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Abstract

In adaptive irregular problems the data arrays are accessed via indirection arrays, and data

access patterns change during computation. Implementing such problems on distributed memory

machines requires support for dynamic data partitioning, e�cient preprocessing and fast data

migration. This research presents e�cient runtime primitives for such problems. This new set

of primitives is part of the CHAOS library. It subsumes the previous PARTI library which

targeted only static irregular problems. To demonstrate the e�cacy of the runtime support,

two real adaptive irregular applications have been parallelized using CHAOS primitives: a

molecular dynamics code (CHARMM) and a particle-in-cell code (DSMC). The paper also

proposes extensions to Fortran D which can allow compilers to generate more e�cient code for

adaptive problems. These language extensions have been implemented in the Syracuse Fortran

90D/HPF prototype compiler. The performance of the compiler parallelized codes is compared

with the hand parallelized versions.

�This work was sponsored in part by ARPA (NAG-1-1485), NSF (ASC 9213821), ONR (SC292-1-22913) and EPRI

(RP3103-6).



1 Introduction

In irregular concurrent problems, patterns of data access cannot be predicted until runtime. In

such problems, optimizations that can be carried out at compile-time are limited. At runtime,

however, the data access patterns of a loop-nest are usually known before entering the loop-nest;

this makes it possible to utilize various preprocessing strategies to optimize the computation. These

preprocessing strategies primarily deal with reducing data movement between processor memories.

Preprocessing methods are being developed for a variety of unstructured problems including explicit

multi-grid unstructured computational 
uid dynamic solvers [18, 11], molecular dynamics codes

(CHARMM, AMBER, GROMOS, etc.) [5], diagonal or polynomial preconditioned iterative linear

solvers [26], and particle-in-cell (PIC) codes [3]. These problems share the characteristics of (1)

arrays accessed through one or more levels of indirection, and (2) formulation of the problem as a

sequence of loop nests each of which prove to be parallelizable.

Figure 1 illustrates a typical irregular loop. The data access pattern is determined by arrays,

ia and ib, which are known only at runtime. These arrays are called indirection arrays. Once the

data access pattern is known, preprocessing makes it possible to partition data arrays (i.e. arrays

x, y) and to partition loop iterations (i.e. indirection arrays ia, ib) over processors. The goal

of such partitioning is to balance the computational load and to reduce the net communication

volume. Once data and work have been partitioned between processors, prior knowledge of loop

data access patterns (values of ia, ib) makes it possible to predict which data elements need to

be communicated between processors. This communication pattern remains unchanged as long

as the data access patterns do not change. The ability to predict communication requirements

allows various communication optimizations. For instance, communication volume can be reduced

by pre-fetching a single copy of each o�-processor datum, even if it is referenced several times. The

number of messages can also be reduced by pre-fetching large quantities of o�-processor data in a

single message. These optimizations are called software caching and communication vectorization

respectively.

Such optimizations have been successfully used to parallelize static irregular problems [8], in

which array access patterns do not change during computation. For the static irregular problems

considered in Das et al. [8], it is enough to perform preprocessing only once to optimize communi-

cation. Adaptive irregular problems are more complex. In these problems, the data access patterns

may change during computation, resulting in complex preprocessing requirements.

Consider, for instance, adaptive 
uid dynamics and molecular dynamics codes. In these applica-

tions, interactions between entities (mesh points, molecules etc.) are speci�ed by indirection arrays.

If the interaction pattern is modi�ed, then the data access pattern changes. Consequently, it may
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real x(max nodes), y(max nodes) ! data arrays
integer ia(max edges), ib(max edges) ! indirection arrays

L1: do n = 1, n step ! outer loop
L2: do i = 1, sizeof indirection arrays ! inner loop

x(ia(i)) = x(ia(i)) + y(ib(i))
end do

end do

Figure 1: An Example with an Irregular Loop

become necessary to fetch o�-processor data elements which were not needed before. Thus pre-

processing needed for software caching and communication vectorization optimizations will have

to be repeated. In other applications, such as the Direct Simulation Monte Carlo (DSMC) code

and other PIC codes, data access patterns and computational load change frequently. Thus, data

arrays may need to be redistributed frequently to relocate moving particles and to maintain load

balance. For such applications, e�cient runtime support to perform particle migration and data

redistribution is necessary.

This paper presents a new set of runtime procedures designed to e�ciently implement adaptive

programs on distributed memory machines. This runtime library is called CHAOS; it subsumes

PARTI, a library aimed at static irregular problems [24]. CHAOS introduces two new features |

light-weight schedules and e�cient schedule generation , which are useful in certain types of adaptive

problems. We describe these features in Section 3. CHAOS has been used to parallelize two

challenging real-life adaptive applications | CHARMM, a molecular dynamics code and DSMC,

a particle-in-cell code. We also present language support that can enable compilers to generate

e�cient code for adaptive applications. The Syracuse Fortran 90D/HPF compiler was used as a

test-bed for the ideas presented in this paper.

This paper is structured as follows. In Section 2, we introduce two adaptive applications,

CHARMM and DSMC Section 3 describes our runtime support. Section 4 demonstrates the per-

formance of the runtime support library when used on the targeted applications. Section 5 gives an

overview of existing language support for irregular data decomposition; it describes the language

directives that allow users to remap data and introduces a list-append intrinsic function. The

performance of the compiler-generated codes is also compared to that of the hand-written codes.

Section 6 discusses related work. Finally, conclusions are presented in Section 7.
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L1: do n = 1, number of time steps ! outer loop

S: if (required) then ! under certain criteria
regenerate jnb(:) ! non-bond list changes

L2: do i = 1, number of bonds
BF(ib(i)) = BF(ib(i)) + f (Atom(ib(i)), Atom(jb(i)) ! bonded forces
BF(jb(i)) = BF(jb(i)) + g (Atom(ib(i)), Atom(jb(i))

end do

L3: do i = 1, number of atoms ! non-bondeded forces
do j = inblo(i), inblo(i+1)-1 ! partners of atom i

NBF(i) = NBF(i) + h (Atom(i),Atom(jnb(j)))
end do

end do

: : : : : :Calculate new positions based on BF and NBF
end do

Figure 2: A code fragment resembling CHARMM

2 Adaptive Applications

This section brie
y describes the computational structure of two adaptive irregular application pro-

grams | Chemistry at HARvard Macromolecular Mechanics (CHARMM), a molecular dynamics

code and Direct Simulation Monte Carlo (DSMC), a particle-in-cell code for simulating motion of

gas particles. These are real-life applications; each consists of thousands of lines of code.

2.1 CHARMM

CHARMM is a program which models macromolecular systems in order to derive their structural

and dynamic properties. The computationally intensive part of CHARMM is the molecular dy-

namics simulation section. This calculation simulates dynamic interactions among all atoms in the

system for a period of time. For each time step, the simulation calculates the forces between atoms,

the energy of the whole structure, and the movements of atoms by integrating Newton's equations

of motion. It then updates the spatial positions of all atoms based on these calculations.

The energy calculations in the simulation comprise of two types of interactions { bonded and

non-bonded. Bonded forces are short-range forces that exist between atoms connected by chemical

bonds. They remain unchanged during the entire simulation. Non-bonded forces, due to Van der

Waals interactions and electrostatic potential, exist between all pairs of atoms. The time complexity

of calculating non-bonded forces is O(N2) because each atom interacts with all other atoms in the
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system. CHARMM approximates this calculation by ignoring all interactions beyond a certain

cuto� distance from each atom. This approximation is achieved by maintaining a non-bonded list

of interacting partners for each atom. Since spatial positions of atoms may change after each time

step, the non-bonded list must be periodically updated. In CHARMM, users have control over the

frequency at which the non-bonded list is regenerated. Typically it is regenerated after every 10 to

100 time-steps.

The code fragment in Figure 2 resembles the computational structure of CHARMM. Here,

multiple loops access the same data arrays but with di�erent access patterns. In loop L2, the data

array Atom is indirectly accessed using arrays ib and jb. In loop L3, the same data arrays are

indirectly accessed using array jnb. The data access pattern in loop L3 changes whenever the

indirection array jnb is modi�ed by the conditional statement S. Whenever indirection array jnb

changes, pre-processing for loop L3 must be repeated so that communication optimizations such as

software caching and communication vectorization can continue.

2.2 Direct Simulation Monte Carlo

The DSMC code is used to study the behavior of a gas by simulating the motion of a large number of

molecules. The simulation tracks the motion, collisions and boundary interactions of molecules for

a speci�ed period of time. The DSMC simulation method involves laying out a cartesian grid over

the domain, which may be either 2-dimensional or 3-dimensional, and associating each molecule

with its cartesian cell. Molecules are assumed to interact only with other molecules in the same cell

at each time step. By distributing cartesian cells and their constituent molecules across processors,

substantial parallelism can be extracted.

However, there are three signi�cant impediments to parallelization of DSMC. First, since

molecules are in continuous motion, many molecules change their cells every time-step. The cost

of transmitting molecules between cells every time step can be substantial on distributed memory

computers. Second, indirection arrays used to access molecules within each cell must be regen-

erated every time step. Third, as molecules move between cells, the workload in each cell keeps

changing, a�ecting the net computational load balance. Periodically, cells must be remapped to

processors in order to maintain load balance. These characteristics of DSMC are found in many

PIC applications.

Figure 3 shows a code fragment which resembles MOVE, the DSMC procedure which moves

molecules between cells after each computational time-step. Elements migrate across the rows of a

2-D array based on the information provided in indirection array icell. The elements of array cells

are shu�ed and stored in array new cells. While the total number of rows remains the same after
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do i = 1, num cells
do j = 1, size(i) ! size(i) is the number of elements in the ith cell

new cells(icell(i,j), new size(icell(i,j))) = cells(i,j)
new size(icell(i,j)) = new size(icell(i,j)) + 1

end do
end do

new_cells
1

3

2

4

1

2

3

4

cells

icell (1, 3)= 3

icell (4,2) = 3

icell (2,2) = 4

Figure 3: Data movement in DSMC

the shu�e, the size of individual rows may not. Usually, the order in which elements are appended

to new rows is not relevant, since the order of computation over these elements does not matter.

The runtime support takes advantage of such application-speci�c information. Section 5.2.1 shows

how such information can be conveyed to an optimizing compiler.

The MOVE procedure in DSMC is much more complex than the code fragment shown in

Figure 3. Our runtime support has been used to parallelize the real code; however, for testing our

compiler implementation, we have used a computational template similar to the one shown here.

3 Runtime Support

This section describes the principles and functionality of the CHAOS runtime support library, a

superset of the PARTI library [19, 28, 24]. First, a brief overview of the runtime support is presented;

the framework is same as that of PARTI, and has been described in earlier papers [8, 22]. We then

focus on the inspector, which is a preprocessing stage that must be repeated frequently in adaptive

problems. We introduce light-weight schedules for supporting fast data migration and describe how

we have optimized the inspector to generate schedules e�ciently.

3.1 Overview of CHAOS

The CHAOS runtime library has been developed to e�ciently handle irregular problems that con-

sist of a sequence of clearly demarcated concurrent loop-nests. Solving such irregular problems on

distributed memory machines using the CHAOS runtime support involves six major phases (Fig-

ure 4). The �rst four phases concern mapping data and computations onto processors. The next

6



Phase A : Data Partitioning Assign elements of data arrays to processors

Phase B : Data Remapping Redistribute data array elements

Phase C : Iteration Partitioning Allocate iterations to processors

Phase D : Iteration Remapping Redistribute indirection array elements

Phase E : Inspector Translate indices; Generate schedules

Phase F : Executor Use Schedules for Data Transportation;
Perform computation

Figure 4: Solving Irregular Problems

two steps concern analyzing data access patterns in a loop and generating optimized communication

calls. A brief description of these phases follows.

1. Data Distribution : Phase A calculates how data arrays are to be partitioned by mak-

ing use of partitioners provided by CHAOS or by the user. CHAOS supports a number of

parallel partitioners that partition data arrays using heuristics based on spatial positions,

computational load, connectivity, etc. The partitioners return an irregular assignment of ar-

ray elements to processors, which is stored as a CHAOS construct called the translation table.

A translation table is a globally accessible data structure which lists the home processor and

o�set address of each data array element. The translation table may be replicated, distributed

regularly, or stored in a paged fashion, depending on storage requirements. (In the section on

compile-time support, Section 5.1, we have followed the Fortran D convention of representing

irregular distributions as maparrays, which are equivalent to translation tables.)

2. Data Remapping : Phase B remaps data arrays from the current distribution to the newly

calculated irregular distribution. A CHAOS procedure remap is used to generate an optimized

communication schedule for moving data array elements from their original distribution to

the new distribution. Other CHAOS procedures, gather, scatter, and scatter_append,

use the communication schedule to perform data movement.

3. Loop Iteration Partitioning : Phase C determines how loop iterations should be parti-

tioned across processors. There are a large number of possible schemes for assigning loop it-

erations to processors based on optimizing load balance and communication volume. CHAOS

uses the almost-owner-computes rule to assign loop iterations to processors. Each iteration
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is assigned to the processor which owns a majority of data array elements accessed in that

iteration. This heuristic is biased towards reducing communication costs. CHAOS also allows

the owner-computes rule.

4. Remapping Loop Iterations : Phase D is similar to phase B. Indirection array elements

are remapped to conform with the loop iteration partitioning. For example, in Figure 1, once

loop L2 is partitioned, indirection array elements ia(i) and ib(i) used in iteration i are moved

to the processor which executes that iteration.

5. Inspector : Phase E carries out the preprocessing needed for communication optimizations

and index translation. This phase is described in Section 3.2.

6. Executor : Phase F uses information from the earlier phases to carry out the computation

and communication. Communication is carried out by CHAOS data transportation primitives

which use communication schedules constructed in Phase E.

In static irregular problems, Phase F is executed many times, while phases A through E are

executed only once. In some adaptive problems data access patterns change periodically but rea-

sonable load balance is maintained. In such applications, phase E must be repeated whenever the

data access pattern changes. In even more highly adaptive problems, the data arrays may need to

be repartitioned in order to maintain load balance. In such applications, all the phases described

above are repeated.

3.2 Inspector

The inspector phase has two goals | index translation and communication schedule generation.

Index translation involves converting the global array indices in indirection arrays into local indices.

The purpose of index translation has been discussed in greater detail elsewhere [8]. Communication

schedule generation involves analyzing data access patterns and performing optimizations such as

software caching and communication vectorization. In adaptive problems, data access patterns are

modi�ed frequently; hence index translation and schedule regeneration are repeated many times.

Special attention has been devoted towards optimizing the inspector for adaptive applications.

3.2.1 Communication Schedules

After data and work have been partitioned across processors, the communication requirements of

each computational phase can be determined. This information can be used for communication

optimizations, such as removing duplicates and aggregating messages. The result of these opti-

mizations is a communication schedule, which is used by CHAOS data transportation primitives
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L1: do n = 1, nsteps ! outer loop
L2: do i = 1, sizeof indirection arrays ! inner loop

x(ia(i)) = x(ia(i)) + y(ia(i)) * y(ib(i))
end do

L3: do i = 1, sizeof ic ! second inner loop
x(ic(i)) = x(ic(i)) + y(ic(i))

end do
end do

Figure 5: A code with two computational phases

gather, scatter and scatter_append to move data e�ciently. A schedule for processor p stores

the following information:

1. send list | a list of local array elements that must be sent to other processors,

2. permutation list | an array that speci�es the data placement order of incoming o�-processor

elements, ( in a local bu�er area which is designated to receive incoming data ),

3. send size | an array that speci�es the sizes of out-going messages from processor p to other

processors.

4. fetch size { an array that speci�es the sizes of in-coming messages to processor p from other

processors.

While a communication schedule can be generated for the data access pattern of each irregular

computational phase, there are signi�cant advantages in considering many such phases simultane-

ously. For instance, consider the sample code in Figure 5. There are two computational phases

L2 and L3. In loop L2, data arrays x and y are accessed through data access patterns speci�ed

by indirection arrays ia and ib. In loop L3, the same data arrays are accessed through indirection

array ic. Instead of building two separate communication schedules, loop L3 can reuse many of the

o�-processor elements of array y brought in by the schedule for loop L2. Thus, only an incremental

schedule for loop L2 needs to be built. The incremental schedule gathers only those elements of

y which were not brought in by earlier schedules. Another optimization that can be applied in

this example is schedule merging. Instead of building separate schedules for gathering o�-processor

elements of y, one could build a single schedule that gathers all elements of y required by both

loops. While PARTI provided support for building incremental and merged schedules, these prim-

itives were not designed for adaptive applications, where such optimizations must be performed

repeatedly. CHAOS allows such schedule optimizations to be performed frequently (section 3.2.2).
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CHAOS also supports specialized communication schedules. For some adaptive applications,

particularly those from the particle-in-cell domain, there is no signi�cance attached to the placement

order of incoming array elements. Such application-speci�c information is used to build much

cheaper light-weight communication schedules. In inspectors for such applications, index translation

is not required, and the permutation list need not be generated for the schedule data-structure.

Besides being faster to construct, light-weight schedules also speed up data movement by eliminating

the need of rearranging the order of incoming o�-processor elements. Light-weight schedules have

been used in the parallelization of DSMC. In section 5.2.1 we show how light-weight schedules can

be used by a compiler.

3.2.2 Optimizing the Inspector

CHAOS provides e�cient runtime primitives for analyzing data access patterns and generating

optimized schedules from these. The inspector phase is carried out in two steps | these steps are

called index analysis and schedule generation. In the index analysis stage, the data access pattern

is analyzed to determine which references are o�-processor; duplicate o�-processor references are

eliminated from the list of elements to be fetched and global indexes are translated to local indexes.

To remove duplicates, we use a hash-table. This hash-table is also used for storing all results of

index analysis for later reuse. In the schedule generation stage, the hash table entries are read and

the communication schedule data-structure is constructed. The principal advantage of using such

a two-step process is that some of the index analysis can be reused in adaptive applications.

A hash-table stores global index references obtained from indirection arrays. For each global

index hashed in, the hash-table stores the following information :

1. global index | the global index hashed in.

2. translated address | the processor and o�set where the element is stored. This information

is accessed from the translation table.

3. local index | the local bu�er address assigned to hold a copy of the element, if it is o�-

processor.

4. stamp | this is an integer, used to identify which indirection array entered the element into

the hash-table. The same global index entry might be hashed in by many di�erent indirection

arrays; a bit in the stamp is marked for each such entry.

Index analysis is expensive. The costs of dynamically allocating memory to store new elements in

the hash-table are signi�cant, even though CHAOS uses customized memory allocators. However,
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proc - 1 proc - 1
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proc - 1
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b bc c
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addr - 5

c

Generating   communication   schedules   from the  hash  table

     stamps

Processor   0 Processor    1

1 2 3 4 5 6 7 8 9 10
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7  

proc - 1 proc - 1
addr - 2

9

addr - 4 

     stamps a a

7  

proc - 1 proc - 1
addr - 2

proc - 1
addr - 3

9 8

addr - 4 

b b     stamps

indirection array  ia  = 1,37, 9,2, indirection  array  ib =  1, 5, 7,8, 2

10, 8, 9indirection array  ic  =  4,3,

Processor 0  inserting  three   indirection  arrays   into   the   hash   table

sched_A   =   

sched_B   =  

inc_schedB = 

merged_shedABC =  CHAOS_schedule

CHAOS_schedule 

CHAOS_schedule 

(stamp = a+b+c)   !  This   schedule   will  gather/scatter  elements  7,9,8,10

  y

Initial    distribution   of  data   array -  y

(  off-processor elements  are  in  bold )

(  stamp = b)          !   This  schedule  will  gather/scatter   elements 7,8

( stamp = a)           !   This schedule  will  gather/scatter   elements  7,9

CHAOS_schedule ( stamp = b-a)      !   This  schedule  will  gather/scatter   element   8

Figure 6: Schedule generation with hash table

building a hash-table for duplicate removal is worth the e�ort. In CHARMM, for example, the

non-bonded partners of nearby atoms are almost identical, and duplicate removal greatly reduces

communication volume. Translation table lookup is another costly part of index analysis especially

if a non-replicated translation table is used, in which case, communication is required. However,

much of the costs of index analysis can be amortized by retaining the hash-table. In adaptive

applications, indirection arrays keep changing; however, most of the indirection array elements

remain unchanged. Index analysis for these unchanged indexes involves only a lookup in the hash

table.

Indirection arrays are hashed in by the CHAOS procedure CHAOS_hash. This primitive enters

all the indexes into a designated hash-table and returns an identifying stamp. The stamp identi�es

all entries in the hash table that correspond to that indirection array. The entries in the indirection

arrays have their global indexes changed to local indexes in the course of hashing.

A procedure called CHAOS_schedule is then used to construct communication schedules from

the entries in a hash table. For a given stamp, this primitive extracts all entries in the hash

table with that stamp and constructs a communication schedule. By specifying di�erent logical

combinations of stamps, we can build merged or incremental schedules. Figure 6 demonstrates (in

pseudo-code) how this is done.
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In CHARMM, the indirection array (jnb) specifying the non-bonded partners of each atom is

changed periodically. Whenever such an change occurs, the new indirection array must be rehashed

into the indirection array. However, most of the entries in the new indirection array can be found

in the old hash-table; thus, the cost of index analysis is greatly reduced. Moreover, if the modi�ed

indirection array participates in a merged or incremental schedule, the cost of regenerating a new

schedule of this type is minimized; we can reuse information about the unchanged indirection arrays

maintained in the hash-table.

4 Experimental Results

This section describes howCHAOS was applied to the targeted applications, CHARMM and DSMC.

Experimental results were obtained on the Intel iPSC/860.

4.1 CHARMM

Recall that the critical part of CHARMM is spent in non-bonded force calculation. The non-bonded

interaction list for each atom is modi�ed periodically, as atoms change their spatial positions.

Data Partitioning

Bonded interactions occur between atoms in close proximity to each other, while non-bonded

interactions are excluded beyond a certain cuto� range. Additionally, the amount of computation

associated with an atom depends on the number of atoms with which it interacts { the number

of non-bonded list entries for that atom. This implies that data partitioners which use spatial

information as well as computational load will perform signi�cantly better than naive BLOCK

or CYCLIC distributions. We have tried a recursive coordinate bisection (RCB) partitioner as

well as a recursive inertial bisection (RIB) partitioner on CHARMM with almost identical results.

Both the RCB and RIB partitioners use spatial positions to guide partitioning, and also consider

computational weights while allocating partitions to processors. All data arrays that are associated

with atoms are distributed in an identical fashion, so we do not have to repeat partitioning for each

array separately. Information about the distribution is stored in a replicated translation table.

Iteration Partitioning

Once atoms are partitioned, the data distribution is used to decide how loop iterations are

partitioned among processors. Since the non-bonded loop consumes 90% of the execution time,

balancing the computational load due to these calculations is of primary concern. The non-bonded

force calculation loop nest iterates over each atom's non-bonded list. Currently, each iteration

of the outer loop is assigned to the processor that owns the atom being iterated over. The load

balance achieved by the owner-computes rule depends on the data distribution returned by the data
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partitioner. The bonded force calculation loop is partitioned using the almost-owner-computes rule

described in Section 3.1. The non-bonded force calculation loop nest iterates over each atom's

non-bonded list. Each iteration of the outer loop is assigned to the processor that owns the atom

being iterated over.

Remapping and Loop Pre-processing

Once new distributions of data and loop iterations are known, CHAOS primitives can be used

to remap the data and indirection arrays from the current distributions to new distributions. After

remapping, loop preprocessing is carried out for the bonded and non-bonded force calculation loops.

Indirection arrays used in bonded force calculation loops remain unchanged while the non-

bonded list adapts during computation. Hence, pre-processing for bonded force calculation loops

need not be repeated, whereas it must be repeated for non-bonded force calculation loops whenever

the non-bonded list changes. In this case, the hash table and stamps (see Section 3.2.2) are very

useful for loop pre-processing. While building schedules, indirection arrays are hashed with unique

time stamps. The hash table is used to remove any duplicate o�-processor references. When

the non-bonded list is regenerated, non-bonded list entries in the hash table are cleared with the

corresponding stamp. Then the same stemp can be reused and the new non-bonded list entries are

hashed with the reused stamp.

4.1.1 Performance

The performance of CHARMM, parallelized using CHAOS, was studied with a benchmark case

(MbCO + 3830 water molecules) on the Intel iPSC/860. The program was run for 1000 time-steps

with the cuto� distance for non-bonded interaction set to 14 �A. The non-bonded list was updated

40 times during the simulation. The results are presented in Table 1. These results were obtained

with a recursive coordinate bisection (RCB) partitioning of atoms. The execution time in the

table speci�es the maximum of the net execution time over all processors. The computation and

communication times were averaged over processors. The load balance index was calculated as

LB =
(maxn

i=1
computation time of processor i)� (number of processors n)

P
n

i=1
computation time of processor i

As can be seen from Table 1, CHARMM scaled well and good load balance was maintained up

to 128 processors.

Overheads of Preprocessing

Data and iteration partitioning, remapping, and loop preprocessing must be done at runtime.

Preprocessing overheads of the simulation are shown in Table 2. The data partition time is the

1Estimation done by Brooks and Hodoscek[6]
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Table 1: Performance of Parallel CHARMM on Intel iPSC/860 (in sec.)

Number of Processors 1 16 32 64 128

Execution Time 74595.51 4356.0 2293.8 1261.4 781.8

Computation Time 74595.5 4099.4 2026.8 1011.2 507.6

Communication Time 0.0 147.1 159.8 181.1 219.2

Load Balance Index 1.00 1.03 1.05 1.06 1.08

Table 2: Preprocessing Overheads of CHARMM (in sec.)

Number of Processors 16 32 64 128

Data Partition 0.27 0.47 0.83 1.63

Non-bonded List Update 7.18 3.85 2.16 1.22

Remapping and Preprocessing 0.03 0.03 0.02 0.02

Schedule Generation 1.31 0.80 0.64 0.42

Schedule Regeneration (�40) 43.51 23.36 13.18 8.92

execution time of the RCB partitioner. After partitioning atoms, the non-bonded list is regenerated.

This non-bonded list regeneration was performed because atoms were redistributed over processors

and it was done before simulation occurred. In Table 2, this regeneration time is denoted as non-

bonded list generation time. During simulation, non-bonded list was regenerate periodically. When

the non-bonded list was updated, the schedule must be regenerated. The schedule regeneration

time in Table 2 gives the total schedule regeneration time spent for the 40 non-bonded list updates

during the simulation. By comparing these times to those in Table 1, it can be observed that the

preprocessing overhead is relatively small when compared to the total execution time.

Schedule Merging vs. Multiple Schedules

There are several indirection arrays used in bonded and non-bonded force calculations to refer-

ence data arrays that are distributed in identical fashion. One possible approach is to compute sep-

arate schedules to gather and scatter o�-processor data for each irregular loop. A second approach

is to compute a single schedule using the schedule merging technique, discussed in Section 3.2.1.

Table 3 compares the performance of these techniques and demonstrates the usefulness of schedule

merging.

4.2 DSMC

The computational characteristics of the DSMC code were described in Section 2.2. Recall that

the main feature of DSMC was the motion of gas molecules between cells of a 2-D or 3-D cartesian
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Table 3: Communication Time (in sec.)

Schedule Merging Multiple Schedules
Number of Processors Comm. Time Exec. Time Comm. Time Exec. Time

16 147.1 4356.0 182.1 4427.5

32 159.8 2293.8 201.0 2364.2

64 181.1 1261.4 223.2 1291.9

128 219.2 781.8 253.1 815.2

grid every time-step.

4.2.1 Parallelization Approach

The key component of a typical DSMC computation is the MOVE phase which calculates new

positions of molecules and moves them to appropriate cells. This calls for data exchange between

processors every time-step. Also, the motion of molecules creates load imbalances which must be

periodically corrected by remapping cells to processors.

E�cient Data Migration

As noted while introducing DSMC in Section 2.2, the order in which molecules are appended to

their new cells during the MOVE phase does not matter. This allows use of light-weight schedules,

described in Section 3.2.1, which can be generated e�ciently, and allow faster data migration. Light-

weight schedules are used by the data transportation primitive scatter_append which performs

much better than the gather and scatter primitives used with regular schedules.

Remapping for Load Balancing

Static partitioning of cells across partitioners does not work well for DSMC. As molecules move

across cells, the computational load balance deteriorates over time. Performance can be substan-

tially improved by periodically redistributing the cells with the help of CHAOS's parallel partition-

ers such as recursive coordinate bisection (RCB) [2] and recursive inertial bisection (RIB) [21].

While these partitioners are parallelized, they are still expensive and are a�ordable only when the

load imbalance becomes too severe. CHAOS also provides a fast one dimensional partitioner, called

the chain partitioner [20], which takes advantage of the highly directional nature of particle 
ow

that characterizes many DSMC communication patterns. For instance, in the experiments reported

here, more than 70 percent of the molecules were found moving along the positive x-axis. Partio-

tioning along the direction of 
ow gives good load balance in such a case. Experiments show that

the chain partitioner reduces partitioning cost dramatically to a scale conformable to adaptive data

migration primitives. It also achieves nearly the same quality of load balance as RCB and RIB.

Information about the distribution of cells to processors was maintained in a replicated translation
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Table 4: Regular Schedules vs. Light-weight Schedules

48x48 Cells 96x96 Cells
(Time in secs) Processors Processors

16 32 64 128 16 32 64 128

Regular Schedules 63.74 50.50 79.58 95.50 226.89 131.99 125.64 118.89

Light-Weight Schedules 20.14 11.54 7.60 6.77 79.89 40.46 21.77 14.23

Table 5: Performance e�ects of remapping (remapped every 40 time steps)

Number of processors Sequential
(Time in secs) 8 16 32 64 128 Code

Static partition 1161.69 675.75 417.17 285.56 215.06 4857.69
Recursive bisection 850.75 462.15 278.23 209.75 267.24
Chain partition 807.19 423.50 237.12 154.39 127.26

table.

4.2.2 Performance Results

Table 4 compares the execution time of 2-dimensional DSMC code using the light-weight sched-

ules with the time obtained using regular communication schedules (Section 3.2.1). The compu-

tational load was deliberately evenly distributed over the whole domain, so load balance is not an

issue. The times shown in the table represent the time for the entire execution. These numbers

demonstrate that the cost of generating and using light-weight schedules is much lower than that

of regular schedules in DSMC.

We also show that periodic data remapping provides better performance than static partitioning.

Table 5 compares the performances of periodic domain partitioning methods with that of static

partitioning (i.e. no remapping) for 3-dimensional DSMC codes. The table presents execution time

for 1000 time steps. Cells were remapped every 40 time steps based on the workload information

collected for each cartesian mesh cell. The results show that periodic remapping outperformed static

partitioning signi�cantly on a small number of processors. However, using a recursive bisection

leads to performance degradation on a large number of processors. This performance degradation

is a result of the large communication overhead incurred during partitioning, which increases as the

number of processors increases. At high levels of parallelism the costs of performing the partitioning

dominate over the gains in load balance. The chain partitioner, however, provided the better results

for this problem.
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5 Compiling Adaptive Irregular Problems

There are a wide range of languages such as Vienna Fortran [7], pC++ [10], Fortran-D [9] and

High Performance Fortran (HPF) [13], which provide a rich set of directives allowing users to

specify desired data decompositions. With these decomposition directives, compilers can partition

loop iterations and generate communication required to parallelize programs. This paper presents

language features required to support adaptive problems within the Fortran D framework. However,

the same could be extended for other languages. In the following sections, the existing Fortran D

language support and the proposed language extensions for adaptive problems are discussed.

5.1 Language Support

On distributed memory machines, large data arrays need to be partitioned over the local memory

of processors. These partitioned data arrays are called distributed arrays. Long term storage

of distributed array data is assigned to speci�c processor and memory locations in the machine.

Many applications can be e�ciently implemented by using simple schemes for mapping distributed

arrays. One example of such a scheme would be the division of an array into equal sized contiguous

subarrays and assignment of each subarray to a di�erent processor. Another example would be to

assign consecutively indexed array elements to processors in a round-robin fashion. These two data

distribution schemes are often called BLOCK and CYCLIC data distributions [13], respectively.

5.1.1 Irregular Distribution

On distributed memory machines, irregular concurrent problems may not run e�ciently with stan-

dard data distributions such as BLOCK and CYCLIC [25]. Researchers have developed a variety

of heuristic methods to obtain data mappings that are designed to optimize irregular problem com-

munication requirements [25, 27, 2]. The distribution produced by these methods typically results

in a table that lists a processor assignment for each array element. This kind of distribution is

often called an irregular distribution.

Fortran D provides the user with a choice of several standard distributions. In addition, a user

can de�ne non-standard distributions, or irregular distribution as well. Figure 7 presents an example

of such a Fortran D declaration. In Fortran D, one declares a template called a distribution that

is used to characterize the signi�cant attributes of a distributed array. The distribution �xes the

size, dimension and way in which the array is to be partitioned between processors. A distribution

is produced using two declarations. The �rst declaration is DECOMPOSITION. Decomposition

binds a name to the dimensionality and size of a distributed array template. The second declaration

is DISTRIBUTE. Distribute is an executable statement and speci�es how a template is to be
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S1 REAL*8 x(N),y(N)
S2 INTEGER map(N)
S3 DECOMPOSITION reg(N),irreg(N)
S4 DISTRIBUTE reg(block)
S5 ALIGN map with reg
S6 ... set values of map array using some mapping method ..
S7 DISTRIBUTE irreg(map)
S8 ALIGN x,y with irreg

Figure 7: Fortran D Irregular Distribution

L2: DO i = 1, n step ! outer loop
L2: FORALL i = 1, sizeof indirection arrays ! inner loop
S1 REDUCE(SUM, x(ia(i)), y(ib(i)))

END DO
END DO

Figure 8: Example Reduction Loop in Fortran D

mapped onto the processors.

A speci�c array is associated with a distribution using the Fortran D statement ALIGN.

In statement S3 of Figure 7, two 1-D decompositions, each of size N, are de�ned. In statement

S4, decomposition reg is partitioned into equal sized blocks, with one block assigned to each

processor. In statement S5, array map is aligned with distribution reg. Array map is used to specify

(in statement S7) how distribution irreg is to be partitioned between processors. An irregular

distribution is speci�ed using an integer permutation array map; when map(i) is set equal to p,

element i of the distribution irreg is assigned to processor p. A data partitioner can be invoked

to set the values of the permutation array. The partitioner may not always be available in Fortran

D. In such cases, it can be called as an extrinsic procedure.

5.2 Computational Loop Structures

The implementation of the Forall construct in Fortran D follows copy-in-copy-out semantics { gen-

eral loop carried dependencies are not de�ned. However, a limited class of loop-carried dependencies

can be speci�ed using the intrinsic REDUCE function, inside a Forall construct. Figure 8 shows

how the reduction in Figure 1 would be written within this framework. In a loop which performs a

reduction, the output dependencies between di�erent iterations can be ignored, thus enabling par-

allelization. Reduction inside a Forall construct is important for representing computations such

as those found in sparse and unstructured problems.
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FORALL i = 1, num cells
FORALL j = 1, size(i) ! size(i) is the number of elements in the ith cell
REDUCE(APPEND, new cells(ia(i,j), :), cells(i,j))

END DO
END DO

Figure 9: Example Reduce Append Loop in Fortran D

5.2.1 Reduce Append

In highly adaptive codes, as described in Section 2, the data access patterns change frequently.

Figure 3 shows an example of such codes. Elements of the 2-D array cells are moved across

rows based on the indirection array ia. When such a program is executed on distributed memory

machines, array elements will be moved across processors, based on the distribution of rows of array

cells.

In DSMC, the computational results do not depend on the ordering of elements in each row

of array cells. The computation only depends on the number of elements in each row, and the

values of those elements. Therefore, the data movement operation can be considered equivalent to

appending each element into an unordered list. An operation which adds elements to unordered

lists is associative and commutative, therefore, the data movement can be viewed as a reduction

operation. Recognizing that a particular data movement is a reduction operation can lead to

signi�cant optimizations, since preprocessing is no longer needed to determine data placement

order. Data movements occur frequently in adaptive problems, hence it is important to optimize

them.

Generally, it is possible with existing compiler techniques to compile irregular loops where data

access patterns are known only at runtime due to indirections [8, 22]. The compiler generates a

pre-processing code for such a loop that, at runtime, generates appropriate communication calls

and places o�-processor data in a pre-determined order. However, this technique does not detect

reductions. In order to allow the compiler to detect reductions in data-movement, we propose an

intrinsic function called reduce(append, ..) This intrinsic function will direct the compiler to

adopt the appropriately e�cient data moves. Thus, while parallelizing the loop in Figure 3, a user

with application-speci�c knowledge can recognize that the loop is a reduction and can convey this

information to the compiler using the proposed intrinsic. Figure 9 shows how such an intrinsic

would be used for the loop shown in Figure 3.
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C Initially arrays are distributed in blocks
C$ DECOMPOSITION reg(14026)
C$ DISTRIBUTE reg(BLOCK)
C$ ALIGN x, y, dx, dy WITH reg

...
S1 Obtain new distribution format (map) from the extrinsic partitioner
C$ DISTRIBUTE reg (map)

...
C Calculate DX and DY
L1: FORALL i = 1, natom

FORALL j = inblo(i), inblo(i+1) � 1
REDUCE (SUM, dx(jnb(j)), x(jnb(j)) � x(i))
REDUCE (SUM, dy(jnb(j)), y(jnb(j)) � y(i))
REDUCE (SUM, dx(i), x(i) � x(jnb(j)))
REDUCE (SUM, dy(i), y(i) � y(jnb(j)))

END DO
END DO

Figure 10: Non-bonded Force Calculation Loop of CHARMM in Fortran D

5.3 Compiler Implementation

This section presents an outline of the compiler transformations used to handle irregular templates

that appear in CHARMM and DSMC. The runtime support has been incorporated in the For-

tran 90D compiler that is being developed at Syracuse University [4]. The Fortran 90D compiler

transformations generate translated codes which embed calls to CHAOS procedures. The perfor-

mance of the compiler generated code is compared with that of the hand parallelized versions. All

measurements were done on the Intel iPSC/860 machine.

5.3.1 CHARMM

The non-bonded force calculation loop is computationally intensive and it also adapts every few time

steps. A simpli�ed Fortran D version of the non-bonded force calculation loop is shown in Figure 10.

The non-bonded list jnb is used to address the coordinate arrays (x and y) and the displacement

arrays (dx and dy) of atoms. The size of the non-bonded list of atom i is inblo(i+ 1)� inblo(i).

In Figure 10, data arrays are initially distributed by BLOCK. A maparray map is used to

distribute data arrays irregularly. The values of map are set using a partitioner. The compiler

embeds CHAOS remap procedures to redistribute data irregularly. The compiler transforms the

irregular loop L1 into an inspector and an executor by embedding appropriate CHAOS runtime

procedures.

Carrying out pre-processing for irregular loops can be an expensive process. However, if data
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Table 6: Performance of Hand-Coded and Compiler-Generated CHARMM Loop

(in sec.) Processors Partition Remap Inspector Executor Total

Hand Coded 32 3.2 8.2 2.8 84.6 98.8
64 4.2 6.7 2.0 62.9 75.8

Compiler 32 3.3 8.7 3.1 85.0 100.1
64 4.3 7.1 2.2 63.6 77.2

access patterns do not change, the results from pre-processing can be reused. Therefore, it is

important that the compiler-generated code be able to detect when preprocessing can be reused.

An implementation of reusing results of pre-processing in compiler-generated code is described in

Ponnusamy et al. [22]. In this approach, the compiler-generated code maintains a record of when

statements or array intrinsics of loops may have modi�ed indirection arrays. Before executing an

irregular loop, the inspector checks this record to see whether any indirection array used in the loop

has been modi�ed since the last time the inspector was invoked. If an indirection array is found

to be modi�ed, the inspector removes the current schedule, generates a new schedule and updates

the loop bound information. Otherwise, the same schedule can be reused.

Table 6 presents experimental results that compare the performance of compiler-generated code

with that of hand-coded version. For these experiments we used a smaller version of the program

with computational characteristics resembling the real-life applications. Both the hand-coded and

compiler-generated versions of the program ran the calculations of the case described in Section 2.1

(MbCO + 3830 water molecules) for 100 iterations. In order to simulate adaptivity of the non-

bonded force calculation loop, data arrays were redistributed every 25 iterations by applying RCB

and RIB alternately. Thus, data arrays and iterations were redistributed four times during the

execution. Table 6 lists the cost of data partitioning, data and indirection arrays remapping, and

pre-processing and execution. The performance of the compiler-generated code is almost matches

that of the hand parallelized code.

5.3.2 DSMC

Recall that the key component of the DSMC computation is the MOVE procedure which computes

new positions of particles and moves them to proper locations in global address space. Particles

move from one cell to another when their spatial locations change, consequently data associated

with the particles must be redistributed as well.

Figure 11 shows a simpli�ed version of MOVE procedure of 2-dimensional DSMC code in Fortran

D. Cells are distributed across processors using a regular BLOCK distribution. An indirection array
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C$ DECOMPOSITION celltemp(num cells)
C$ DISTRIBUTE celltemp(BLOCK)
C$ ALIGN icell(*,:),vel(*,:),size(:),new size(:) WITH celltemp

C Reduce-append the particle information into new cells according to icell array
L1: FORALL j = 1, num cells

FORALL i=1, size(j)
REDUCE(APPEND, vel(i,icell(i,j)), vel(i,j))
END FORALL
END FORALL

C Compute the number of particles in each cell
L2: FORALL j = 1, num cells

new size(j) = 0
END FORALL

L3: FORALL j = 1, num cells
FORALL i=1, size(j)
new size(icell(i,j)) = new size(icell(i,j))+1
END FORALL
END FORALL

Figure 11: DSMC particle movement code in Fortran D

icell(i,j) is used to represent a new index of a cell in which particle j in cell i must be assigned. An

array size identically aligned with the second dimension of icell stores the number of particles in

each cell. Loop L1 redistributes velocity components vel associated with individual particles using

the reduce append intrinsic which was proposed in Section 5.2. Loops L2 and L3 are responsible

for recomputing the number of particles in each cell.

When a reduce-append statement is encountered, the compiler generates a sequence of calls to

CHAOS data migration primitives which carry out the data movement. Having recognized that the

movement is a reduction, the compiler generates calls to those CHAOS primitives which construct

and use light-weight schedules. As shown in Section 4.2, light-weight schedules yield much better

performance than regular schedules, for such movements. The loop bounds of loops L2 and L3 are

determined by the compiler. The compiler parallelizes loop L3 ( which involves indirection ) by

embedding appropriate CHAOS runtime procedures.

Performance results for both the compiler-generated and the manually parallelized 2-dimensional

DSMC code with 32x32 cells and 5K molecules are presented in Table 7. These performance num-

bers include computation of velocity and position of each molecule which are changed by the

molecule collision phase, and also include reduce-append operations for molecule movement. The

table presents the time for executing the DSMC loop 50 times on the Intel iPSC/860. While

the manually parallelized version utilizes the functionality of CHAOS data migration primitives
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Table 7: Performance of compiler generated DSMC code

Compiler generated Manually parallelized
(Time in secs) Processors Processors

4 8 16 32 4 8 16 32

Reduce append 2.75 1.89 1.79 2.39 1.83 1.41 1.49 2.05

Total time 15.47 8.99 6.71 5.30 8.51 4.90 4.05 3.75

which return the new number of particles in each cell, the compiler generated code needs to carry

out an additional computation to obtain this. Hence, the compiler-generated code performs extra

communication. (This communication is done by invoking CHAOS procedures.)

6 Related Work

Several researchers have developed programming environments that target particular classes of

irregular or adaptive problems. Williams [27] describes a programming environment (DIME) for

calculations with unstructured triangular meshes using distributed memory machines. Baden [1]

has developed a programming environment targeting particle computations. This programming

environment provides facilities that support dynamic load balancing.

There are a variety of compiler projects targeting at distributed memory multiprocessors: the

Fortran D compiler projects at Rice and Syracuse [9, 4] and the Vienna Fortran compiler project [7]

at the University of Vienna, among others. The Jade project at Stanford [16], the DINO project at

Colorado [23], and the CODE project at UT, Austin, provide parallel programming environments.

The Split-C project [15] at Berkeley is targeted towards providing a parallel programming envi-

ronment on distributed memory machines. Runtime compilation methods have been employed in

four compiler projects: the Fortran D project [12], the Kali project [14], Marina Chen's work at

Yale [17] and the PARTI project [19, 24]. The Kali compiler was the �rst compiler to implement

inspector/executor type runtime preprocessing [14] and the ARF compiler was the �rst compiler

to support irregularly distributed arrays [28].

7 Conclusions

The CHAOS procedures described in this paper can be viewed as forming part of a portable,

compiler independent, runtime support library. The CHAOS runtime support library contains

procedures that support :

1. static and dynamic, distributed array partitioning,
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2. partitions loop iterations and indirection arrays,

3. remap arrays from one distribution to another, and

4. carry out index translation, bu�er allocation and communication schedule generation.

In this paper, we introduced new features of CHAOS that enable parallelization of certain types

of adaptive irregular problems. These include light-weight communication schedules and e�cient

schedule generation. We have described how two real-life adaptive applications, CHARMM and

DSMC, were parallelized using the runtime support.

We have also discussed how such adaptive codes can be automatically parallelized by compilers.

Computational templates extracted from a molecular dynamics code and a PIC code were tested

using a prototype compiler implementation. The performance of the compiler-generated codes was

compared to that of the hand-parallelized codes.
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