] IEEE std 1044-1993. IEEE Standard

Classification for Software Anomolies, 1993.

[11] Ishikawa, K., Guide to Quality Control, White

Plains, N.Y., Quality Resource, 1971, 1989

[12] Karolak, D.W., Global Software Development ,

IEEE CS, Los Alamitos, CA, USA, 1998.

[13] Lonchamp, J., Collaboration Flow Management:

a New Paradigm for Virtual Team Support,

DEXA 2002, Aix-en-Provence, 2002.

[14] Maidantchick , C., and da Rocha, A.R.C.,

Managing a worldwide software process.

Proceedings International Workshop on Global

Software Development, ICSE 2002, Orlando,

Florida, USA, 2002.

[15] Mays, R.G., Jones, C.L., Holloway, G.J., and

Studinski, D.P., Experiences with Defect

Prevention, IBM Systems Journal, vol.29, no. 1,

1990, pp. 4-32.

[16] McMahon, P.E., Distributed Development:

Insights, Challenges, and Solutions, Crosstalk,

November 2001, pp. 4-9.

[17] Moll, J.H. van, Jacobs, J.C., Kusters, R.J., and

Trienekens, J.J.M., Defect Detection Oriented

Lifecycle Modeling in Complex Product

Development, Information and Software

Technology, vol.46, no. 10, 2004, pp. 665-675

[18] Nunamaker, J.F., Dennis, A.R., Valacich, J.S.,

Vogel. D.R., George, J.F., Group Support

Systems Research: Experience from the Lab and

Field, In: L.M. Jessup and J.S. Valacich (Eds),

Group Support Systems, New York, MacMillan

Publishing Company, 1993.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

8

Appendix 1: Identification of causes for defect injection

Project* Injection at Communication Process Organization Technology

X Customer Requirements

Specification

X System Technical

Requirements

Change control

authority over-

concentrated in one

project. Impact analysis

of changes on other

projects difficult.

X System Architectural

Design

No involvement of

stakeholders of related

projects when creating

design

No general agreement

on error handling made

Y Technical Requirements

Specification

People have different

interpretation of

implicit requirements

Unjust trust in expertise

of other project’s staff

(e.g. have the experts do

the work, despite

missing specs and trust

on their expertise)

Expert sheltering (don’t

tell us how to do it, we

are the experts)

Lack of trust in other

projects, resulting in

information hiding

implicit assumptions

not communicated to

other projects

changes in requirements

not communicated to

related projects

unclear responsibilities

between projects for the

implementation of

requirements

Bad traceability of

requirements over

projects

Interaction between

product parts not clear

(different assumptions

made)

Organizational structure

delays communication

of changes in

requirements to related

projects

No change control

authority installed

No support for

reviewing in distributed

projects

Y High-level Design Higher-level (system)

design decisions not

communicated to

related projects

Higher-level (system)

design decisions not

clear

Interaction between

product parts not clear

(different assumptions

made)

Y Implementation Improper base-lining

over projects

Usage of different

implementation

standards by other

projects

Conventions used by

other projects are

unclear (e.g. error code

ranges)

Incorrect interpretation

of test code by other

projects

No instant access to

other projects

implementation

information (e.g. code,

documentation)

X Integration Test Additional defects as

side-effects of

workarounds needed to

bypass integration

problems

Additional defects as

side-effects of hasty

fixes by integration

team because actual

Additional defects as

side-effects of duplicate

solving of problems by

multiple projects

(unclear responsibilities

for problem solving)

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

9

problem solvers from

projects are not

available at time and

location of integration

- Operational

Documentation

(e.g. service manual,

operating manual,

installation manual, user

manual)

No contact possible

between development

and operations: difficult

to compile user

documentation.

Incorrect reuse of parts

of existing

documentation.

Input from other

projects (e.g.

development

documentation) is

unclear

Coverage of user

documentation for the

end product is poor, due

to each project defining

its documentation in

isolation

Responsibility for

integral user

documentation not

defined

Insufficient knowledge

(domain, product) to

create documentation

No environment

available assisting in

compiling user

documentation.

* Refers to the generic lifecycle given in Figure 2.

Appendix 2: Identification of causes for non-detection or late-detection of defects

Project* Non-detection at Communication Process Organization Technology

X Customer Requirements

Specification

X System Technical

Requirements

X System Architectural

Design

Y Technical

Requirements

Specification

Overall review strategy

not established

No stakeholder

involvement of related

projects in review of

specifications

Reviewers not trained in

reviewing of document

hierarchies

Y Unit Test Stubs and drivers to

simulate other units

based on incorrect

assumptions

Y System Test Incorrect assumption

that certain aspects will

be tested by other

project

Relevant stakeholders

of other projects not

involved in reviewing

of test specifications

X Integration Test Unreported problems by

other projects prevent

adequate integration

testing. (delay->forced

skipping of tests)

Deliberate deviations

from agreed integration

approach not

communicated to other

projects.

Hidden test features in

objects not

communicated by other

projects. Features not

used.

Problem solvers not

present at time and

location of integration.

Incorrect assumptions

regarding integration

plan (delay->forced

skipping of tests)

Integration approach

not defined resulting in

delay or order of

delivery conflicts.

Forced skipping of tests

Objects to be integrated

not available at planned

time. (delay->forced

skipping of tests)

Stakeholders of other

projects not involved in

reviewing of test

specifications

Responsibility for

integration testing not

explicitly defined.

Previously informal

resolution of problems

in objects to be

integrated (direct

contact between

developers in different

projects)

Unclear who is

responsible for solving

problem encountered.

Duplicate solving by

various projects-

>additional defects

(delay->forced skipping

of tests)

Concealed shutting

down of functionality

by other projects’

objects, unknown to

integration tester.

Undocumented

(incomplete) self tests

by other projects’

objects.

Concealed simulators in

objects delivered by

other projects,

generating output data

incorrectly assumed to

be all right.

Behavior of simulators

created by others

projects unknown or

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

10

Causes delays-

>skipping tests.

Solving undocumented

last-minute changes in

test objects interface

(delay->forced skipping

of tests)

Overemphasis of

testing. Testing only

those objects

experienced as

problematic by the

integrator at the cost of

other objects.

Too much focus on

‘positive testing’ after

severe integration

problems. Negative

scenarios not executed.

No coupling of earlier

review results to

integration test strategy

(inadequate testing)

Change control

authority over-

concentrated in one

project. Impact analysis

of changes on other

projects difficult.

misinterpreted.

No general agreement

by all projects on design

for testability

No infrastructure

present for integration

Integration platform not

defined/unclear (delay-

>forced skipping of

tests)

Test software not

available or unclear.

Other integration

platform used.

X System Test Unjust trust in detection

effectiveness of other

project’s staff

Difficulties in

understanding test

results produced when

testing objects created

in other projects

Not-repaired defects not

communicated by other

projects. Test results

and test object behavior

unjustly assumed to be

correct.

Blind spots in test

coverage. No agreement

on test approach is

made with other

projects.

Stakeholders of other

projects not involved in

reviewing of test

specifications.

Missing cross-

verification of solved

defects by other projects

Inadequate/no

regression testing by

other projects while no

regression test done

here.

Unjustified reuse of

other projects’ test

specifications. Specs

inadequate.

Residual test code

incorrectly assumed as

real code by other

projects.

Responsibility for final

system testing not

explicitly defined.

Testers not having a

product focus. Difficult

to create adequate test

specifications for

system parts they are

unfamiliar with.

Automated tests not

clear/undocumented

Test automation tool

used in other projects

not available

No adequate test

environment available

for objects produced by

other projects (e.g. too

expensive)

Differences in test

environments between

projects (e.g. in

environmental

conditions like

humidity, temparature)

Test conditions of other

projects unclear. No

regression testing

possible.

No possibility to

remotely monitor tests

done in other projects

Test input data used by

other projects is

unclear/unavailable.

X Acceptance Test Local differences in

usage of product.

Functionality by

infrequent scenarios not

covered.

Wrong stakeholders

involved in execution of

acceptance test

* Refers to the generic lifecycle given in Figure 2.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

