N
N

N

HAL

open science

Characterizing the behavior of sparse algorithms on
caches

Olivier Temam, William Jalby

» To cite this version:

Olivier Temam, William Jalby. Characterizing the behavior of sparse algorithms on caches. [Research
Report] RR-1666, INRIA. 1992. inria-00074891

HAL 1d: inria-00074891
https://inria.hal.science/inria-00074891
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074891
https://hal.archives-ouvertes.fr

RN

UNITE DE RECHERCHE
INRIA-RENNES

Institut National
de Recherche
en Informatique
et en Automatique

« Domaine deVoluceau
Rocquencourt
BP105
/8153 Le Chesnay Cedex
France

Tel:(1)39635511

| Rapports de Recherche

1992
Bt t AnRRIversalie
N° 1666

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systémes distribués

CHARACTERIZING THE BEHAVIOR
OF SPARSE ALGORITHMS
ON CACHES

Olivier TEMAM
William JALBY

Avril 1992

AN

K RY
>

L

o«

~,

-y

IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE

ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX FRANCE
Teél. : 99 84 71 00 - Telex : UNIRISA 950 473 F
Telecopie | 99 38 38 32

Characterizing the Behavior of Sparse Algorithims on Caches
Olivier Temam, William Jalby~
April 6, 1992

Publication Interne n°® 652 - Avril 1992 - 20 pages - Programme |

Abstract Wahile there are many studics on the locality of dense codes, few deal with the locality of sparse codes.
Because of indirect addressing, sparse codes exhibit irregular patterns of refercunces. In this paper, the behavior on cache
of onc of the most frequent primitives SpMxV Sparse Matriz-Vector multiply is analyzed. A model of its references as
built, and then performance bottlenecks of SpMxV are analyzed using model and simulations. Main parametors are
identificd and their role is explained and quantificd. Then, this analysis is nsed to discuss optimizations of SpMx\,

Morcover a blocking technique which takes into account the specifics of sparse codes is proposed.

Caractérisation du Comportement des Algorithmes Creux sur les
Mcmoires Caclies

Résumé Contraircment aux codes denses, peu détudes traitent de la localité des codes crenx. En raison de
I’adressage indirect, les codes creux exhibent des références irrégulicres. Dans cet article, le comportement sur le cache
de Pune des primitives creuses les plus {réquentes SpMxV Matrice- Vecteur Creuz est analysé. Un modéle des références
cngendrées par cette primitive ost construit, et les factenrs limitatifs des performances de SpMxV osont analysés a aide
du modele ct de simulations. Les principaux parametres sont identifics et lenr role est expliqué et quantific. Puis cette
analyse est utilisée pour discuter des optimisations de SpMxV. De plus, une méthode de blocking prenant en compte les
spécificités des codes creux est proposdée.

Keywords: sparse primitives, cache, performance prediction, data locality.

“IRISA/INRIA, Campus de Beaulicu, 35012 Remnes CEDIEX,

France

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (U R.A 227) UNIVERSITE DFE RENNES| INSA DFf RENNES
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE { UNITE DE RECHERCHE DE RENNES)

1 Introduction

Due to the increasing difference between memory speed and
processor speed, it becomes critical to minimize commu-
nications between memory and processor, by addition of
caches on the data path. However, a consequence of this
worsening difference is that the cost of a cache miss, in
terms of processor clock cycles, is becoming quite large,
making it critical to improve the hit ratio [17].

Numierical codes are now some of the most demanding
programis i terms of exccution time and memory usage.
The existing litterature related to the study of numerical
codes behavior on cache memories focuses on regular do-
loops, i.c with linear references to arrays (16], [5]. There
1s an important set of numerical codes, “sparse codes”,
which do not belong to this category. Sparse numerical
codes like classic numerical codes are made of a collection
of simple numerical primitives. We chose to study Sparse
Matriz- Vector multiply (SpMxV) because it is among the
most frequently used ones along with gaussian elimination
[7]. and still it is simple enough to allow a sharp analysis
of its workings (cf. figure 5); morcover, a number of sparse
primitives exhibit rather similar patterns of references (i.e
a few arrays addressed regularly and indirect addressing
to another array). Because of indirect addressing, sparse
codes have the particularity of breeding irregular patterns
of references lo memory and lo cache, and consequently,
the behavior of caches under numerical workloads is seem-
ingly non-predictible and hard to analyze. Because of this
apparently random behavior, caches, which principles rely
on locality of programs, are generally said to be inefficient
with sparse codes [25]. '

However, in this paper, we show that this assumption is
true ouly for a restricted domain of main problem parame-
ters (cache size, line size, matrix bandwidth and number of
non-zero elements). Even then, in some cases, it is possible
and worthwhile to exploit unused locality through software
techniques. Though classic blocking methods hardly allow
the utilization of this locality (cf. section 5.2.1), it is possi-
ble to exploit it through blocking techniques that take into
account the specifics of sparse matrices.

In section 2 of this paper, spatial and temporal locality
of SpMxV is qualitatively evaluated and potential prob-
fems are identified. Then, in section 3, a meaningful share
of the paper 1s devoted to modeling the non-regular ref-
crences which appear in SpMxV, because an unavoidable
preliminary to evaluating and optimizing a primitive is a
good understanding of its behavior. Besides, the purpose
of this scction is to show that it is possible to predict the
behavior and performance of sparse codes, and to actually
quaniify their impact on caches. In section 4, using the
model and simulations, the behavior of SpMxV is charac-
terized according to the values of the parameters. Finally,
m section 5, software and hardware optimizations are dis-
cussed, and a blocking technique based on the observations
of the previous section is presented.

2 A qualitative study of locality
within SpMxV

Position of the problem 'Tle purpose of the paper is to
analyze SpMxV on caches. Storage-by-row has been chosen
because it 1s among the most connmonly used storage tech-
niques (sec page 3 for more details). Otherwise, for sake
of simplicity the cache is assumed to be dircct-mapped. It
can be seen 1 section 4.4 that this hypothesis is not very
restrictive since sct-associative and direct-mapped caches
exhibit relatively similar behaviors with SpMxV, and tha
the model built can be extended to set-associative caches
(cf. section A).

2.1 Data locality

A first step to understanding the behavior of SpMxV on
cache is to study the locality of the data used by this primi-
tive. Since there are N,,, references to arrays X, [udcae and
Matriz, and 2N references to arrays ¥ and 1), the total
number of references is 3+ N, + 4+ N (cf. figure 5).

e Arrays Y and D have very similar behaviors in the
sense that they both exhibit flawless spatial and tomn-
poral locality. Most probably D{/) and D{/4-1) will be
stored in registers and therefore should not provoke a
reference to memory on each iteration of loop J. So ar-
rays Y and D) (of size N) are mostly responsible for -
trinsic misses, and therefore account for a stnall share
of total cache misses (since, in general N & N,).

o Arrays Matriz and Index have no temporal locality
and again exhibit flawless spatial locality. These 1wo
arrays account for 2N, references, that is, a major
part of total references. Since no element is reused,
cache misses due to these arrays are only wmirimsi
misses. Because of their size, they may also provoke
important cross-inlerferences with other arrayvs (i,
flush other arrays from cache).

e Because of the indirect addressing through array
Indez, array X exhibits a complex behavior. If a uni-
form distribution of non-zero elements on a row within
the band (of size Wy) is assumed, then the average
distance between two columns with non-zero elements
1s ‘;Vf Therefore, in most cases there is some spa-
tial locality if T”:‘l is of the order of Lg. Actually,
in usual finite-element matrices, the non-zero elements
are sometimes grouped along specific diagonals, within
the band (cf. [8] and figure 6). In that case, the spatial
locality may not be negligeable even if ,"—‘f > L.

Array X is the only array which presents an uncx-
ploited temporal locality, and therefore from which sig-
nificant gains can be expected; however the temporal
locality of X is non-trivial and thercfore hard to ana-
lyze and exploit. That is why our cfforts will mainly
focus on analyzing the behavior of array X'. Due to the
properties of sparse matrices (especially finite-elemeni
ones), if there is approximately n,, non-zero elements
per row, there is also about n,,, non-zero elements per
column. A first consequence of that observation is that

-t

L 2]

i\

“ .

T N . Matrix dimension
T N : Total number of non-zero clements
Npz = ﬁﬁ‘ : Average number of non-zero clements per row
Wy : Matrix bandwidth

Figure 1: Banded sparsc matriz; malriz paramcleors.

B L L
z

{
$ N Cs : Cache size
! Ls + Line size
Iinmninnn Figure 2. Direct-mapped cache;
DI . cache paramclers, lypes of
Ls Duect-mapped cahe misses.

Remark: All cache dimensions are divided by the size of a single-precision floating-point clement (4 bytes), so that a size
S actually corresponds to S x 4 bytes.

Cross-interference misses (or conflict misses) : an array element flushed by an element of another array.
Self-interference misses (or capacity misses) : an array element flushed by an element of the same array.
Iutrinsic misses (or compulsory misses) . an array element loaded for the first time.

A Matrix Index D

. N\ r N [\ 7
0 N

1 IS\ 3“ 1]
\} |

13 3 3
\s |

2 1 4

0 2 0 s "2 2 5

b1l
\ \f/&) ./

Figure 3: Ezample of storage-by-row for a 3x3 sparse

malriz
DO I=1,N
DO I=1,N REG = Y(I)
DO J=1,N DO J=D(I),D(I+1)-1
Y(I) = Y(D)+A(LIY*X(T) REG = REG + Matrix(J)* X(Index(.J))
ENDDO ENDDO
ENDDO Y(I) = REG
ENDDO

Figure 4: Original loop nest; storage by row.

Figure 5: Problem parameclers

Figure 6: Ezample of distribution of non-zero elements
wilthin finite-clement matrices (matriz 1138 BUS of the
Harwell-Boeing suile).

cach element of X may theoretically be reused ny,
times at best. Secondly, the average distance (in terms
of iterations of loop I) between two reuses is approx-
imately —ﬁ. Meanwhile, about "—‘1 x 3n,, elements
(from drrays X, Matriz and Inde:r) are loaded into
cache and may flush the elements to be reused.

The conclusion of the previous observations on X is
that whether temporal locality and spatial locality of
X are significant and can be exploited highly depends
on Wy, Cs, Ls and ng,.

3 Modeling:
quantifying

understanding and

From previous section, it appears that the main source of
cache misses are misses of Matriz and Index which can
e evaluated casily becausc they are intrinsic misses, and
misses of X which are hard to estimate because addressing
to array X is indirect and irregular. The misses of X are
mainly cross-interference or self-inlerference misses. First
of all, the simulations done (cf. section 4) show that the
role of cross-interference and self-interference phenomenons
on X is very similar. Second, both of the two kinds of
misses can be modeled using techniques presented there-
after. Third, the purpose of our model is to provide a
good understanding of the interactions between parame-
ters rather than an accurate formula of the total number
of cache misses. Therefore, for sake of simplicity, only
self-interference misses are precisely modeled and quanti-
fied (cf section 3.1), while only a gross estimate is given for
cross-interference misses (cf. section 3.2.2).

3.1 Modeling self-interferences of array X

References to array X are highly irregular and consequently
cannot be investigated through classic deterministic meth-
ods. Therclore, probabilistic modeling is being used. The

main problem secms to choose a distribution which matches
that of non-zero clements on a row within the band. Though
it is for the least possible to find an approximate dis-
tribution for finile-element matrices, this yields formulas
which are too complex to handle (cf. section A). Therelore,
though most computations are conducted for any distribu-
tion p(i, j) (probability that element (i, j) of A is non-zero),
uniform distribulion (p(1,7) = p) is employed for final cal-
culi. The object of section 3.1 is to build the model of
references to array X and compute the number of cache
misses. This part needs not be read thoroughly by anyone
not interested by maodel elaboration, though it provides an
insight on the hchavior of SpMxV.

3.1.1 Reducing problem P to problem

Let us consider original mmatrix A. All non-zero elements of
A located on column j of this matrix breed a reference to
element j of X. Now, let us consider the ¢** cache location.
All elements j of X such that jmod Cs € [¢, ¢+ Ly — 1] are
mapped to the same cache line ¢. Therefore, all columns §
of A such that j mod Cg € [c,c + Lg — 1] breed refercnces
to elements of X which are mapped to the same cache line,

Therefore, it is possible to divide the problem into —f sCLs
of elernents of X, all elements within a set being mdppod Lo
the same cache line. Similarly, A is divided into % sels of
columns, all breeding references to elements of X mapped
to the same cache line (cf. figure 7). Since, the cache is
direct-mapped, none of these sets interact with cach other.

So, if the original problem can be formalized as follows

Problem P: Compute an approzimation of N3 =
Nem(P), the number of sclf-interference misses of array N
in the sparse matriz-veclor mulliplicalion. The dimension
of X is equal lo N. A 1s an N x N malriz, and the cache
is direct-mapped and of size Cs.

Then P, is now equivalent to Cs subproblemns
P{1 € 1 < %’c) Through shmulations, it is possible
to check that, for distributions occuring in finite-clement
matrices (non-zero elements are grouped along three diag-
onals) and even more for uniform distributions, it is a very
fair approximation to assume that all subproblems /2 are
equivalent.

Problem P': Compule an approzimalion of Nem (P,
the number of self-interference misses of (mm/ \" The di-
mension of X' is equal to N' (where N' = L J X Lg or

I-C |+1)xLs) Aisan N x N muhn and the

ca(‘h(’ is direct- mapped and of size g.

Then, the number of cache misses of P is approximately
. [.Y
equal to the number of cache misses of 17 tines Cg:

Nom(P) =~ % X Non ()

3.1.2 Reducing problem P' to problem "

As it has been specified above, prob)em P'is composod of
a cache of size Lg, an array X' ,and a N x N matrix A

<!

o .

A

ks

)

LT

-) o

Figure 8: Decomposition of subproblem P

Now, A" can be decomposed into sections of Cs rows, which
would all have the samne shape as shown on figure 8. Since,
in general, Cs < N, thcrc is a great number of such sections
in A (approx:rnalely o). Through experiments, it can be
observed that the number of cache misses corresponding
to the execution of each section becomes rapidly stable.
Therefore, it is possible to restrict the study to only one
section S of A’ Then, the number of cache misses due to
A’ is approximately equal to that of one section times -C—

Let us do an ultimate simplification. The number of
columns in the sections described above is not constant,
hecause of the banded shape of the matrix. In order to ease
the computations even more, a section S can be divided
into two parts Alll and A/;:, cach with a constant number of
columns (cf. figure 9). The characteristics of each subsec-
tion are the following ones:

I

| Q-
Al; S - l-cs
n, Cs - VV[; mod CS
2
c

A// n I_%f‘_] + 1
2 n;z = Wpg mod Cg

Problem P” can now be defined as follows:

Problem P”: Compute an approzimation of NC,,,(IJ 9,
the number of self-interference misses of array X The
dimension of X" is equal to N (where N” = ng). A s
an 1y X n, matrir, and the cache is direct-mapped and of
s1ze Lg.

Ay =

Figure 9. Decomposilion of subproblem I?

3.1.3 Estimating the nuinber of cache misses

Let us now formaliﬂ’ the notion of “cache miss” within the
scope of problem P During e Xee ulion of SpMx V. clemnents
of a subscctlon A" of problem P are referenced row-wise.
Let us call 7%, (i,) the probability that clement k of N
be out of cache right before element (7, 7) of the sibscation
is referenced. lmt us also call p(Z,7) the probability that
element (i, j) of A" bea non-zero element. Now, the
ability that olemcm jof X" is not in cache, right hefore of-
ement (2,7) of Als being considered, is equal to @, (. 4).
Therefore, the probability for a cache miss 1o occur at thit
moment. is equal to p(z, 7} x 7,,(, 7).

Then, the nuinber of cache misses due 1o A is given by
the following expression:

prob-

nc

ZZW.,M i) X pli.J)

izl j=I

Ncm([)

And, the total number of cache nnsses s equal 1o (cf.
tion A for more details):

-

Nem(P) :%;/\ AP
:(T- X FoNon(PYUPY)
21_ X(/\,,,,(/)) '/\'cm(l)'_:))

An explicit and simple expression of /Vrm(l)) can be de-
rived easily only if p(4,7) is constant, 1.c 1f distribution s
uniform. Nevertheless, since the goal is to get a hint at
the interactions between parameters rather than a precise
approximation of the number of cache misses, it 1s a good
tradeoff to assume that distribution s uniform (cf.
tion 3.3 for more details).

So, if distribution is uniform, then p(, j) = p and p can
1—(1 -
Nw,, Haa)Ls (cf. section 3.3 for more details). For this distri-
bution of probabxllty, the total number of self-interference
misses on X Is given by expression of figure 10.

R

be given as a function of problem paramecters p =

3.2 Number of cache misses for each type
of misses

3.2.1

w
<2 >

Self-interferences of array \

I: Since N,,, €« N x Wy when Wy is sufliciently
large, it can be assumed that p <€ 1 and that p =~

1=(1—p)"e

1-(t—p)"c

1] 1 1 (I— !
N ~ —%X (—L" X [u,’(l ~(=p))y 4 p(l = p)re! =0=p) ° ¢]

n

1
1~(1=p)"e
nznf
1—(1-p)n&

Figure 10: Expression of the lotal number of self-interference misses on array X

‘TNW; X Lg. Therefore, a first order development of
expression in figure 10 gives (cf. section A for more

details)
N2 xCs
Neelf o N, . — nz S]
em : 2)(/VXL5‘XW[; ()

W .

T2 < 1: In that case, there are no self-interferences of ar-
ray X because all active elements of X fit in the caclie,

therefore

Nsclj =0

cm

3.2.2 Cross-interferences with array X

A second class of misses breeded by array X are the cross-
interference misses between arrays Malriz, Index and ar-
ray .

Let us first consider the case where Wy > Cs (which is
the assumption made up to now). Because of their flawless
spatial locality, the elements of Matriz and Index can be
seen as two trains of references being translated along the
cache. Each time one of these sets of references reaches
a cache location, it flushes it. Therefore, considering that
there are ﬁl{,‘* non-zero clements per row, 2%‘,‘ elements of
Matriz and Index are loaded for cach iteration of /, and
consequently, each cache location is flushed %ﬂﬁ times per
iteration of 1.

Therefore, the probability that Matriz or Index flush a
given cache line for onc iteration of 1 is peross = M“C:‘g’i

Consequently, since there are N, references to array X,
the number of cross-interference misses on X account for

nz

Cs

2N2 x Lg
— e (2)

Né:rossrn = Pcross X an =
It must be noted that, when Lg is sufficiently large, the
effect of self and cross-interference misses do not cumulate
but become redundant.
The effect of cross-interference misses on other arrays is
generally negligeable.

3.2.3 Intrinsic misses

There are N references to D, Y and X, and N,,, references
to Matriz and Index. Therefore, the total number of in-
trinsic misses is given by:

3N 4+ 2N,.
Ls

int _
Ncm -

(3)

Since in general N,, > N, arrays Matriz and Index
12 ¥
represent the main source of intrinsic misses.

3.3 Model accuracy and validity

In order to understand the soundness and precision of the
model, let us first analyze the approximations inade, and
then describe some experimental results obtained through
simulation.

3.3.1 Discussing approximations

During the elaboration of the model, a number of approxi-
mations have been performed:

e The width of the band is considered to he cqual to
Wpg on any row of the matrix, which is not true for
1 < %‘1 andi > N - LV_211 However, a good tradeoll for
overcoming this problem is to consider that the actual
number of rows is N — %“ instead of A

e The number of non-zero clements on a row is assumed
to be constant. This is not an important approxia-
tion since this fact is relatively true for a great range
of applications, especially for finite-clement matrices.

e The number of cache misses is considered to be the
. . N ’ ey - . .

same in all sections S of A . This approximation

does not affect much the model either. All experi-

ments done proved the good regularity of the number of

cache misses across the different sections. "I'le larger
the matrix, the better is the approximation, because
this number becomes stable after a few sections only.
Most problems have very large dimensions which make
this start-up effect negligeable.

e The main approximation probably lays in the distri-
bution. Clearly, it appeared that uniform distribution
does not always fit very precisely. This is especially
true when cache line Lg is equal to 2 (16 bytes), he-
cause of the particular spatial locality of finife-element
matrices (cf. figure 16). However, for most cases i
provides a very good hint at the influence of cach pa-
rameter. Besides, it is not too easy to understand
the distributions of non-zero clements in real sparse
matrices, and little litterature could be found on that
subject. Therefore, approximate distributions had to
be designed for some matrices, such as finite-clement
ones, and hopefully, these distributions proved to give a
good description of real finite-element matrices. llow-
ever these more complex distributions do not allow the
computation of an analytical expression of the number
of self-interference misses (p(4, j) is not constant). Part
of the formula obtained would have to be computed nu-
merically (cf. section A).

1y

-

o«

A

-)o

3.3.2 Experimental testing of the model

In order to check the precison of the estimate, a cache sim-
ulator has been used.

0.9 T ¥ T T T
Real -+—
0.8 r Estimated -+—-]
0.7} E
° 0.6 I 1
2
‘r.i. 0.5 } 1
1Y3
“ 0.4 | :
5!
0.3t 4
0.2 F 1
0.1 1
0 . N . "
8 9 10 11 12 13 14

Cs in power of 2

Figure 11: Varying Cs: estimated and real number of cache

misses
0.68 y . , . .
Real -¢--
0.66 r Estimated -+ 1
0.64 4
0
- 0.62 } |
J
3
- C.6]
0N
0
g 0.58 e giesieeeeennn
0.56 F J
8.54 f |
0.52 L 1 L L A
0 1 2 3 4 5 6

Ls in power of 2

Figure 12: Varying Ly estimated and real number of cache
misses

Randomly generated matrices In addition to this sim-
ulator, a subroutine for generating sparse matrices with var-
ious distributions has been written. All parameters of cache
and matrix can be varied in any domain. In order to get
incaningful results, the number of cache misses presented is
a mean value obtained through several experiments (~ 100)
on different sparse matrices with identical characteristics
(cf. figures 11, 12).

The parameters of the matrices used for the two graphs
of this section are the following ones

N:in, |Wg | Cs Ls | Da
10° 1 10° [5001 [2048 | 2 | 1(or LRU)

Real matrices A set of real matrices has also been used,
namely the Harwell-Bocing [8] suite in order to validate
the applicability of our model. [t is Lhis set of experi-
ments which showed it was necessary to take into account
more complex distributions than uniform ones. especially
for small line sizes (cf. figure 16). ‘Though some applica-
tions still present matrices with close to untforim distribu-
tions, especially after using renumbering technigues such as

minimum degree algorithm (cf. fignre 22).

4 Highlighting the role of the
problem parameters

Of course, all problemn parameters have an impact on Sp-
MxV. However, through model analysis and experiments,
three coefficients (Ls, w = V—(VJ:, d = ﬁ,“:) proved to bave
a major impact on the hit ratio, and are sullicient to char-
acterize most phenomenons. Ly is a critical paramcter,
mainly because of its influence on intrinsie niisses, hut also
on cross-inlerference misscs. Parameter w = ‘(—V“ called
degree of interference, it indicates how many clements of
X conflict for the same cache line (cf. section 3.1.2), and
therefore it reflects quite well the degree of self-interferences
occuring on X. Finally, parameter d = %,“f;, called densily,
corresponds to the average distance between two non-zero
clements on a row and on a column of original matrix .}
(cf. section 2). In other terms, it is a measure of the de-
gree of temporal and spatial locality of non-zero clements
of matrix A, and consequently, of the references to array .\

Basing our analysis on the model obtained in section 3
and simulations, the role and importance of the above pa-
rameters is discussed in the following subsections. A simall
subsection is also devoted to discussing the difference he-
tween direct-mapped and set-associative caches. For sake
of simplicity, the experiments used to make the graphs of
this section are mainly based on uniformly distributed -
trices, but account quite well for phenomenons occuring in
real sparse matrices.

4.1 Line size Lg

Influence of Ls on the intrinsic misses of Matriz and
Inder The expression of the number of intrinsic misses
(3) shows that this number decreases hyperholically with
Lg (cf. figure 13). Therefore, a small increase of Lg brings
important reductions of the number of intrinsic imisses,

Influence of Ls on self and cross-interference misses
Let us assume that %f > 1. In the case where non-zero
elements are uniformly distributed across the sparse matrix.
the approximate number of self-interference misses is given
by (1). This expression is a function of Lg

N = o -

cm

45

Therefore, N2/ grows with Lg, though this increase is

more or less moderate depending on 8. Otherwise, N2t =

2N2 xL . .
o 2 therefore the number of cross-interference misses

grows linearly with Lg. Conscquently, an increase ou L

)
0.9 R e 4
0.8} ‘]
0.7}
o]
J 0_6 -
]
H 0.5} R
3
pa 0.4 Matrix & Index -e-]
0.3 TOTAL —*— \
0.2 S, 4
0.1 1
O 1 5 1 A1 1
0 1 2 3 4 5 6

Ls in power of 2 (Wb/Cs=4)

Figure 13: Influence of Ls on the tolal hit ratio and the hit
ratio of each array.

corresponds to an increasec on both the number of self-
interference and cross-interference misses (cf. figure 14).

100 v v T v T

90 intrinsic —— Pt 1
cross & self -+

cf misses

%

0 n N N " A
0 1 2 3 4 5 6
Ls in power of 2 (Wb/Cs=4)

Figure 14: % of intrinsic misses and self + cross-interference
misses for different values of Ls.

The consequence of the previous observations is that the
hit ratio of all arrays but X increases very quickly (hyper-
bolically) with Ls. On the other hand, because of cross and
sclf-interference misses, the hit ratio of X increases much
more moderately (or sometimes even decreases) when Lg
Erows.

Therefore, for small values of Ls the main cause of cache
misses are arrays Matriz and Indez, while for high values
of Ls, X accounts for the major part of cache misses (cf.
figure 15).

Consequently, devoting important efforts to benefit from
the temporal locality of X should be considered only when
Ls is such that X becomes a major cause of cache misses,
otherwisc little improvements of total hit ratio can be ex-
pected (cf. figure 15).

30 T T s v T

° i

X
80 F Y
Matrix + index

70

60

50

40

s of misses

20 F 4

of o o T

Ls in power of 2 (Wbh/Cs 4)

Figure 15: % of misses of each array for different valucs of

Ls.

1 . ; .
0.9} Real —— 1
Uniform -=+—-
0.8
> 0.7
“
° 0.6
o]
o 0.5
<
M 0.4
hot
pa 0.3} 1
0.2 } i
0.1t 1

0 1 2 3 - 1
Ls in power of 2 (Wb/Cs=4)

Figure 16: Influence of the distribulion of non-zero elemanls
on the spalial locality of references lo X

Proper values of Ls for finite-element sparse matri-
ces Due to the properties of mesh structures (where each
node has a relatively constant number of ncighbors) and
the use of renumbering algorithms to minimize bandwidth,
finite-element sparse matrices exhibit a non-uniform distri-
bution of non-zero elements. They are grouped by packs of
2,3 or 4 elements depending on the mesh type. This spatial
locality of non-zero elements induces a spatial locahty of
references to array X. Therefore, Ls = 2 or 4 is sufficient
to make use of this locality, while little improvement can be
expected for higher values of Lg.

As it can be seen on figure 16, the reduction of cache
misses between Ls = 1 and Lsg = 2 is impressive, while it
steps down after Ls = 4. This phenomenon is characteris-
tic of finite-element matrices. It can be noted on figure 16
that an increase of Lg breeds progressive instead of drastic
improvements on the hit ratio of X, when the non-zero ¢l-
ements are uniformly distributed within the sparse matrix.
The shape itself of finite-element sparse matrices (cf. fig-

[

et

.

-\

”»

-’y

ure 6) suggests a greater spatial and temporal locality than
of uniformly distributed matrices. Ilowever, both uniform
and finite-element distributions tend to behave simnilarly for
large enough cache line sizes, i.e when the locality effect of
finite-element sparse matrices does not show anymore.

4.2 Degree of interference w = ‘(—Vfi

o 0.7

Y 9.6t

s

[
—

2 3 4 5
Wb/Cs (Ls=4)

Figure 17: Influence of 7 —‘1 on the tolal hit ratio and the
hut vatio of cach array.

Sclf-interference misses The effect of Wg and Cs can-
not be dissociated. lI'or Wy < Cgs, the number of self-
interference misses due to X is equal to zero. This appears
clearly when considering simplified problem P”: the num-
ber of colunims of A”, i.¢ the number of interfcring> columns,
is equal to L——aj or L—ﬂJ + 1, that is, 0 or 1. There-
fore, once an element is loaded into a cache line, it cannot,
be flushed by another element. So, for Wp < Cs, the
number of cache misses due to X s optimum. Now, for
Wy > Cg, model expression (1) shows that the number
of self-interference misses increases hyperbolically with w

¥
- —
w

\/xel] _

cm

Now, if the previous cxpression is considered as a function of
w, and is differentiated it, then it appears that the increase
of N2fl/ becomes small (i.c less than 10 %) whenever w >
V10a.

30, three cases can occur. First w < 1, the number of
self-interference misses is negligeable and it is not useful
to reduce Wpg. Second w =~ 1, in this interval the num-
ber of self-interference misses increases hyperbolically with
w, and therefore very significant improvements can be ob-
tained through slight bandwidth reduction. Third w > 1,
and the number of sclf-interference misses is close to maxi-
mum (nearly no element of X is reused), and only a drastic
bandwidth reduction may bring improvements.

Cross-interference misses When w > 1 is sufficiently
large, hecause of self-interferences only, there is little reuse

on X. Therefore, the effect of Matriz and Index, i.c cross-
interferences, can only be redundant with that of X.

When w < 1, there are no self-interference misses. I that
case, alive (i.e currently used) elements of X are located in
an area of size Wy within cache. Now, as mentioned n
section 3.2.2 Matriz and Index can be considered as two
“trains” of references moving across the cache. Therefore,
the larger W, the higher the probability that these “trains”
meet the area of alive clements of X', i.e the higher the prob-
ability of cross-interferences. Still, these cross-interference
misses account for a relatively small share of total misses,
unless Lg is large, i.e there are few miriusie messes (cf. fig-
ure 18).

90 T T T T T T T T T _‘I
3 AR
@ 80 fq v e
) - - |
E/: 70F & [r X | :
}
o 1
2 |
c
o]
o |
“ -
o i
o
: 1
hal .
vy
o)
.4
|

Figure 18: % of interference munsses for difJerent calucs of

Wy
Cs

Current values of _VCZ? Let us now try to see what are

the values of currently found.

The size of numencdl problems tends to grow, and cou-
sequently Wy grows accordingly. When bandwedth reduc-
tion rcnumbermg algonthms are employed, Wy ~ VN or
Wg ~ N3 or W ~ ;—6 according to the problem 1ype.,
while Wy ~ N when munmum-degree renummbering algo-
rithms are used {7]. Large current probleny sizes range fron
N =105 to N =10°, therefore Wy generally varies between
Wp =300 and Wp =10° [7].

For single-cache machines, Cyg clearly tends to grow. (¢
values of more than 256 Kbytes can now be found [17).
So, if cache sizes increase fast enough %’fﬁ will soon be on
the “safe zone” (i.c ‘—Vﬂ & 1; 256 Kbytes cache, N =107,
Wg = N3, %u g 01) On single-cache machines equipped
with current “size caches (i.e, Cs >~ 4192 or 16 NWhytes), a
large third-dimensional problem (i.e, N ~10% 11, ~ \'<
to Wg = N) exhibits a —gﬂ- ratio of 0.5 1o 4.5

The increasing popularity of multi-level caches makes
small (primary) caches more frequent. The size of such
caches is currently of the order of 4 KNbytes [17]. What is
more, N also tends to grow, and minimum degree is a rather
popular algorithm (cf. [11]). So very large ratios & ay

become more frequent (4 Kbytes cache, N =105, Wy = N,
W
=2 =100).
H — nnz
4.3 Density d = W
1 s —r T T T T T
Ll -
o
o
- |
)
[}
151
b)
=
0.88 1 1 1 1 A A '
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
d {Wb/Cs=0.006)
Figure 19: Influence of the densily on the hit ralio
of X for v—g—f < 1.
0.35 T v v T T - T
L . St SRS g - S
0.3 Ls=] —+—1
x L§=2 e
o Ls=4 -o-
© 0.25 } .
[¢)
o
)
’“ #emmmmen bt o mnees R SECEEREE e . eo—aee. e
H 0.2} 1
el
-~
T
0.15} J
¢ s T —]
0.1 A A A . . . L
0 0.0050.010.0150.020.0250.030.0350.04
d (Wb/Cs=2)

Iigure 20: Influence of the density on the hit ratio

W

8

of X for ce > 1.

Let us now consider parameter d = 3% d can be considered

as the “density” of non-zero elements on one row of matrix
A. When d is very high matrix A looks very much like
a banded dense matrix, while the matrix is “very sparse”
when d is relatively small.

Depending on w, the density of non-zero elements induces
two different phenomenons.

H w < 1, the smaller Wp (i.e the larger d) the less cross-
interferences occur (cf. paragraph 4.2). Consequently, it is
possible to benefit from the temporal locality of references
to X (cf. graph Ls =1 of figure 19). For the same reason,
it 1s also possible to benefit from spatial locality. Indeed,
once an element of X is loaded Ls — 1 consecutive elements
of the same array are also loaded. Though they are not im-

10

mediately relcrenced, they are not flushed from cache (as
seen above), and therefore they stay into cache until they
are referenced. That is why array X also benefits from spa-
tial locality in this case, independently of the distribution
of non-zero elements (cf. paragraph 4.1 and figure 19).

Now it can be observed that, for a fixed value of W,
when n,,, is large there exists an wmportant potential reusc
on X. Since it is possible to benefit from temporal locality
when w < 1, the higher n,, (i.c the larger d) the higher
the hit ratio of X (cf. figure 19). Nevertheless, a high value
of n,, slightly worsens cache pollution, though n,, rust
be quite large for this phenomenon to connterbalance the
benefits from spatial and temporal locality (cf. figure 19).

When w > 1, the behavior of X is not correlated to d any-
more because interferences (cross and self) occur so often
that benefiting from temporal and spatial locality beconies
hypothetical (cf. figure 20).

Usual values of d For 2-dimensional finite-eleimnent probh-
lems, the average number of non-zero elements per row
is of the order of 10, while it is of the order of 100 for
3-dimensional problems {7]. So essentially 3-dimensional
problems are worth optimizing. As it has been secn in
paragraph 4.2, Wpg ranges from VN (2-dimiensional) or
N3 (3-dimensional) to N. Typically, the density of a 3.
dimensional problem may range from 0.001 to /.

4.4 Set-associative caches

1 T T T T
(Total) 1-Way —+—
0.9 (Total) 2-Way (LRU) -=--)
0.8 (Total) 4-Way (LRU) -0 |
. (X) 1-Way -x--
0.7 } (X) 2-Way (LKU) -+ 4
° {X) 4-Way (LRU) -»--
0 0.6} 1
I -
N 0.5r1)
b 0.4} T
x \\‘\
0.2 Tl
0.1t)]
0 1 i 1 L -
1 Z 3 4
Wb/Cs (Ls=4)

Figure 21: Performance comparison of set-associative and
direct-mapped caches for different values of w

Though the model presented in section 3 corresponds to
direct-mapped caches, it can be extended to set-associative
caches (cf. section A). Nevertheless, simulations can al-
ready show that associativity brings little improvements on
total hit ratio, and more particularly on the hit ratio of
X. Basically associativity is helpful when interferences oc-
cur. Now, when w < 1, there are very few mterferences,
and when w > 1, interferences are so numerous (at least w
elements of X conflict for the same cache location) that a

-y

-w) .

2-way or 4-way associativity brings little or no improvement,
(cf. figure 21).

4.5 Synthesizing the analysis

[n most applications there is a tradeoff related to Lg. When
Ls is too large, cache pollution becomes important and
threatens further gains. For SpMxV again, the tradeoff
exists. Increasing Lg worsens cross and self-interferences.
What is more it has been noted that only small line sizes
(typically Ls = 2 or 4) are necessary to take into account
the particular locality of finite-element matrices. However,
in SpMxV, intrinsic misses account for the major part of
cache misses, and therefore even very large line sizes do
bring substantial improvements. However, the reduction
is hyperbolic, and therefore there is again a threshold be-
yond which little improvements can be expected (typically
L.s > 16). Anyway, as long as intrinsic misses account for
a large fraction of total misses, i.e as long as Lg is small
(typically, Ls < 2), decreasing the miss ratio of X does not.
bring significant improvements on the total hit ratio.

T'he degree of interference w = %‘3 strongly influences
the hit ratio of X. When w < I, there are no self-
interference misses, and therefore high total hit ratio can
be achieved if Lg is large. If Ls is small (typically L < 4),
the percentage of cross-interference misses is far smaller
than intrinsic misses, though may significantly increase for
large values of Lg. Reducing Wpg also decreases the num-
ber of cross-interferences. When w =~ 1, the number of self-
interferences grows hyperbolically with w, and therefore sig-
uificant gains on the hit ratio of X can be expected through
bandwidth reduction. When w > 1 (typically w > 10), the
number of self and cross interferences are redundant and
close to maximumn, If Ls is large, misses of X account for
the major part of total misses.

When w < 1, the higher the density of non-zero elements
| = 3%, the better the hit ratio of X. When w > 1, it
1s hardfy possible to make use of the locality of X, and
therefore the density does not influence much the hit ratio
of X.

Finally, siinulations tend to show that, in most cases,
associativity brings little improvements on the hit ratio of
X and the total hit ratio.

5 Improving the behavior of Sp-
MxV

In this section, possible software and hardware optimiza-
tions are discussed. Two different approaches for software
optimization of SpMxV are distinguished: an algorithmic
approach which aims at reducing bandwidth using renum-
bering algorithms, and a software approach based on partic-
ular blocking techniques. For hardware optimizations, the
ways to reduce misses corresponding to regular and non-
regular refcrences are considered.

11

5.1 Software optimization: Bandwidlh reduc-

tion

Two main kinds of renumbering algorithins are employed:
bandwidth reduction algorithims which are derivatives of
that of Cuthill and McKee, and the minimum-degree algo-
rithm [11}. According to George [11], reducing bandwidth is
not closely related to minimizing arithmetic operations and
storage. On the other hand, minvnum-degree algorithm is
efficient for finding low-fill orderings. Thercfore, this second
renumbering scheme tends to become popular. However, it
must be noted that an effect of minimum degree is Lo scat-
ter non-zero elements across the matrix (cf. figure 22), while
bandwidth reduction algorithms are generally very efficient
in grouping non-zero elements (cf. figure 22). So, if man-
mum degree is morc efficient for LU factorization as shown
by George, it is far less profitable for SpMxV in terins of
locality, because it widens considerably matrix bandwidth.

Both LU factorization and SpMxV often occur in the
same program. Since LU factorization is far more costly
then SpMxV, optimizing renumbering for this operation
would be reasonnable (i.e sacrificing bandwidth). However,
for a given matrix, SpMxV is often executed several tines.
vector X being the only data changed on cach iteration.
Therefore, 1t 1s after all profitable to make a copy of the
matrix and renumber it for SpMxV only, since the cost of
the renumbering process is not prohibitive (of the order of
one execution of SpMxV). It should also be kept in mind,
that renumbering in order to minimize bandwidth is prof-
itable in our case, only if the degree of interference wocan
be made smaller than 1.

5.2 Software optimization: 3locking

5.2.1 Classic blocking

The reason why sparse codes do not work on caches when
matrix parameters are much larger than cache parameters is
the same as for dense codes: because elements to he reused
cannot be kept in cache. However, a solution valid for dense
codes [5], i.¢ blocking, is not valid for sparse codes, because
each element is not reused a sufficient number of times to
override the overhead of blocking.

Moreover, sparse codes exhibit an irregular localily which
cannot be forseen at compile-time (i.c ¢ prior?), while dense
codes exhibit regular localily, which can be exploited at
compile-time. If classic blocking techniques were to be used
for SpMxV, part of its wrregular localily would probably he
lost, and large overhead data would be added.

Let us try to explain and formalize these latter notions.
Consider original matrix A is blocked horizontally and ver-
tically, using rectangular blocks. One block has By rows
and Bx columns. Therefore, if each block is stored row-
wise, By integers must be stored indicating the number of
non-zero elements on each row. By rows of the matrix are
divided into %;i verical blocks. Since, there are F\; blocks
of size By, %ﬂ; integer elements must be stored for this
blocked algorithm (while only N elements are needed for
the original non-blocked algorithin).

Now, there are two ways to execute this blocked SpMxV:
row-wise or column-wise. H SpMxV is executed column-

Figure 22: Matriz BCSPWRO09 of the Harwell-Boetng suite after application of minimum degree algorithi and after

application of a bandwidth reduction algorithm.

Figure 23: Splitting a sparse matriz with a large band into
several submalrices with a small band.

wise, then clements of Y probably cannot be kept into cache
from one column to another. Consequently, the number of
cache misses due to Y is multiplied by B,Lx If SpMxV is
executed row-wise, then the reuse of X is degraded in turn.
However, since X does not exhibit the same flawless spatial
and temporal locality as Y, then it is preferable to degrade
the reuse of X rather than that of Y, i.e to execute SpMxV
row-wise.

Since on one column of a block By x By there are av-
eragely d x By non-zero elements (where d = %Vﬂ; 1s the
density of the sparse matrix), then in the best case, the
miss ratio of X can be divided by a factor of d x By. In
order to have at least 2 non-zero elements per column of a
block (i.e that an element of X is reused at least twice per
block), it is necessary to have ﬂﬁ‘,%ﬁ > 2 for blocking to
be profitable. Since at most By = Cg, the minimal condi-
tion for benefiting from rectangular blocking is 2&‘,;(;5 > 2.

N2 . . . Cenme 4
Actually, because of the ToxBe NeW intrinsic misses, it is

necessary to have ﬂﬁ,ﬁ%i > 2 in order to get any improve-
ment.

Therefore, in most cases classic blocking of sparse ma-
trices degrades the hit ratio of Y, and brings hittle -
provements on that of X (cf. figure 25; the optimal block
sizes were found experimentally: Cs¢ =1024, 5x =100,
By ~25). Morcover, significant overhead data worsens the
total hit ratio by addition of intrinsic musses (cf. ligure 25).
Only if the matrix is nearly dense (d ~ 1), classic block-
ing is profitable due to the ymportant potential reuse per
element of X.

5.2.2 Blocking by diagonal

It is clear that any software optimization techniques should
take into account the specifics of SpMxV. First of all,
opposition to most dense codes, 1t must be asshinilated that
one computation corresponds to one non-zero element and
not to any element of the matrix. Therefore, any block-
ing technique should implicitly deal with blocks of non-zcro
elements rather than blocks of matriz elements.

Second of all, in dense matrices, the elements of synmune-
try are columns and rows, which explain why such matrices
are blocked using rectangular shapes. The elements of sym-
metry of banded sparse matrices are diagonals. Therefore,
it seems natural to block along diagonals, otherwise too
many blocks would be half-empty and would degrade the
efficiency of the blocking technique.

According to section 4.2, the original large baund should
be split into several small bands, such that their width is
of the order of cache size (cf. figure 23). Now, these blocks
should be based on non-zero elements and not on arbitrary
geometric dissection. Moreover, having the number of non-
zero elements on each of the different diagonals constaut
(except for the first and last diagonal blocks) would reduce
the overhead data to be kept, as seen in above paragraph.

For that purpose, n,, the average number of non-zero ele-
ments per row and the number of non-zero elements on each

12

"

gy

» -

0.45 —_——— .
e dlagonal blocking -+—

0.4t 4 rectangular biocking = |
) ; storage by row -u--

o] J

A

fu}

2 -

18]

0

2 e

E

-

o |

0

¢ 0.05 0.1 90.i5 0.2 0.25 0.3 0.35 0.4 0.4
d {nnz=80)

Figure 24: Effect of diagonal blocking on the total miss ra-
ho.

3.9 T T T T T T T T
ogt® diagonal blocking -*— |
. a rectangular blocking -+
L storage by row -u-
« 0.7 8 Y
W 0.6 4
9 0.5} 1
(s}
5 0.4]
a 0.3 -
i
0.2 1
0.1 b

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 C.45
d (nnz=80)

Figure 25: Lffect of diagonal blocking on the miss ratio of
N.

diagonal of the original matrix must be computed. Since the
goal of the method is to obtain a collection of banded matri-
ces which bandwith is smaller than cache size, the original
matrix needs to be split into approximately ng = [%f-
submatrices. In all these submatrices except for the first
and last one, the number of non-zero elements ought to be
constant, approximately equal to %2+, Additional data is
necessary to store the number of non-zero elements on the
rows of the first and last diagonal block. The corresponding
code can be seen on figure 26.

This blocking method is interesting only when X is the
major cause of cache misses, and the potential reuse is high
(cf. sections 4.1 and 4.3). Though it increases the number of
misses on Y (they are ncarly multiplied by npg), it decreases
the miss ratio of X, so that the improvement of the total hit
ratio may be quite important (cf. figure 25). The main asset
of the method is to be applicable even when the density is
low, where other classic blocking methods would fail.

Moreover, the shape of certain types of matrices such
as finite-element matrices suggests that diagonal blocking

could be further enhanced. Indeed, in such matrices, there
are generally three diagonals along which non-zero elements
are grouped (cf. figure 6). Therefore a first step to diagonal
blocking would be to find the diagonals of “highest density”
and block non-zero elements around them. Not only, nearly
dense blocks of non-zero elements would be obtained, but
the number of blocks itself (and the overhead) would be
considerably reduced in many cases, since it would be fixed
(and would not depend on Wy and Cy).

However, all blocking techuiques introduce hounds of
their own. In our case, the nunmiber of blocks deterimne the
maximum reuse per clement of X. If there are ny blocks
and n,, non-zero clements per row, then diagonal blocking
authorizes a maxitnum reuse of L:?';f per clement of X7 while
the theoretical maximunis n,,,.

5.2.3 Parallelization

Rather than making use of data locality, superconputers
propose to speed up sparse computations by vectorizing ac-
cesses to data stored in compress format. using hardware
Scatter/Gather {14].
with a memory hierarchy, the issue is to parallehze sparse
codes while optimizing load balancing and communications

For shared-memory niltiprocessors

between global and local memories. Actually, litte informi-
tion is known on the behavior of such architectores under
sparse workloads. Saad and al. [20, 21] proposed a bench-
mark suite for evaluating the performance of sparse codes.
and experimentally analyzing their locality and inherent
parallelism. Yang {26] presented a set of parallelized sparse
primitives, where parallelism is extracted at the algorithmic
level. Davis [1] also proposed a parallel implementation of
sparse Gaussian elimination based on an algorithimie trans
formation, and studied slightly the impact of his scheme o
communications between global and local memories.

However, little cffort has been devoted to analyzing and
modeling the impact of parallelization on the behavior of
sparse codes on a memory hierarchy. Now, for SpMx\.
distributing tasks to each processor is equivalent to split-
ting original matrix into blocks of certain size and shape.
Consequently, each subproblem assigned to a local cache
is equivalent to original problem though with smaller pa-
rameters, and therefore, the whole previous analysis can he
applied to each subproblem separately.

This property can be used to determine the wmpact of
blocking on communications. Actually, it may appear that
the most natural and most commonly employed imethods for
blocking sparse matrices (e.g. blocking by rows) may not
be the best regarding communications between the differ-
ent levels of memory. For iustance, the original storage-by-
rowscheme already allows an easy parallelization of SpMxV
(cf. figure 5) on loop I. However, analysis of section 4 shows
that a large bandwidth breeds an important miss ratio of
X. Now, if SpMxV is blocked on loop I and the bandwith
of original matrix is large, then the bandwidth of the re-
sulting submatrices remains the same. Therefore, the miss
ratio of X on each local cache may be high.

On the other hand, blocking by diagonael has several assets
which can be profitable to parallelization and locality also,
especially by improving data reuse without bringing signifi-
cant overheads. Since the original problem (a bauded sparse

13

DO I=1,N
REG = Y(I)
DO J=Dyret (I-1)4+3,D4,0, (1)
REG = REG + Matrix(J,1)* X(Index(J,1))

ENDDO
Y(I) = REG
ENDDO
ENDDO

DO I=1,N
REG = Y(I)
DO J=Diaec(1-1)41,D10.,(1)

ENDDO ENDDO
Y(I) = REG Y(I) = REG
ENDDO ENDDO
DO K=2,ng5-1
DO I=1,N
REG = Y(I)

DO J=nf *(I-1)+1,n? =1
REG = REG + Matrix(J,K)* X(Index(J,K))

REG = REG + Matrix(J,n4)* X(Index(J,2,4))

Figure 26: Blocking by diagonal.

matrix) is spht diagonally, the submatrices bandwidth is
smaller than that of original matrix (actually it is equal to
that of original matrix divided by the number of blocks).
I'hierefore, on cach local cache the miss ratio of X may be
far smaller than when blocking by row. Consequently, par-
allelizing this way naturally decreases the burden on local
caches by reducing the bandwidth, and consequently the
hit ratio.

Another asset of this blocking method is that, once the
original problem has been divided into subproblems, it is
possible to apply any storage method for these subproblems,
not. inevitably storage by row. Now, jagged diagonal [3] and
generalized columns [9] are among the most efficient storage
techniques for vector execution. Therefore, if a tradeoff be-
tween parallelization, vectorization and data locality must
be found, blocking by diagonal may ensure non negligeable
data locality while still authorizing vectorization {on each
subproblem separately).

5.3 Hardware optimizations

5.3.1 Regular references

In a number of cases, inlrinsic misses account for the major
part of cache misses (cf. section 4.5). These misses are due
to arrays exhibiting flawless spatial locality and deprived of
temporal locality. Some processors are now ecquipped with
pipelined bypass [13} which are well suited for loading ar-
rays with high spatial locality, and which also avoid cache
pollution with arrays deprived of temporal locality by not
storing them into cache. Otherwise, this problem can also
Le solved with many techniques already proposed for regu-
lar codes. Large line sizes [23] provide a simple solution for
reducing the impact of such misses. Jouppi also presented
a Multi- Way Streamed Buffer [15] which aims at removing
completely intrinsic misses. Inspite of all, whenever intrin-
sic misses account for a minor part of total cache misses,
self-interference misses due to array X become the main
issue.

5.3.2 Irregular references

Little solutions have been implemented in the industry for
dealing with sparse codes. The most classic and efficient
one 18 the scatter-gather implemented on many vector su-
percomputers [14]. However, this feature aims at vectoriz-
ing non-regular accesses to memory rather than optimizing

14

the rcuse of elemenls accessed. Other original solutions
have been proposed, but up to now few resulted in actual
machines or at least few published results for the moment.
Seznec and al. {22] propose an interconnection network that
would behave efficiently under sparse code workloads. Thhet
and al. [12] intend to implement the Edunburgh Sparse Pro-
cessor, an architecture dedicated to finite-clewment probleins.
Wolfe and al. [25] work on a coprocessor The While Dwarf
implementing specific sparse primitives. Iinally, Amano
and al. [2] presents the Sparse Matriz Solving Machoue
which is a parallel computer using a memory design adapted
to sparse computations.

Most of the previous projects have not yet heen fimple-
mented or at least few performance results have been pub-
lished. Actually, the majority of these projects concern ded-
icated machines rather than solutions for optimizing and
adaptating current memory hierarchies to sparse compu-
tations. Let us consider which design would be the nost
convenient for these applications. When w > 1, interfer-
ences are so numerous that exploiting locality within Sp-
MxV becomes impossible in a usual cache (cf. scction 4.5).

However, if it were possible to determine placement of

data within cache (as in local memory), many interfer-
ences would be avoided. First, only one memory location
is actually required for arrays D, Y, Inder and Malris.
and the rest can be devoted to array X (therehy removing
cross-interferences). Second, the pattern of references to
X is known a priori, so if data replacement can be con-
trolled (as in local memory), optimal replacement could
be achieved, as shown in [4] (thereby minimizing sclf-
interference misses). On the other hand, when w < I, cache
makes a very good job at exploiting spatial and temporal
locality without any optimization (i.e no overhead) reguired
(cf. section 4.5). So depending on problem parameters Sp-
MxV would require the upper-level memory to have the
properties of a local memory or of a cache, in other terins
of a hybrid memory system (cf. [6]).

6 Conclusions

This paper presents a methodology for modeling the irreg-
ular references of sparse codes using probabilistic methiods.
The model was shown to be very accurate for uniformly dis-
tributed matrices, finite-element matrices renumbered with
minimum degrec algorithm, and still reflects quite well the

“w

o o«

-*p

behavior of fintte-clement matrices renumbered with band-
wedth reduction algorithm.

The analysis of the model and stmulations allowed to
identify three main parameters and their itnpact on the he-
havior of SpMxV. First of all, cache size and bandwidth
are closely dependent. When bandwidth is smaller than
cache, spatial and temporal locality of sparse matrices is
well exploited and SpMxV needs not be optimized. Sccond,
when bandwidth is greater than cache size, self and cross-
interferences degrade the reuse of vector X which cannot
exploit its temporal and spatial locality. Moreover, in that
case little optimizations can be expected if the line size is
sinall because nirinsic misses are tOO NUINCIOUS anyway.
liowever, when line size is sufficiently large, then exploiting
the potential locality of array X may yield significant im-
provements of the total hit ratio, especially in 3-dimensional
Jinite-clement problems where the potential reuse per ele-
ment of X is important.

Little hardware or software techniques exist for mak-
ing use of locality within sparse problems. First, Band-
width reduction renumbering algorithms may significantly
improve the exploitation of locality within SpMxV, but
duc to LU factorization mintmum degree renumbering algo-
rithms (which widen considerably bandwidth) are generally
preferred. Therefore, there is a tradeoff between the two
algorithms which can actually be resolved through copying.
Second, blocking methods are considered. Classic rectangu-
far blocking is proved to be efficient only when the matrix is
nearly dense within its band, otherwise the method breeds
too much overhead. A blocking technique blocking by di-
agonal that takes into account the specifics of sparse codes
has been presented. It is shown to efficiently exploit local-
ity where other blocking methods would fail, i.e when the
matrix s “very sparse”. Moreover, the parallel version of
the diagonally blocked algorithim on a multi-cache system
would naturally reduce the burden on local caches.

7 Acknowledgements

We would like to thank J. Erhel and A. Seznec for their
helpful comments and many enlightening discussions.

References

[1] S. G. Abraham and T. A. Davis: Blocking for paral-
lel sparse linear sysiem solvers, Proc. of Int. Conf. on
Parallet Processing, 1989.

{2) . Amano, T. Yoshida and H. Aiso: (SM)?: Sparse
matriz solving machine, Proc. of Int. Symp. on Com-
puter Architecture, 1983.

[3] E. Anderson and Y. Saad: Solving sparse iriangular
systems on parallel computers, Int. J. of High Speed
Computing, 1 (1989), pp. 73-95.

(1] L. A. Belady: A study of replacement algorithms for a
uniriual-storage computer, IBM Systems Journal, Vol. 5,

No. 2, pp. 78-101, 1966.

[°)

(6]

[7

—_—

(9]

[10]

[11)

[12]

[13)
(14)

[15]

[16]

(17}

(18]

(19]

[20]

F. Bodin, C. Fisenbeis, 1. Windheiser, W Jalby: A
straleqy for array management in local wemory, Ad-
vances in Langunages and Compilers for Paeallel Pro-
cessing, MI'T Press, 1991,

G. D. MceNiven and 15. S, Davidson: Analyses of mem-
ory referencing behavior for design of local memorics,
Proc. of 14th Annual TEEE Int. Syinp. on Compuoter
Architecture, ACM, 1988,

1. Duff, A. Erisman and J. K. Reid: Durect methods
for Sparse malrices, Oxford University Press. Oxford,
Lngland, 1987.

[. Duff, R. Grimes, J. Lewis: Sparse malree fest proh-

lems, ACM TOMS, 15 (1989), pp. 55-64.

J. Erhel: Sparse malriz mulliplication on veclor com-
puters, Int. J. of High Speed Computing, Vol. 2, No. 2,
pp. 101-116, 1990.

C. Fricker, P. Robert: An analylical cache model IN-
RIA Report, INRIA Rocquencourt, France, July 1941,

A. George: Direct solution of sparse posclive definds
systems: some basic ideas and open problems, in Sparse
Matrices and Their Uses, edited by 1S, Dull. Aca-
demic Press, 1981,

R. N. Ibbet, 1. M. Hopkins and K. 1. M. McKinnon:
Architectural mechanisms to support sparse veclor pro-
cessing, Proc. of Int. Symp. on Computer Avchiteeture,
1989.

Intel Corporation: Intel 860 vefcrence wannal, 1991,

J. G. Lewis and 11. D. Suimon: The tmpact of hardware
Scatter/Gather on sparse Gaussian cliniinalion. ’voc,
of Int. Conf. on Parallel Processing, 1986,

Norman P. Jouppi: Improving cache replaccment by the
addilion of a small fully-associative cache and picfoleh
buffers, IEEE, 1990.

Monica S. Lam, Edward E. Rothberg and Michacl
E. Wolf: The cache performance and oplomizations of
blocked algorithms, Proc. 4th International conference
on Architectural Support fo Prograinming Languages
and Operating Systems, pp. 63-74, April 1991.

D. A. Patterson and J. L. llennessy: Compulcr archi-
tecture: a software approach, Morgan Kaufmann Pub-
lishers, Palo Alto, 1990.

S. Przybylski, M. Horowitz and J. Henessy: Perfor-
mances tradeoffs in cache desiyn, Proc. of 15th Annual
IEEE Int. Symp. on Computer Architecttire, ACM.
1989.

E. Rothberg and A. Gupta: Techniques for vnpror-
ing the performance of sparse malriz faclorizalion on
multiprocessor workstations, Proc. of ACN Supercon-
puting 90.

Y. Saad and H. A. G. Wijshoff: A benchmark packag:
for sparse matriz computations. Proc. of Int. Con{, on

Supercomputing, 1983,

[21] Y. Saad and H. A. G. Wijshofl: SPARK: A benchmark
package for sparse computalions, Proc. of Int. Confl. on
Supercomputing, 1990.

[22] A. Seznec and Y. Jegou: Synchronizing processors

through memory requests in a tightly coupled mullipro-

cessor, Proc. of Int. Symp. on Computer Architecture,

[988.

[23) A.J. Smith: Cache memories, ACM Computing Sur-

veys, vol. 14, pp. 473-530, September 1982.

[24] H.(Harry) A.(Arnold) G.(Gwendoline) Wijshoff: Im-

plementing Sparse BLAS primitives on concur-

rent/veclor processors: a case sludy CSRD Re-
port No. 843, Center for Supercomputing Research
and Development, University of Illinois at Urbana-

Champaign, January 1989.

[25] A. Wolfe, M. Breternitz Jr., C. Stephens, A. L. Ting,

D. B. Kirk, R. . Bianchini Jr., J. P. Shen: The White

Dwarf: A high-performance application-specific proces-

sor, Proc. of 14th Annual TEEE Int. Symp. on Com-

puter Architecture, ACM, 1988.

[26] G. C. Yang: DSPACK: A parallel direct sparse matriz

package for shared-memory mulliprocessors, Proc. of

Int. Conf. on Parallel Processing, 1990.

A Appendix: Computing the
number of cache misses due to

array X
A.1 Methodology of resolution of the ba-

sic problem

In the following paragraphs, we indicate the method for
computing the expression of 7%, (7, j)

State vector For cach element k& of ,\'”, we define the
state veclor 78(7, 7) as follows:
k . .
.. (1,
Nk(l,]): (xn(]) >

Wsul(i’j)

where 7f (i, j) is the probability that element k of X" isin
the I-size cache on row i of the compulation, right before
column k s considered. And, 7%, ,(i,7) = 1 — =k (i, 7).

Probability of transition Let us now try to express
7(i,j + 1) as a function of #*(s,5), that is, find a prob-
ability of transition matrix that could help describing this

event,.

Case k=j: 7/(4,j) describes the probability of presence
in cache of element j of X", on row i of the computation,
before column j is considered. Now, when column j is con-
sidered, clement j of X" has a probability p(i,7) of being
referenced, that is a probability p(z, j) of being loaded into

the cache if it is not already there. This notion can be fop-
malized by the following probability of transition matrix:

i1 ol
pload(iej) = in 1 7}(i!j)
oul 0 1 —p(i,g)

Therefore, we can now write formally that

‘/Tk(i,j + l) ==]}lll(ld(ilj) X "Tk(l’-))

Case k # j: if column k # j, then column & has a proba-
bility p(i, k) of breeding a reference to element k of X, which
would then flush element j of X from the cache. This notion
can be formalized by the following probability of transition

matrix:
mn oul
1)jluah(ivj) - m 1 - "(1:]) 0
oul (i, 5)]

Transition from row ¢ — 1 to row ¢: ‘Therefore,

now express m (i, j) as a function of @’ (i — 1, j):

We o can

(i, j) =
leu,h(i,j - 1) X ... X le,”h(‘i, l)
X Prigen(i— 1,m.) .. X Pran(i— 1,5+ 1)
X Proga{i — 1,§)77 (i = 1,5)

Let us define F;_1 j)_(i ;) as follows:

Pli-15)=(i5) =

P.““-!h(i!j -1)x...x I)flush(i, 1)

Xleu,h(i - l,nc) Lo X leus},(f 1,74 1)

xpload(i -1,7)
then 7/ (i,j) = P(i_l_j)_(i'j)nj(i = 1,j). Recursively, we
can then write that w/(i,j) = P y—i-1;,™(0,)) =
12} Pu-1.y—05)™ (0, 5).
number of cache

A.2 Computing the

misses

It is a fair approximation to assume that, at the beginning
of each subsection, no element is in cache. Therefore, we
write that

H&n:(?)wewm]

therefore, Wiu,(i,j) = P j)—@i-1.5)(2,2), and it 15 now pos-
sible to compute Ncm(P”):

n Ne

Nem(P") = 0D mhu(d,5) x (i,)

i=1 j=1
It is now possible to give an approximation of the total
number of cache misses yielded by A. The number of cache
misses due to a section S of A is given by N, (5) =
Nem(Py) + Nem(P,). Since there are CL; Nem(S5)= N x
Ncm(Sl). Now, since there are Cs such submatrices in .

the total number of cache misses is cqual to N, (F) =
!
CsNem(P).

16

Y}

L]

Lagxng

2
Nem(PY=np, — %‘Wri

. p 1 | 2 2 2
Newm(P) ~ L'—"';(n: X n,l +nf X n,2) %,ﬁ- X (n‘] xn, X {(n, —1)4+n. xnf x (72,2 - I)) X 1

Figure 27: Ezpression of the number of self-interference misses.
g 14

x (B2] - A8 8]+ 3 FR 2 4 2| L RL

|
1
|
-%%)’

Y- AT (B2 4o)Y (2

Figure 28: Expression of the number of self-interference misses as a funclion of the problem paramelers,

A.3 Distributions of probability

Up to now we have considered that each clement, (7,) of A
had a specific probability p(i, j) of being a non-zero element.
This distribution can be non-uniform, i.e p depends effec-
tively on (4, j), or uniform, i.e p(¢, 7) = p. The non-uniform
distribution allows a better description of the number of
cache misses, but prevents, in most cases, the computation
of an analytical expression of this number. The uniform
distribution, though less precise, allows to obtain such an
expression.

Non uniform distribution Certain types of sparse mar-
tices cannot be considered to have a uniform distribution
within the band. However, in many applications, specifi-
cally finite element methods it is a fair approximation to
consider that the distribution of probability is constant
across the diagonals, that is p(i,) = p(t — 1,7 —1). This is
due to a good repartition of the non-zero elements among
the rows. Indeed, most of the time, the number of non-zero
elements per row is constant. And, what is more the distri-
bution of the non-zero clements is relatively similar on all
the rows.

et us now give the expression of the total number of
cache misses when the distribution is non-uniform:

Nem(P) =

B mo & l. g.|+1
N x [ZZ] OIS i i) x pli, §)

. o < I. J ..
+Z‘V, Wy mod C Z]?ln 7"5)!1!(1]) XP(’;J)

Therefore, when the distribution is not uniform, the two
sums

w
Wg mod Cg le.J+l

DD DR

i=1

out l] X p(])

and
w
Wu-Wg mod Cg LT

S SR

i=1

x p(J)

must still be computed numerically (this computation is not
too costly considering the boundaries of the sums).

Uniform distribution For some sparse applications, it
1s a reasonnable approximation to consider that the distri-
bution of the non-zero elements is uniform. In that case an
analytical expression of the number of cache misses can be
derived from the previous formula. Let us show how.

First of all, we compute the uniform probability p that an
clement be non-zero. There are n,, non-zero elements in

17

the matrix. Since the number of non-zero eleinents on each
row is constant, we can consider that there is an average
number of 3“;,5 elements per row. Therefore each eleinent.
has a probability p = —Hi;t of hmn.g‘ referenced. When Lg
1s taken into account, the probability that a group of /s

. Mpg :
elements of X be referenced isp=1- (1 - —Mf,yl—)"-“.

3
Let us now give the expression of Pr_y ;i ;)

p(l, k) = p
— 0
= Prusn(l k) = ([I’ r |)
and,
_ 1 2
Poscltt) = (7))
Then,
Pici1jy=tj) = (Prusn)™ ' X Prua
= Pojy=ij) = (Priwsn)™ ™" x Praa)’
And,

T(4,7) = (Prusa)* ™" x Ploqq) 77 (0.)

The explicit expression of %4 ;, ¢ ;) is the following:

[1=(1=pyme!
+ p(1 = p)e= (1= p)reti=1]

1
=T

We can note that 77 (7, j) is now independent of j. What
1s more, we will consider, without a great loss of precision

that:
Hmn=(?>

Therefore, using notations of scction 3.1.2, we can deduce
that the total number of cache misses is given by expression
of figure A or figure 10.

Now, since ﬁ;jﬁ,— & 1, we can write that

p=Lsx gabg — Ls(Ls — 1) x /W"xw- + ol i)
Therefore, a first order development of expression of
Nem(P) (as a function of the problem parameters) is given
by expression of figure A.
For sake of simplicity, we can assuime that L‘(—'AJ >~ ‘%‘i
and therefore:

2 ‘o
ni, x Cg

Nem(P) =~ -
em(P) % n, 2x N x Lgx Wy

A4 Extending the model to
set-associative caches

"The problem formulation for set-associative caches is very
siinilar to the one of direct-mapped caches except that,
in the simplified problem, the cache size is now equal to
Da x Ls (Da is the degree of associativity) instead of L.
‘T'herefore, the methodology used for direct-mapped caches
can be employed for set-associative caches with some ad-
Justments. The complexity of these modifications depends
on the type of replacement policy used inside the cache sets.
Counsidering actual architectures, two replacement policics
can be considered: Random Replacement policy or Least
Recently Used policy.

Random Replacement For this replacement policy, the
main difference lays in the probability of transition matri-
ces. Pioaa is unchanged but Py, must be modified. The
main difference lays in the fact that a reference is not suffi-
cient. for flushing the cache. Several such references should
occur before the cache is flushed. This notion can be simply
formalized by modifying the probability that one clement
be flushed, the expression of which appears in Pyiyen(1,1)
and Pyusn(l,3).

Least Recently Used In this case, the method previ-
ously used changes slightly. More precisely, 1t is necessary to
modify the state vector. Instead of two states only (in,out),
we have to consider D4 + 1 states where D, is the degree
of associativity. Then, new probability of (ransition mair:-
ces must be computed to describe the probability for an
clement to shift from one position to another in the LRU
queue. This methodology is the direct extension of the one
used for direct-mapped cache where Dy = 1.

18

-

-)

«)

-

Pl

PI

Pl

Pl

Pl

P1

PI

Pl

Pl

PI

P1

PI

642

643

644

645

646

647

648

649

650

651

652

653

LISTE DES DERNIERES PUBLICATIONS INTERNES IRISA

ARCHE : UN LANGAGE PARALLELE A OBJETS FORTEMENT TYPES
Marc BENVENISTE, Valérie ISSARNY '
Mars 1992, 132 pages.

CARTESIAN AND SATISTICAL APPROACHES OF THE SATISFIABILITY
PROBLEM

Israél-César LERMAN

Mars 1992, 58 pages.

PRIME MEMORY SYSTEMS DO NOT REQUIRE EUCLIDEAN DIVISION
BY A PRIME NUMBER

André SEZNEC, Yvon JEGOU, Jacques LENFANT

Mars 1992, 10 pages.

SKEWED-ASSOCIATIVE CACHES
André SEZNEC, Franc¢ois BODIN
Mars 1992, 20 pages.

INTERLEAVED PARALLEL SCHEMES : IMPROVING MEMORY THROUGHPUT
ON SUPERCOMPUTERS

André SEZNEC, Jacques LENFANT

Mars 1992, 14 pages.

COMMUNICATING PROCESSES AND FAULT TOLERANCE : A SHARED
MEMORY MULTIPROCESSOR EXPERIENCE

Michel BANATRE, Maurice JEGADOQO, Philippe JOUBERT, Christine MORIN
Mars 1992, 40 pages.

SET-THEORETIC GRAPH REWRITING
Jean-Claude RAOQULT, Frédéric VOISIN
Mars 1992, 18 pages.

UNE STRUCTURE D'INFORMATION POUR LES ALGORITHMES
D'EXCLUSION MUTUELLE FONDES SUR UNE ARBORESCENCE
Jean-Michel HELARY, Achour MOSTEFAOUI, Michel RAYNAL
Mars 1992, 18 pages.

BLOCK-ARNOLDI AND DAVIDSON METHODS FOR UNSYMMETRIC LARGE
EIGENVALUE PROBLEMS

Miloud SADKANE

Avril 1992, 24 pages.

COMPILING SEQUENTIAL PROGRAMS FOR DISTRIBUTED MEMORY
PARALLEL COMPUTERS WITH PANDORE II

Francoise ANDRE, Olivier CHERON, Jean-Louis PAZAT

Avril 1992, 18 pages.

CHARACTERIZING THE BEHAVIOR OF SPARSE ALGORITHMS ON CACHES
Olivier TEMAM, William JALBY
Avril 1992, 20 pages.

MADMACS : UN OUTIL DE PLACEMENT ET ROUTAGE POUR LE DESSIN
DE MASQUES DE RESEAUX REGULIERS

Eric GAUTRIN, Laurent PERRAUDEAU, Oumarou SIE

Avril 1992, 16 pages.

Imprimé en France
' . . par
.I"Institut National de Recherche en Informatique et en Automatique,

ISSN 0249-6399

