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Abstract

PARAMICSis a PARAIlel MICroscopic Traffic Simulator
which is, to our knowledge, the most powerful of its type
in the world. The simulator can model around 200,000
vehicleson around 7,000 roads (taken fromreal road traffic
network data) at faster than ‘real-time' rates, making use
of 16K processor TMC Connection Machine CM-200 for
the simulation aspect. The project aims to make avail-
able to road network planners a new range of tools, and
demongtrates that use of high performance computing in
real applicationsis possible and worthwhile, while yield-
ing important and interesting research results.

1 Introduction

This paper describes the PARAMICS microscopic traffic
simul ation package, designed and written at the Edinburgh
Paralel Computing Centre (EPCC) in conjunction with
SIAS Ltd, and part funded by the Science and Engineering
Research Council (SERC) and the Department of Trans-
port.

PARAMICS is implemented making use of a Think-
ing Machines Corporation(TMC) CM-200, configured with
16K processors and a DataVault fast storage device. The
project aim is to implement a system whereby individual
vehicles can be simulated accurately on al the mgjor trunk
roads in the Scottish road network, and updated at rea
timerates. Inthisuse, ‘real time' means that the simulator
should be able to simulate the movement of vehiclesin a
certain time, and that this time should be equal to (or less
than) the real time it would take the vehicles to progress
that distance. The ‘time-step’ for the smulator update is
one second of real ‘driver time', so the simulator itself
should also take one second at most for each iteration. The
number of vehicles simulated is of the order of 200,000 on
around 7,000 road links, and to our knowledge, thisisthe
biggest simulation attempted at this complexity anywhere
in Europe. At time of writing, only one other group that
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we are aware of in the world islooking at such a problem
size([8]), dthough interest isgrowing in thisarea.

In particular, our own interest isin studying the conges-
tion problemsinthe Scottish trunk road network. However,
it should be noted that any network for which information
isavailablecan bemodelled (even if thenetwork isin coun-
tries where people drive on ‘the other’ side of the road!).

2 Background
2.1 PARAMICS : Whatis it, and why ?

While traffic simulation programs have been in existence
for many years, they have al had to use simplified models
of traffic flow in order to produce results within practica
timescales. A typical assumption is to represent traffic
flow on a particular road as a single quantity, analogous
to eectricity flowing though one link in a circuit. Such
models are generally classed as being macroscopic simu-
lations. Unfortunately, such models do not properly rep-
resent rea traffic behaviour in congested situations, and
do not reproduce the inherently fluctuating nature of real
world situations.

PARAMICS[1, 2] isa microscopic simulator, as we are
interested in accurately modelling congestion formation
and dispersion, as well as maintaining an accurate pic-
ture of what is actually happening. It has been argued that
congestion formation isa phenomenon associated with the
chaotic, non-inear nature of road traffic and as such is
best modelled at the microscopic level [3], modelling indi-
vidua vehicles on each of the road links. Each time step
sees the vehicles shunted along the roads, and moved from
road to road if relevant, asin redl-life. (Of course, micro-
scopic simulatorscan also gather statisticson flowsthrough
roads, so these figures can be compared with results from
the macroscopic simulations— see §9.)

2.2 Previous Work

The PARAMICS project is based on a sequentiad system
named MICSIM (Microscopic Simulator)[5], which was
developed as part of project IMAURQ[6]. MICSIM could
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simulate an urban network of around 50 junctions and 200
vehicles at read-time speed. PARAMICS is required to
simulate around 200,000 vehicles at near real-time speeds,
needing a thousand-fold increase in processing speed on
the origina simulator.

The timeliness of the PARAMICS project is evident
from the number of other projects attempting traffic sim-
ulation using parald computers. Examples include the
TRANSIM project [7, 8], issues of traffic control being
studied using arrays of transputers [9] and the recent work
published by K. Nagel et al[10, 11, 12]. Many other groups
are just staring research in this area, and given the current
direction in road traffic policy in Scotland, the project is
seen as being particularly timely[4].

3 Parallel Environment

The machine used for the project was a 16K processor CM-
200 based at EPCC. An explanation of the SIMD paradigm
is outwith the scope of this article, but in such a model
of programming, performance is gained by utilising avery
high number of simple processors connected in a tightly
coupled network, executing the same code strictly in lock-
step (Single Instruction), but each having their own areas
of dataon which to operate (Multiple Data).

The language chosen for implementation of the simu-
lator was C* [13], an extension of C which enables the
programmer to make use of the CM-200 by writing essen-
tially sequential-looking programs with instances of array-
type constructs, the elements of which can be distributed
on different processors, and operated on in parallel. These
arrays are usually of asizewhich isamultipleof the phys-
ical processor size of the machine (where the arrays are
larger, thisis handled transparently by the machine). Each
single notional element is known as a virtual processor,
and operationsoccur in parallel on these virtual processors.

To aid in loading and saving data to/from the CM-200,
the DataVault fast storage device is used. Thisisafarm
of disks which ‘appears as a norma storage medium to
the SIMD program, the difference being that it is used to
storedistributed data. That is, parallel variables present on
the CM-200 can be stored in a special format on thisvery
fast 1/0O device, so that they can be reread directly back on
to the machine without having to go first through the front
end. The CM-200’s only connection to the ‘ outside world’
isthrough the front-end workstation(s).

4 Data Issues

4.1 Data Available
4.1.1 Network Data

Network data available consists of a graph description
(nodes and links) for the entire magjor Scottish trunk road

M8 (Glasgow)

Figure 1: PARAMICS network and traffic visualiser dis-
plays

network. Each node-to-node connection isauni-directional
link, and there are two links (in opposing directions) for
each road. Each road has an associated type, which gives
information on attributes like the number of lanes, max-
imum speed allowed, length and curvature of the road etc.
The graph itsalf represents the connectivity of the road net-
work (Figure 1, diagram A).

The network has been refined during the PARAMICS
project to include more detail on specific junctions and
roundabouts® (this can be seen in Figure 1, diagram C).

4.1.2 Other Available Data

Other data to which we have access to, or have created,
includes:

e Routing Information from any given link in the network
graph to any of several destination zones (points where
vehicles leave the trunk road network). The routes are cal-
culated statically, and represent the ‘ shortest paths' in terms
of length of links, speed possible, etc;

! Roundabouts, for the benefit of readersin countriesthat do not have
them, are simply a road layout allowing easy exit from a given link to
several otherswithout needing complex junctionsor flyovers- seeFigure 1
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Figure 2: Traffic network extract

e Snapshot information in the form of flow figures on links
at typical times;

e \ehicle Release Rateat pointsin the network;

e Vehicle Characteristicsdetailing classesof typical vehicle;

o Traffic Light Phasing representing the light sequencing at
certain locations.

All the information that we have access to, and wish
to model, has to befirst trandated into a microscopic form
suitablefor use by amicroscopic simulator (by, for example
mapping flow ratesto actual numbersof vehicles- see§5.1),
and then mapped intoaparallel formthat is suitablefor use
on the CM(see §5.2).

4.2 Parallelising the Data

The approach we settled on for building a paralle data
framework for the simulation process was to associate with
each of the uni—directional links (see §4.1.1) aqueue. The
gueue is the parale item of data on which we hope to
operate on the CM-200(§3). Figure 2 shows an extract of
the network traffic, with the queues outlined using dashed
lines and numbered. Each of these segments exists on a
separate virtual processor, and, among other things, holds
details on the vehicles present on that segment. The bold
lines show the ‘rea’ physical underlying network, which
is not needed by the simulator. The pardle array isa1-D
array consisting of alarge number of these queues.

4.2.1 Queues

Each gqueue can be thought of as first and foremost a con-
tainer classthat containsawealth of information, including:

e an array of vehicle slots, into which can be placed vehicles
currently on that queue, regardless of lane,

e connectionsdetailing queuesahead,in all possibledirections
(i.e. atjunctions), and to queuesbehind,fromwhich vehicles
will join,

Figure 3: Queue segments in the network

e priorities at the junctions,

e routing information in the form of turn tables. These are
lookup tables which, given a vehicles's destination zone
(see §4.1.2) can determine which direction the vehicle must
turn at the junction to help move towards its destination

The most important thing to remember is that each of
these queues is controlled by a different virtual processor
on the CM-200 , and so operations on these queues can
be performed in paralel. Another point to remember is
that each queue can control vehicles on all of the lanes that
comprisethelink.

Forcing each link to having one queue issomewhat lim-
iting, as each and every queue in the simulation can then
only hold at most the same amount of vehicles as every
other queue, since the array of vehicle slots are the same
size on each processor. Hence, the speed of the simula-
tion will be limited by the number of vehiclesheld in each
gueue, and each queue must have enough space to be able
to hold al the vehicles on its corresponding link. This
makes for extremely bad |oad-balancing, where many of
the queues will have dots for far more vehicles than they
have vehicles, hence will beidlealot of thetime.

It is obvious that many links (or roads) will have a far
grester capacity for vehicles than others, so we introduce
the concept of additional floating queues which join at vir-
tual junctions. Each queue in the simulation has the same
number of vehicle dots, but linksare now alowed to have
more than one queue (Figure 3). The problem of where to
assign (extra) queues to linksis covered in §5.2 and §6.5,
but in the meantime, there are three important pointsworth
making about queues :

1. Thefront queueisknown asthe head queue, and con-
nections out from this queue cross aphysical junction.
Similarly, the last queue in alink isknown as the tail
gueue, and connections into this queue also cross a




physical junction. Note that each link needs at least
ahead and atail, but that the two can be one and the
same queue.

2. Connections into all queues that are not tail queues,
and out of al queues that are not head queues form
virtual junctions. These only occur when there is
more than one queue on alink, and theworld ‘virtua’
is used to show that no rea junction exists between
the non-head queue and the queue ahead (Figure 3).

3. Althoughqueuesareassociated withlinksinthetraffic
network, in the cases where there is more than queue
on a link, the participating queues ‘float’ in space.
That is to say, each queue is not limited to looking
after a spatia portion of the link. Queues are simply
containers for vehicles, and it is the vehicles in the
vehicle dots of each queue that have a spatial pos-
ition. The only spatia gqueue enforcement made is
that vehicles in a given queue are spatialy ahead of
vehicles in the queue behind on the same link.

In addition to the above, awedlth of other paralel data
iskept, stored within the queue structure. One of the most
important is the note kept at each non-head queue of the
distances ahead to tail vehicles in the queue in front. In-
formation is also held on: whether or not the queue has
been alocated and is being used (see §6.5); the number
of vehicles currently controlled by the queue (see below);
statistics on how many vehicles of each typethe queue has
controlled, and more.

4.2.2 DataHeld on Vehicles

Every queue has nV” vehicle dotsinto which vehicles can
be placed (Figure 5). Where the dots are not empty, a
vehicle exists, and each vehicle holdswithit awide variety
of information about itself. A dotis ssimply a temporary
container which can hold details on avehicle, or be empty
whereno vehicleispresent. Morespecifically, each vehicle
in the simulation has information on:

¢ Vehicle type which defines things such as physical
size, maximum speed, acceleration deccel eration, ab-
solute target speed, vehicle class (e.g. bus, heavy
goods vehicle, domestic car, etc);

¢ Destinationin the form of a zone;
¢ Dynamically changing valuessuch as current speed,
distance dong link, current lane, etc.

As the simulation progresses, this information moves
around from glot-to-dlot and queue-to-queue, representing
the vehicleitself moving through the traffic network.
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Figure 4: Diagram Showing Dataflow in the PARAMICS
Project

5 Software Components of PARAMICS

The PARAMICS project consists of four main software
components : Editor, Constructor, Simulator and Visual-
iser. Figure 4 shows the data flow relationships between
these pieces of code, aong with details on how they inter-
act and shareinformation. The following sections describe
the functions of two of the components, with the ssimu-
lator and visualiser being addressed in detail in §6 and §7
respectively.

5.1 Editor

The editor is used to transform data from the essentially
macroscopic information supplied by SIAS's other simu-
latorsand the network data supplied by The Scottish Office
(see §4.1.1), into a microscopic form suitable for use by
the PARAMICS simulator. This data, once in microscopic
form, can be mapped onto the parallel data framework by
the constructor. The editor need typically be run once only
to set-up files for agiven data network.

5.2 Constructor

The constructor is used to parse the sequentia (micro-
scopic) data generated by the editor (§5.1), map this to
parallel variables, and store the results. This preparation
of data stage is time consuming (of the order of hours)
given that there is such a large amount of data to process.
Hence, the constructor is distinct from the simulator as it
need typically setup data only once.

The queue structure, as described in §4.2.1 is built and
initialised by theconstructor. Itistheconstructor that works
out how many queues each of thelinksin the network data
will get, based on average flows on the link (from census
and macroscopic flow data), and on the physical length of
thelink. The constructor & so decides on the number which
will define how many vehicles each queue can hold (i.e.




the number of vehicle dots in the queue structure). This
number especially, together with thetotal number of queues
that the constructor alocates will in part dictate the load
balancing and efficiency of the simulation.

Note that, since congestion is a moving phenomenon,
the initial distribution of queues to links should be later
updated, as the number of vehicles on links (and hence
gueues) fluctuates. In addition, the heuristics utilised by
the constructor to alocate queues may result in the long
term in artificial congestion (where all the queuesin alink
arefull, even though physical space may exist onthat link).
Since it is not feasible to alocate as many queues as to
completely saturate the network, of a size big enough to
cope (thiswould give horrendous|oad balancing), dynamic
gueue reall ocation and reshaping through timeis necessary
to alow real traffic smulation to progress. This has been
addressed, and isdetailed in §6.5.

The constructor places vehiclesinitially on the network
according to snapshot data for the time of day of interest,
and once it has set up al the paralel data, thisis written
to the DataVault, where it can be later quickly read by the
simulator, allowing the simulation process to commence

rapidly.
6 Simulator

6.1 Overview

The simulator component of PARAMICS comprises the
main paralel computational element. Itsjob isessentialy
to movevehiclesaround theroad network asredistically as
possible, taking account of other vehicles, crossing priorit-
ies, traffic lights, safe distancesand so on, whilst potentially
communi cating with the visualiser, and updating other dy-
namically changing features.

6.2 Main Simulator Functions

The following describes, in a simplified manner, the main
loop being executed in the simulator — remember that this
isbeing done on every virtual processor concurrently :

e Read in initial configuration of queues and vehicles from
DataVault, as set up by the constructor
o Loop (for required number of timesteps)

— Loop (over vehiclesin each queuein parallel)
*x Move vehicles along queue (§6.3)

— Rerank vehiclesin queue

Exchange vehicles between queues (§6.4)

Perform dynamic queue reallocation (§6.5)

— (Listen/Send information to/from visualiser - §6.6)
— Update traffic lights (§6.7)

o Exit
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Figure5: Mapping of vehiclesto dots

6.3 Car Following

Car following is the most computationally intensive part
of the simulation process. In this stage, al vehicles in
the simulation are moved aong the links with which the
containing queue is associated, and have their attributes
updated in accordance with any movement. Note that no
communi cations between queues needs to be done during
thisphase, which isdescribed bel ow (wherenV isthenum-
ber of dlotsin each vehicle queue, and n L is the maximum
number of lanesin aroad) :

FOR loop=0 TO nV-1
IF there is a vehicle in slot ’loop’ THEN
FOR lane=0 TO nL-1
# ~ PART A © set the ahead structure
IF ’lane’ < num. lanes on this queue
eval conditions ahead of vehicle in lane
# ~ PART B ~ driver behaviour
change the vehicles lane, (if relevant)
adjust the speed of the vehicle
update the ahead structure for this vehicle
# ~ PART C © wupdate vehicle position
FOR loop=0 TO nv-1
IF there is a vehicle in slot ’loop’ THEN
move vehicle forward, based on speed, etc.

Note that the loops are performed over al the dotsin
a queue, so that on processors where not all the dots con-
tain vehicles, there will be some idle time while the loop
compl etes.

During the previoustimestep of thesimulation, vehicles
withindotswere ranked by distancea ong thelink. Hence,
slot 0 holds the vehicle nearest spatially to the end of the
current link, so the loops start with this vehicle and work
backwards. (see Figure 5)

6.3.1 Part A— Setting the lookahead structure

A running structure is kept of the statistics of vehicles in
each of the possiblelanes (thereare n L), and thisisknown




as the ahead structure. Using this structure, each vehicle
knowshow much spacethereisahead tothevehicleinfront
(if any) in each of the lanes, and the characteristics of such
vehicles. Specifically, the ahead structure stores detail sfor
each lane such as: current tailpoint of the vehicle ahead (if
any), type of the vehicle ahead, speed of vehicleahead, etc.

This ahead structure isinitialised to be empty for head
gueues, for the first iteration. As each vehicle is looped
over, that vehicle adds its own details to what was there
already, thus keeping an updated view.

For non-head queues, the ahead structure is set to the
completed ahead structure for the previous timestep of the
gueuein front, across the virtua junction. This means that
vehicles in non-head queues know the tail positions and
speeds of the trailing vehicles in the queue ahead, across
the virtual junction, so can till set their behaviours ac-
cordingly. This involves communication between queue
segments, and is done during the vehicle exchange phase.

6.3.2 Part B — Driver Behaviour and Attribute Up-
date

Each vehicle must evaluate what its target speed will be
for the current timestep, what acceleration or decelaration
it will haveto apply to get to that target, and which lane it
should bein. It can make such decisions based, essentially,
on four factors :

e Details of distancesto the vehicles ahead in each lane, and
their speeds and vehicle types, etc;

o Distanceto the end of the road (and hence a physical junc-
tion);

e Priority at the end of the road;

o Details on the vehicle’'s own current characteristics.

In the case of free flowing traffic, each vehicle will at-
tempt totravel at a speed closest to its outright target speed
(defined by type) but allowing a safe distance to vehicles
ahead. Vehicles will, by applying acceptable accelera
tions and decelerations, reach a figure which determines
the speed for the next time step, where the process will
repeat. Hence, the speed of vehicleswill change from step
to step, with each vehicle attempting to reach its outright
target speed.

In the case of dower moving traffic, or traffic approach-
ing aphysical junction (marked by the approach of the end
of thelink), speed is potentially tempered somewhat more.
Inthe case of amajor priority junction, thevehicle need not
be dowed very much, but in the case of a barred junction
(for example the red phase of traffic lights) more decelera
tion should be applied to Slow the vehicle. Minor priority
junctionshave asimilar but |ess severe affect onthevehicle
speed. (Notethat vehicles need not be dlowed additionally
when merely approaching virtual junctions, which float in

space).

As far as lane changing is concerned, a vehicle will
attempt to changeintoan outsidelaneif that lanewill allow
themtotravel closer totheir type starget speed (i.e. faster),
and thisis classed as overtaking. In addition, depending
on the turn that the vehicle wishes to make at the end of a
junction, it will aim to moveinto the ‘ correct’ lane for that
turn.

6.3.3 Part C— Update vehicle position

After thefirst loop has completed, and al thevehiclesarein
their required lanes, and have had their target speeds set, the
second loop moves all the vehicles along their link based
on the speed they were assigned. An additional check
is made to ensure that no ‘accidents have occurred(!),
through vehicles inadvertently overlapping. In such cases,
the speeds and positions are readjusted.

6.4 Vehicle Exchanges

When a vehicle reaches the head of a head queue, and the
end of alink, it is time for the vehicle to move onto a
different queue. This portion of the simulation involves
communi cation between queues, which must exchange de-
tailson vehicles.

In each timestep, vehicle exchanges are performed,
moving vehicles from original or source queues, to desired
target queues, by :

o |dentifying those vehicles that wish to move onto another
gueue (source queue perspective)

o Arbitrating amongst conflicting requeststo join aqueue (tar-
get queue perspective)

o Transferring vehiclesthat have been accepted (target queue
perspective)

e Removing successfully exchanged vehicles from their ori-
ginal queue (source queue perspective)

Note that in the simulation the identity of the ‘ current’
gueue being examined and operated on changes from being
the source queue when nominating vehicles, to the target
gueue for arbitration and transfer, back to the source queue
when removing succesfully transferred vehicles, and that
at each timestep of the simulation, at most one vehicle can
leave any given queue.

6.4.1 Nominating vehiclesfor transfer

Any vehiclethat hasreached ahead queue, andisinthefirst
dot of that queue, and has reached the junction, is nomin-
ated for transfer. The identity of the vehicle is sent to the
gueue which the vehicle wishes to join. Each queue holds
withit aturntabledetailing turns(left, right, strai ght ahead)
necessary to move vehicles onto their particul ar target des-
tination zone (see §4.2.1). In addition, each queue also
knows which other queues lead out from it in each of the
three directions— l€ft, right and straight ahead (Figure 3).



Vehicles waiting to move onto another queue can ook
up the turn table to see which way they need to turn to get
to their destination (rather like looking at the road sign at
the side of the road). Using thisinformation, the vehicle
can then determine which specific queue it wants to join,
moving from the original or source queue, to the desired
target queue.

In addition, all vehicles in the first dot of non-head
gueues are nominated for transfer to the queue ahead, as
such vehicles are attempting to perform a virtual crossing
only.

6.4.2 Arbitration

After al the nominations from queues have been per-
formed, arbitration is done from the perspective of queues
which have vehicles waiting to join them. A vehicle is
accepted on the queue iff there are sots available in the
gueue, and thereisphysica space between thetail vehicles
and the end of thelink (or vehiclesin the queue behind).
In addition, there may be morethan onevehiclevyingto
jointhe queue, and in such a case the vehicle that has major
priority across the junctionis selected. In cases where this
is not clear or there is more than one vying vehicle with
maj or priority, oneof thoseischosen at randomfor transfer.

6.4.3 Vehicle Transfer

Target queuesthat areto accept vehiclesask for information
on thevehicle from the source queue, and update their own
statistics, aswell asthat of the vehiclethey receive. Source
gueuesareinformed that the vehiclethey wished to transfer
has been accepted (or not, as the case may be).

6.4.4 Cleanup after vehicle exchange

After the vehicle transfers have been completed, source
gueues that nominated vehicles for transfer have been in-
formed if the send was successful. If so, then details of the
vehicle are removed from the queue.

6.5 Dynamic Queue Reallocation

Since congestion is a dynamically changing phenomenon,
the distribution of queues to links, as done by the con-
structor (see §5.2), islikely to be inadequate as time goes
on. This can lead to some undesirable behaviour such as
artificial congestion occuring where the simulator does not
have enough queues, and hence tota vehicle dots, to hold
all thevehiclesthat can legitimately be on alink. The most
extreme case is where deadlock occurs in the network, as
congestion tails back over the entire system.

To try and remedy this situation, we have a devised
a scheme where a notiona pool of ‘free’ queues is kept,
to which unused queues in the network are returned, and
from which queues can betaken to add to linksthat require
more capacity for vehicles. This pool is represented as a

1. Adding a Queue 2. Returning a Queue
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Figure 6: Dynamic Queue Reallocation using Queue Pool

list of queue identifiers (or gids) on the front-end, the gids
referring to queuesthat are currently unallocated and hence
available for reallocation, and the queue pool isinitialised
to contain al those queues that are unallocated to links by
the constructor.

Every 10 timesteps, the network of queues is eval uated
to check where there are links that need extra queues, and
those available free queues are added to the links. In ad-
dition, every 10 timesteps, but offset by 5 from the check
for new allocation, unused queues are returned to the queue
pool.

6.5.1 Adding New Queues

A simple test is performed to see where new queues are
required. Where all the vehicle dots in a tail queue are
completely full, those queues request anew queue to be ad-
ded to thelink, behind themselves. Thefront-end arbitrates
between requestsfor new queues, and the available queues
in the pool, and sends to each of the succesful requesting
tail queues the gid of the queue that is to be added at the
end of thelink. This new queue will become the new tail.

The existing tail queue can then ‘pretend’ that it is the
new tail queue, by setting al the pointers in and out of
itself, and other attributes(whilst storingin temporariesthe
old values). It can then send itself to the new queue, whose
qgid it has received from the front-end, and then set itself
back to the values it had previously. This means that only
one genera send needs to be done, and makes for efficient
use of the machine.

Finaly, the queues which pointed to the old tail are
informed that they now point to thenew added tail (Figure6,
diagram 1).

6.5.2 Returning Queues

The test for whether or not a queue is returned to a pool
depends on several factors. First, the queue, to be returned,
must be a taill queue and must have all its vehicle slots




empty. Second, there must be more than one queue asso-
ciated with the link on which it exists (otherwise we could
remove the one and only queue on a link, thus rendering
that path unpassable in future). Thirdly, the queue ahead
must also be less than half full of vehicles.

If al thesecriterion are met, the queueinformsthe front-
end of itsqid, reinitiaisesal itsfields, and marks itself as
being unallocated. The front-end then adds the qid to the
pool, marking it available for reallocation el sewhere.

Finally, the queueswhich pointedto thetail that hasjust
been removed are now set to point to the new tail, which
isthe queue ahead of the one removed. (Figure6, diagram
2).

6.5.3 Gainsof Dynamic Reallocation

We observethat the performance penalty of adding code to
the simulator to do dynamic reallocation is minimal, and
that the gains, in terms of more accurate simulation, are
significant.

6.6 Communicationswith Visualiser

When the simulator is executing in tandem with the visu-
aliser, the two communicate via non-blocking message
passing, with an intermediate buffer space between the two,
allowing a certain degree of slackness.

The visualiser can request that the simulator stop and
start, and also ask for vehicles (or flows) from certain areas
of the network to be sent. In such a case, a parallel mask
is constructed to select queues within the area that is of
interest to thevisualiser. Each timestep, vehicleswhich are
within thismask aregathered onto thefront-end, placed into
messages, and despatched to thevisualiser. Theinteraction
between simulator and visualiser can become somewhat
complex, but further discussion is outwith the scope of this

paper.
6.7 Traffic Light Update

At each timestep, the phasing on groups of traffic lights
is updated. These lights control exits from specific links
to other links, and when the light at a particular junction
changes phase/col our, the junction priairities out from the
head queue on the relevant link must be updated. For
example, when a light goes red at junction, the outgoing
priorities from the link to the other links which the link
controls must be set to be barred, so that no vehicles can
‘run’ red lights!

7 Visualiser

Having agood means of showing what ishappening isuse-
ful for severa reasons, including: browsing of data (static
and dynamic); watching thesimulati on process; debugging;

offline examination of data; controlling the simulator, and
soon.

The PARAMICS visudiser is a separate process, ex-
ecuting on a Silicon Graphics (SGI) workstation, whichis
designed to run either concurrently with the simulator, or in
astandalone mode. The same code and program is execut-
ing in both cases, but when the simulator is aso present,
datacan beextracted and thesimulator controlled. Insucha
case, thesimulator and visualiser communi cate making use
of EPCC’smullti-platformmessage passing library, CHIMP
[14]. When executing stand-al one, thevisualiser canreplay
simulation snapshots at leisure, extracting the same types
of datathat were available when the datawas produced.

Some of thefeaturesinclude: interactive display of net-
work, vehicles, annotation, text, flows and other informa-
tion; fast datanavigation; control of thesimulator; grabbing
and visualising datafrom the simulator; recording/playback
of vehicle snapshots from previous simulations; accurate
roads, junctions and vehicle motion; tracking of vehicles;
in-betweening of vehicleframes; image and PostScript sav-
ing of views; separate zoom and plan windows; support for
animation, video capture, and so on.

Figure 1 shows some sample output. A shows ageneral
overview of the network modelled, B shows the area of
specific interest in the study, and C displays one of the key
roundabouts with vehicles on the links. (The vehicles are
displayed with lines showing the direction of travel, and
intended turn at the end of the link). The last figure aso
shows traffic lights on the roundabout, and examples of
sometraced vehicles, marked TO, T1 and T2.

8 Performance

8.1 General Performance

One of the goas of the project was to produce a system
which could simulate traffic at real-time rates, on a 16K
node CM-200, and this has been met and exceeded result-
ing in a simulation process which can simulatethe required
200,000 vehicles on 7,000 roads at faster than rea-time.
Moreover, we can achieve this performance: executing the
visualiser in tandem with the simulator, grabbing informa-
tion as required; on half the Connection Machinei.e. 8K
nodes; on atypicaly loaded Ethernet; without recourse to
obscure machine-specific low-level coding.

8.2 Performance Improvement

Any comparison with existing serial simulatorsisboundto
be at best subjective, and at worst, misleading. However,
when compared to, for example, the original microscopic
simulator MICSIM[5], which made use of a DECstation,
we can observe a speedup factor of around 1,000.

In asense, thisis missing the point. PARAMICS was
designed to solveavery large problem, with arequired per-



formance. Such performance would have been impossible
using asequential machine, and we believe that the smula-
tion system we have designed iswell suited to data parallel
architectures, and makes efficient use of the Connection
Machine. In addition, we had to expend relatively little ef-
fort to achieve such high performance, interms of tweaking
the code to use low-level routines, and we believe that this
will make the code easily portable to other architectures
which support the data-parallel programming paradigm.

8.3 Performance Details

To aid in program devel opment, debugging and profiling,
usewas made of the TM C debugging tool PRISM. Profiling
code, and inspecting results within PRISM enabled us to
isolate portions of the code that were responsible for the
majority of the time, and improve performance.

As well as profiled timings, we could make measure-
ments based on wall clock timings— since we know how
long each timestep shoul d take, we can observethe machine
performance by watching both the visualiser, and timestep
output.

8.3.1 Datalnitialisation

Datainitiaisationis performed whenever the simulator is
started up, and accounts for a constant amount of time
(around 20 seconds). Inthistime, thesimulator loadsinand
verifies data from the DataVault, and sets up al structures
that needinitialising. Inaddition, thevisualiser mustreadin
dataoninitialisation, but when the toolsoperate in tandem,
the startup times are almost i dentical — when the visualiser
isready for use, the smulator has loaded in al data from
the DataVault, setup all data, and isready to simulate.

It should be noted that, without the use of the Con-
structor (see §5.2), data reading and initialisation would
take several hours. In addition to data loading, much of
theinitialisation process takes place on the front-end to the
Connection machine, and not on the CM itself.

8.3.2 Simulator Performance

The simulator itself seems to work extremely efficiently.
For example, using profiled code, on half the Connection
Machine (8K processors) and running for 50 timesteps, the
CM time is around 39 seconds of which over 35 seconds
are spent doing computation.

Allowing the simulation to proceed for around 4000
timesteps (or just over an hour), and subtracting theinitial -
isaton time (which accounts for a a miniscule proportion
of the time on longer runs anyway), the general commu-
nications on the machine tend to take around 3-5 percent
of CM time only. In thistime, all vehicle exchanges are
being done, all updates of lookahead structures are ex-
changed, and all CM communication in the dynamic queue
segmentation is being done.

Oncethesimul ation processcommences, wall clock tim-
ing show that the simulation process procedes faster than
real-time — managing around four timesteps every three
seconds.

8.3.3 Visualiser Performance

The visuaiser tends to run at interactive rates (as can be
seen in the video), even when running in tandem with the
simulator, and even when displaying typical numbers of
vehicles and flows.

Non-blocking message passing is used between visual-
iser and simulator, and interaction on the visualiser aways
takes precedence over communications.

8.3.4 Bottlenecks

The main bottlenecks seem to occur on the Connection
Machine front end. If thismachine is heavily loaded, then
performance degrades. Inaddition, thereisonly one ‘wire
between the front-end and the CM, and if other users are
using this path, or too much information is passed along
thiswire, then performance a so degrades.

Data initialisation on the front-end accounts for a large
proportion of thetime on small runsof thesimulator, butis
a constant startup cost.

When running in tandem with the visuaiser, the per-
formance that can be observed on the visualiser is usually
highly interactive, but depends somewhat on the loading
on the Ethernet network used. In addition to simply sim-
ulating vehicles, the simulator has to strip off data to the
front-end, and package this up and send it across the Eth-
ernet. Note that thisis not an issue when the simulator
executes stand-aone.

9 \Verification

We are currently in the process of verifying the behaviour
of PARAMICS, by comparison with observed traffic pat-
terns, and results obtained on flow from existing, used,
macroscopic systems. Initia results have proved prom-
ising, and we are contintuing to improve the simulator with
thisverification in mind.

10 Conclusions

The PARAMICS project has produced a system that can
performextremely fast and detail ed microscopic simulation
onamuch larger scalethan previously possible, and yielded
a suite of software tools that will be further developed in
future projects.

We believe that data parallel programming can be a
very effective way to solve such microscopic simulation
problems, and that good use can be made of machines such
as the CM-200 to such an end.



It is hoped that future work will lead both to tools that
can aid road network planners, and research intothevarious
issues surrounding parallelisation as well as into specific
areas such as driver behaviour.

Work continues on the PARAMICS project on the CM-
200, and areas being investigated include,

e Extension of the driver behavioural mode| slotting in
behavioural ‘units’ [15].

e Integrating RTI information . Road Traffic | nformation
technologies range from signs placed on overhead gantries
informing drivers of road conditions ahead, to roadside
beacons which transmit information on congestion, acci-
dents, incidents and other traffic information to a receiver
sitting inside the vehicle [4].

e Environmental Modeling. Much interest is being shown,
[8], in modelling theimpact of vehicleson the environment,
and microscopic modelling enablesthe likes of emissionsto
be accurately modeled.

e Incident/Accident Modeling. More complex events such
as accidents, flooding, roadworks, temporary closures and
so forth could be handled.

e Dynamic Re-routing. Using acalculation strategy to allow
vehiclesto dynamically change the way in which they will
traverse the road network to reach that destination is, of
course, essential for the modelling of RTI systems, incidents
and accidents, where the driver hasinformation which may
enable them to alter their path.

o Feedback. Some prototype road devices are available for
obtaining actual real-time statistics on flows on roads, and
these devicesmay be ableto feed directly into the simulator.

e Decreasing Time-Step. We are experimenting with differ-
ent smaller time steps— for example, half-second timesteps
seem to give more realistic results.

In addition to the above, at time of writing we have
just completed an initiadl MIMD version of the simulator
as part of a project primarily concerned with porting the
simulator to a Cray T3D. The redesign has resulted in a
portable message passing simul ator implemented using the
MPI standard. It is hoped that using this version we can
attempt to gain extremely high performance (thusalowing
pre-emptivesimulationintandemwith ‘real’ road systems),
and be able to run the simulator on a much wider range of
platforms.
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