
Building a High-Performance Collective Communication Library

Mike Barnett
Department of Computer Science

University of Idaho
Moscow, Idaho 83844- 101 0

Lance Shuler
Parallel Computing Sciences Department, 1424

Sandia National Laboratory
Albuquerque, New Mexico 87185-1109

Satya Gupta and David G. Payne
Supercomputer Systems Division

Intel Corporation
15201 N.W. Greenbrier Pkwy

Beaverton, Oregon 97006

Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

Jerrell Watts
Computer Science Department

California Institute of Technology
Pasadena, California 91125

Abstract

In this paper, we repod on a project to develop
a unified approach for building a library of collec-
tive communication operations that performs well on
a cross-section of problems encountered in real appli-
cations. The target architecture is a two-dimensional
mesh with worm-hole routing, but the techniques are
more general. The approach differs from traditional li-
brary implementations in that we address the need for
implementations that perform well for various sized
vectors and grid dimensions, including non-power-of-
two grids. We show how a general approach t o hy-
brid algorithms yields performance across the entire
range of vector lengths. Moreover, many scalable im-
plementations of application libraries require collective
communication within groups of nodes. Our approach
yields the same kind of performance for group collec-
tive communication. Results from the Intel Paragon
system are included. To obtain this library for Intel
systems contact intercomaDcs .utexas. edu.

1 Introduction

The Interprocessor Collective Communication (In-
tercom) Project is a comprehensive study of tech-
niques for a high-performance implementation of com-

monly used collective communication algorithms. It
is this emphasis on a high-performance implementa-
tion that sets it aside from the MPI effort [16], which
tries to standardize the interface to communication li-
braries. Indeed, we expect the fruits of our efforts
to be incorporated into implementations of the MPI
standard.

The following collective communication operations
have been identified as being useful in many appli-
cations: broadcast, scatter, gather, collect and global
combine. Typical approaches to implementing such
collective communication algorithms are limited to
considering the case of short vectors, which are treated
with one technique, or to considering the case of long
vectors, for which very different techniques are appro-
priate. For a general purpose library, it is crucial that
an implementation performs well for all vector lengths.

In an earlier paper [l], we have presented a gen-
eral approach to building collective communication li-
braries. In this paper, we give a further description
of this approach, with emphasis on an explanation of
hybrids.

2 Target Architectures

Our current implementation assumes a two-
dimensional physical mesh of processing nodes, with

107
1063-9535194 $4.00 0 1994 IEEE

bidirectional links between nodes and worm-hole (cut-
through) routing. Furthermore, we assume that it is
possible to model the time required for sending a mes-
sage of length n bytes between any two nodes by

a + n p

where a is the latency for sending a message, and j3
is the communication time per item, in the absence
of network conflicts. A processor can both send and
receive at the same time. But it can only send to, or
receive from, one other node at a given time. When
two messages traverse the same physical link on the
communication interconnect, we assume they share
the bandwidth of that link. In addition, we assume
that the time for performing an arithmetic operation
is denoted by y.

3 Target Collective Communication

We explain the target collective communication op-
erations in the setting where all processors are in-
volved in the communication. Assume there are p
processors, labeled Po,. . . , Pp-l. Let x represent a
vector containing n data items; x is partitioned into
subvectors,

x=(xo)
xp-1

where xi is of length ni. Similarly, vector y(j), j =
0, . . . , p - 1, contains n items, and is partitioned con-
formal with 2. The operation @ represents an asso-
ciative and commutative combine operation such as
an element-wise summation or elemegt-wise product
of vectors. We assume in this paper that n; x nlp.

The target collective communication operations are
given in Table 1.

4 Building Blocks

In this section, we present building blocks for our
library. All the building building blocks have the prop-
erty

e

e

e

that they

are simple to implement,

do not require power-of-two size partitions, and

incur no network conficts.

The implementations of the short vector primitives
can be shown to have optimal latency. The implemen-
tation of the long vector primitives can be shown to
be asymptotically optimal on linear arrays as vector
size increases.

We start by discussing the implementation of the
building blocks in the setting of linear arrays, which
due to worm-hole routing can be considered unidirec-
tional rings. (For example, if all messages are sent to
the right nearest neighbor, only the rightmost proces-
sor in the linear array sends to the left. Hence, there
are no message conflicts.)

4.1 Short Vector Primitives

Algorithms for implementing collective communi-
cations for short vectors must minimize startup cost,
i.e. the number of messages sent. On hypercubes,
this can be easily accomplished by staging the algo-
rithms as logp steps during which communication is
performed in each hypercube dimension. For meshes,
this idea can be utilized as well, provided some care is
taken at each stage [5].

All our target short vector collective communica-
tion operations can be built from four primitives.
These are broadcast, combine-to-one, scatter,
and gat her.

Consider the broadcast. For short vectors, this op-
eration can be implemented on a linear array of nodes
in the following way: Start by assuming a given root
node has the message of length n. The broadcast can
proceed by dividing the linear array in two (approxi-
mately) equal parts and choosing a receiving node in
the part that does not contain the root. The broadcast
proceeds recursively by treating each of the involved
nodes as a new root for a broadcast within its own half
of the previous array. It is easy to see that no network
conflicts occur and the total time required is

The combine-to-one can be implemented simi-
larly by running the broadcast communications in re-
verse order and interleaving communication with the
combine operation. This requires a total time of

b P 1 (a + nP + n7).
The scatter can be implemented like the broadcast,
except at each stage only the data that eventually re-
sides in the other part of the network is sent. If each
node receives an equal share of the initial vector, the
cost is approximately

108

Operation Before
Broadcast
Scatter
Gather xj at Pj
Collect xj at Pj
Combine-to-one y(J) at P,
Combine-to-all y(j) at P,

x at Pb , k given
x at PI, k given

I Distributed Combine 11 y(J) at Pj I @ ‘ ~ ~ y ~ ~ at P,

After
x at all Pj
xj at Pj
x at PI, k given
x at Pj
@~;y(~) at PI, k given
@‘c:y(i) at P,

Table 1: Summary of target collective communication operations.

The gather can be implemented as the scatter in re-
verse and incurs the same cost.

4.2 Long Vector Primitives

For long vectors, a strategy that minimizes over-
head due to vector length, in addition to avoiding net-
work conflicts, is necessary. It should be noted that
the above mentioned scatter and gather operations
have this property, and they also act as long vector
primitives. In addition, we propose two more long vec-
tor primitives, the bucket collect and bucket dis-
tributed combine. These four primitives constitute
the set from which all our target long vector collective
communication operations can be built.

The bucket collect is a special implementation
of the collect, which views the linear array as a ring.
Buckets are passed between the nodes that move the
subvectors to be collected, leaving the result on all
nodes. Note that no network conflicts occur. Cost:

P - 1 (p - l)a + -np.
P

The bucket distributed global combine is simi-
lar to the bucket collect, executed in reverse, where the
buckets are used to accumulate contributions. Cost:

(P - 1). + p - l n p +
P

5 Using the building blocks

In this section, we describe how the short and long
vector primitives can be used to generate short and
long vector implementations for all collective commu-
nications.

5.1 Short vector algorithms

For short vectors, the broadcast, combine-to-one,
scatter and gather primitives are, of course, imple
mentations of the operations themselves. The other
three collective communications can be generated us-
ing these primitives as follows:

Collect: Gather followed by broadcast. Cost:

Distributed global combine: Combine-to-one fol-
lowed by scatter. Cost:

Global combine- to-all: Combine-to-one followed
by broadcast. Cost:

2 r h 3 Pl Q + 2 Pog Pl np + Poi3 Pl n7.

For all these implementations, the startup cost is
within a factor two of optimal. On both the Touch-
stone Delta and the Paragon, due to machine specific
issues, the startup actually is optimal.

5.2 Long vector algorithms

For long vectors, the collect, distributed combine,
scatter and gather primitives are once again the im-
plementations themselves. The other three collective
communications can be generated using these primi-
tives as follows:

Broadcast: Scatter followed by collect. Cost:

(Pogpl + p - 1). + 2-np. P - 1
P

109

Combine-to-one: Distributed combine followed by
gather. Cost: logical

mesh
p - 1 p - 1

2(p - 1)cr + 2-np + -ny.
P P

hybrid time

Global combine-to-all: Distributed combine fol-
lowed by collect. Cost:

3 x 1 0
2 x 3 x 5

p - 1 p - 1
2(p - l) a + 2-np + -ny.

P P

SMC 16a + (240/30)np
SSMCC 9 a + (160/30hB

In later sections, we will talk about stage 1 and 2 of the
long vector algorithms for each of the communications.

For the broadcast and combine-to-one, it can be ar-
gued that the p term is asymptotically within a factor
two of optimal, while for the combine-to-all it can be
argued that the ,B term is asymptotically optimal.

1 x 3 0
2 x 1 5

6 Hybrid algorithms

M + ii50/30jnP
SMC 6 a + (150/30)nP

We illustrate the different possibilities for creating
hybrid algorithms by considering the broadcast oper-
ation on a linear array of 12 nodes, with PO as root.
At the extremes, we can use the minimum spanning
tree or the scatter/collect broadcasts. Other choices
view the linear array logically as a higher dimensional
mesh and within each dimension, a choice is made to
do scatter/collect or minimum spanning tree broad-
casts. Fig. 1 illustrates an example of this.

For larger numbers of nodes, a larger number of
choices exist. This is illustrated in Table 2 and Fig. 2
for the case of 30 nodes. The first entry in Table 2
is described by the pair (3 x lO,SMC), which indi-
cates a logical 3 x 10 grid, with the broadcast exe-
cuted as a Scatter in the first dimension, a Minimum
spanning tree broadcast in the second dimension, di-
mension, and finally a Collect in the first dimension.
Similarly, the second entry in Table 2 is described by
the pair (2 x 3 x 10, SSMCC), which indicates a log-
ical 2 x 3 x 10 grid, with the broadcast executed as a
- Scatter in the first dimension, a Scatter in the second
dimension, a Minimum spanning tree broadcast in the
third dimension, a Collect in the second dimension,
and finally a Collect in the first dimension. Other en-
tries in the table have analogous interpretations.

In general, given a linear array of p nodes which
is logically viewed as a dl x . . . x dk mesh, there are
a large number of choices for the broadcast. (Notice
that k must also be chosen.) Again, Table 2 and Fig. 2
illustrate several possible hybrid solutions for p = 30.

3 10
10 x 3
2 x 15

sscc 170 + (94j3ojnb
SSCC 17a + (94/30)np
SSCC 20a + (8 6 / 3 0 M

5 x 6
6 x 5 SSCC 15a + (98/30)nB

Table 2: Some choices of hybrids and their expense
when broadcasting on a linear array with 30 nodes'.
The choices are listed in increasing order of the p term.
Which makes them progressively more appropriate for
long vectors, at a cost of higher latency.

The cost for broadcasting for a given p , with strategy
(SS . . .SC . . .CC,d l x . . . xdk)isgivenby

Similarly, the cost of a strategy given by
(SS. . .SMC.. .CC,dl x . . . xdk) hascost

+ [log(dk)l a + riOg(dk)i np.
Here the bold-face indicates factors included to com-
pensate for network conflicts.

An observant reader will notice that three of the examples
in Table 2 have a cost which in fact are wowe than the minimum
spanning tree broadcast cost, 5a + 5np. Those hybrid solutions
are included in the table as we feel that they help illustrate the
mechanism by which hybrids can be chosen.

110

node

step 1
scatter

step 2
scatter

step 3
MST
bcast

step 4
MST
bcaat
(cont.)

step 5
collect

step 6
collect

final

9 10 11 0 1 2 3 4 5 6 7 8

2 0

c

c

c

c

t

c

t 2 0

c

c

c

2 1

2 2

23

c

i

c

*

2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0

21 21 21 21 21 21 21 21 21 21 21 21
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

23 23 23 23 23 23 23 23 23 23 23 23

Figure 1: Broadcast hybrid: In Step 1 and 2, scatters within subgroups of two nodes are performed. Next,
separate MST broadcasts within subgroups of three nodes are performed in Step 3 and 4. Finally, simultaneous
collects within subgroups of two complete the broadcast. Except for Step 1 and 6, limited network conflicts occur.
The strategy benefits from the fact that network conflict is least when the vectors sent are long. Notice that this
is one of many possible strategies: A MST broadcast involving all 12 nodes; Scatter involving four nodes, MST
broadcast in groups of three, collect in groups of four; etc.

111

Broadcast on a Linear A m y of 30 nodes

L I I

, ' P .' . ' E logical meah, algorithm, data symbol
1 x 30. M. : /,'P

"I
1 I I

1000 10' 1 o5
message length (bytea)

Figure 2: Predicted performance of some of the broadcast hybrids for a linear array of 30 nodes enumerated
in Table 2, using machine parameters similar to those of the Paragon. While the benefits of these hybrids are
marginal for 30 nodes, this figure provides a representative illustration of the benefits that can be expected from
the use of hybrids.

We note that the different choices of hybrids for
broadcast and other collective operations can be gen-
erated by the template given in Fig. 3. For example,
in the cast of the broadcast hybrid, the short vec-
tor algorithm is the MST broadcast, and stage 1 and
stage 2 of the long vector algorithms are scatter and
bucket collect, respectively. Similarly, for a collect,
the short vector algorithm uses a gather followed by a
MST broadcast, stage 1 of the long vector algorithm is
a void operation, and stage 2 is a bucket collect. This
approach has a heavy dependence on the integer fac-
torization of the dimensions of the physical mesh. As
a result, if one or both of these dimensions are prime,
or have only a few large integer factors, the hybrid
algorithms may not be as effective.

We have not had a chance to fully study the the-
oretical aspects of choosing the optimal hybrid. This
is partially due to the added complications posed by
reality, which makes it more desirable to design effec-
tive heuristics than to develop theoretically optimal
methods which assume conditions that do not mir-
ror reality. For example, it is clearly beneficial to

choose long vector primitives early during a hybrid,
since they reduce the length of the message, thereby
reducing network conflicts during the later stages of
the hybrid. This can indeed be proven to be optimal.
It is less clear whether to have the earlier stages in-
volve communication between nearby nodes, as we do
in our example for the broadcast, or to have the later
stages involve nearer nodes. Again, one can make the
argument that while the vectors are long, the hybrid
should choose the localized groups in an effort to re-
duce network conflicts. By the time the later stages of
the hybrid are executed, the vector lengths are shorter
and hence the effect of network conflict is less.

7 Applying techniques to the Paragon

7.1 Further issues

A number of issues complicate using the simple
approach discussed so far on a real machine. We
will use the Intel Paragon as an example. First of

112

Template

if p = 1 or n small

else
short vector algorithm

view nodes as r x c logical mesh
long vector alg. stage 1 within rows
call this algorithm recursively for

long vector alg. stage 2 within rows
pieces within columns

fi

Broadcast

Figure 3: Template for generating hybrid algorithms
on linear arrays

(bytes) I (sec) (sec)
8 I 0.0012 0.0013 0.92

all, the Paragon is a mesh, not a linear array. It
pays to take this into account when choosing logical
meshes. In particular, long vector primitives can per-
form within physical rows and columns, which reduces
the latency for bucket based primitives from (p - 1).
to (r + c - 2)a, where T and c are the physical mesh
dimensions. On meshes, the use of long vector primi-
tives can be enhanced by alternating directions within
the mesh [3]. Also, the model for communication is
considerably more complex: details of how messages
are sent greatly affects the parameters in the model,
a and P. Furthermore, there is an excess of band-
width on each link of the network compared to the
bandwidth from a node to the network. As a result,
each link can in effect accommodate more than one
message simultaneously without penalty .

Incorporating the above observations, we have re-
fined our techniques to the point where very good hy-
brids can be obtained as long as good short and long
vector primitives are provided as well as an accurate
model for their expense as a function of message length
and number of interleaving subgroups. Further details
for this go beyond the scope of this paper.

Collect X

7.2 Experimental Results

1M 0.51 0.10 5.10
8 0.27 0.0035 77.1

1% this section, we present representative experi-
mental results from a complete implementation of the
library for the case of collective communication within
all nodes. The experiments were performed on a 512-
node Intel Paragon, running under OSF release R1.l.
We present data from two different collective opera-
tions executed on two different physical mesh parti-
tions: the case of a collect on a 16 x 32 mesh, which

(known
lengths)
Global Sum

I Operation I length 11 NX I Intercom 11 ratio I

I

64 K 0.32 0.013 24.6
1M 0.94 0.075 12.5

8 0.0036 0.0041 0.88
64 K 0.17 0.024 7.10

1M 2.72 0.17 16.0

I , I I I 64 K 11 0.031 I 0.012 I1 2.58 1

Table 3: Time (in sec.) for the representative collec-
tive communications. All results are for a 16 x 32 mesh
of nodes.

has the considerable advantage of power-of-two dimen-
sions, and the case of a broadcast on a 15 x 30 mesh,
which deviates significantly from a power-of-two mesh.
The results are given in Fig. 4.

To highlight the benefits of the hybrid algorithms,
we present data in Table 3 for three vector lengths that
shows the time of the different algorithms for short,
medium, and long vectors. Notice that often better
than an order of magnitude improvement is observed
over the current implementations that are part of the
NX operating system for the Intel Paragon. While the
performance is in general considerably better than the
NX collective communications calls, for short vectors,
the iCC library, developed as part of the Intercom
project, performs somewhat worse. This is due to the
fact that the short vector primitives are implemented
using recursive function calls, which carry a measur-
able overhead.

8 Other algorithms

It should be noted that for some of the communi-
cations, optimal algorithms for long vectors exist that
in theory outperform our approach. For example, on
hypercubes Ho and Johnsson’s EDST broadcast [7]
will outperform our scatter/collect broadcast by a fac-
tor of two for long vectors. However, it is our ex-
perience that such pipelined algorithms are generally
difficult to implement and are extremely architecture
dependent. They are also more succeptible to timing
irregulaties resulting from the more complex operat-
ing systems of current generation machines. Indeed,
such theoretically superior algorithms are often out-

113

Figure 4: Performance of representative hybrid collective communication operations on the Intel Paragon. left:
Collect on a 16 x 32 physical mesh. right: Broadcast on a 15 x 30 physical mesh.

performed by simpler algorithms (e.g. scatter-collect
algorithm) when implemented on real systems. This
has been our experience on the Touchstone Delta and
the Intel Paragon, making these theoretically optimal
approaches inappropriate for general library develop-
ment.

9 Group Communication

Over the past decade, it has become increasingly
obvious that many applications require parallel imple-
mentations formulated in terms of computation and
communication within node groups (e.g. rows and
columns of a logical mesh). Until recently, applica-
tion programmers have been forced to write such op-
erations themselves. Fortunately, this need was rec-
ognized by the MPI effort, which provides facilities
for creating groups, as well as performing collective
communications involving only nodes within the same
group.

Notice that our hybrids themselves require commu-
nication within groups. For example, the broadcast
hybrid requires group versions of the collect, scat-
ter and minimum spanning broadcast. To perform a
ring collect within a column, for example, we simply
called the ring collect primitive with an array con-
taining the ID'S of the processors comprising a col-

umn in the mesh. The ring collect routine would treat
those processors as a group of contiguous nodes num-
bered 0 to r - 1, using the group array to provide the
logical-to-physical mapping. Thus, in the process of
creating our library, we also created the mechanism
necessary to support the group abstraction. As a re-
sult, it was relatively straightforward for us to pro-
vide a MPI-like interface to our collective communica-
tions, thereby extending our high-performance hybrid
algorithms to group collective communication. Per-
formance for group operations is maintained by ex-
tracting information about the physical layout of a
user-specified group. In cases where a group com-
prises a physical rectangular submesh, the same row-
and column-based techniques are used as in the whole-
mesh operations. When a group is unstructured or its
structure cannot be ascertained, it is treated as though
it were a linear array.

10 Obtaining Documentation and Us-
ing the Intercom Library

To obtain the Intercom library for Intel sys-
tems, contact intercom@cs .utexas. edu. Manuals
and other information regarding the Intercom library
are available via anonymous f tp from cs .ut exas. edu
in the directory pub/rvdg/iCC. A number of papers

114

that inspired the development of this library can be
found in the directory pubhvdg. To use the Intercom
library, obtain the Intercom collective operations call-
ing sequences from the manual, introduce them into
your Fortran or C program, and simply link the In-
tercom library into your program. For example, to
compile a Fortran program main.f for the Paragon
and link the Intercom library to it, execute the fol-
lowing -

i f 7 7 -0 main main.f iCC.cver0 .a -nx -1lmath

(where <vers> indicates the version number of the
Intercom library which is to be linked). An anal-
ogous command is used for a C program. The In-
tercom library also contains a direct NX interface,
which converts all NX collective opertions to Inter-
com collective operations (except the NX broadcast
operation, csend(- l) , which must be changed explic-
itly to the Intercom operation iCChcast ()). To link
in the Intercom library using the NX interface, link
in NXtoiCC. <vers>. a instead of i C C . <vers>. a.

11 Conclusion

We have implemented a complete library for the In-
tel Paragon, based on the described techniques. This
library exhibits considerably better performance than
any other collective communication library for the
Paragon we have seen.

To port the library between platforms or tune it for
new operating system releases, it suffices to enter a few
parameters that describe the latency, bandwidth and
computation characteristics of the system, in addition
to changing only the message send and receive calls to
the native point-to-point communication library. In-
deed, we ported the library from the original version,
which was designed for the Touchstone Delta, to the
Paragon by changing only these parameters, tuning it
in a matter of hours.

In addition to the Paragon and Delta versions,
we also have a version tuned for the the iPSC/860
that has the same functionality, but uses algorithms
more appropriate for hypercubes (including the EDST
broadcast). A version tuned for the SUNMOS operat-
ing system developed at Sandia National Laboratory
is also planned.

A version of the library that lacks the group in-
terface was released in summer 1994. We expect to
release an updated version of the library that allows
for group collective communication in fall 1994.

Acknowledgements

This research was performed in part using the Intel
Paragon System and the Intel Touchstone Delta Sys-
tem operated by the California Institute of Technology
on behalf of the Concurrent Supercomputing Consor-
tium. Access to this facility was provided by Intel
Supercomputer Systems Division and the California
Institute of Technology. Funding for this project was
provided in part by the Intel Research Council, Intel
Supercomputer Systems Division, and the University
of Texas Center for High Performance Computing.

References

[l] M. Barnett, S. Gupta, D. Payne, L. Shuler,
R. van de Geijn and J . Watts. Interprocessor Col-
lective Communication Library (Intercom). Pro-
ceedings of Scalable High Performance Computing
Conference, pg. 357-364, IEEE Computer Society
Press, Knoxville, TN, May 23-24, 1994.

[2] M. Barnett, R. Littlefield, D.G. Payne and
R. van de Geijn. Efficient Communication Primi-
tives on Mesh Architectures with Hardware Rout-
ing. Sixth SIAM Conference on Parallel Processing
f o r Scientific Computing, Norfolk, VA, Mar. 22-
24, 1993.

[3] M. Barnett, R. Littlefield, D.G. Payne and
R. van de Geijn. Global Combine on Mesh
Architectures with Wormhole Routing. 7th In-
ternational Parallel Processing Symposium, pages
156-162, IEEE Computer Society Press, Newport
Beach, CA, Apr. 13-16, 1993.

[4] M. Barnett, D. Payne and R. van de Geijn. Opti-
mal broadcasting in mesh-connected architectures.
University of Texas Department of Computer Sci-
ence TR-91-38, Dec. 1991.

[5] M. Barnett, D.G. Payne, R. van de Geijn and
3. Watts. Broadcasting on Meshes with Worm-
Hole Routing. Journal of Parallel and Distributed
Computing, submitted. (Currently University of
Texas Department of Computer Sciences TR-93-
24.)

[6] J.-C. Bermond, P. Michallon and D. Trystram.
Broadcasting in Wraparound Meshes with Paral-
lel Monodirectional Links. Parallel Computing,
18(6):639-648, June 1992.

115

[7] C.-T. Ho and S. L. Johnsson. Distributed Rout-
ing Algorithms for Broadcasting and Personal-
ized Communication in Hypercubes. Proceedings
of the 1986 International Conference on Parallel
Processing, pg. 640-648, IEEE Computer Society
Press, 1986.

[8] S. L. Lillevik. The Touchstone 30 Gigaflop Delta
Prototype Sixth Distributed Memory Computing
Conference Proceedings, pg. 671-677, IEEE Com-
puter Society Press, 1991.

[9] R. Littlefield. Characterizing and Tuning Com-
munications Perfomance on the Touchstone Delta
and iPSC/860. Proceedings of the 1992 Intel User’s
Group Meeting, Dallas, Texas, Oct. 4-7, 1992.

[lo] L. M. Ni and P. K McKinley. A Survey of Worm-
hole Routing Techniques in Direct Networks. IEEE
Computer, 26(2):62-76, Feb. 1993.

[ll] Y. Saad and M. H. Schultz. Data Communica-
tion in Parallel Architectures. Parallel Computing,
11(2):131-150, Aug. 1989.

[12] S. R. Seidel. Broadcasting on Linear Arrays and
Meshes. Oak Ridge National Laboratory Technical
Report ORNL/TM-12356, Mar. 1993.

[13] M. Simmen. Comments on Broadcast Algorithms
for Two-Dimensional Grids Parallel Computing,
17(1):109-112, Apr. 1991.

[14] R. A. van de Geijn. Efficient Global Combine
Operations. Sixth Distributed Memory Computing
Conference Proceedings, pg. 291-294, IEEE Com-
puter Society Press, 1991.

[15] R. van de Geijn and J . Watts. A Pipelined Broad-
Parallel Pro- cast for Multidimensional Meshes.

cessing Letters, to appear.

[16] D. W. Walker. The Design of a Standard Message
Passing Interface for Distributed Memory Concur-
rent Computers. Parallel Computing, Apr. 1994.
(Up to date information about the MPI standard
is available from net l ib , directory mpi.)

116

