
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1994

Genetic Algorithms for Graph Partitioning and Incremental Graph Genetic Algorithms for Graph Partitioning and Incremental Graph

Partitioning Partitioning

Harpal Maini
Syracuse University, hsmaini@top.cis.syr.edu

Kishan Mehrotra
Syracuse University, mehrotra@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Sanjay Ranka
Syracuse University, ranka@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Maini, Harpal; Mehrotra, Kishan; Mohan, Chilukuri K.; and Ranka, Sanjay, "Genetic Algorithms for Graph
Partitioning and Incremental Graph Partitioning" (1994). College of Engineering and Computer Science -
Former Departments, Centers, Institutes and Projects. 20.
https://surface.syr.edu/lcsmith_other/20

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/20?utm_source=surface.syr.edu%2Flcsmith_other%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Genetic Algorithms for Graph Partitioning and Incremental GraphPartitioning�Harpal Maini Kishan Mehrotra Chilukuri Mohan Sanjay RankaySchool of Computer and Information Science, 4-116 CSTSyracuse University, Syracuse, NY 13244-4100email: hsmaini/kishan/mohan/ranka@top.cis.syr.eduSeptember 10, 1996AbstractPartitioning graphs into equally large groups ofnodes, minimizing the number of edges between dif-ferent groups, is an extremely important problem inparallel computing. This paper presents genetic al-gorithms for suboptimal graph partitioning, with newcrossover operators (KNUX, DKNUX) that lead to or-ders of magnitude improvement over traditional ge-netic operators in solution quality and speed. Ourmethod can improve on good solutions previously ob-tained by using other algorithms or graph theoreticheuristics in minimizing the total communication costor the worst case cost of communication for a singleprocessor. We also extend our algorithm to Incremen-tal Graph Partitioning problems, in which the graphstructure or system properties changes with time.1 IntroductionGraph partitioning is the task of dividing the nodesof a graph into groups called parts (or bins), in sucha way that each part has roughly the same number ofnodes, and minimizing the cut-size, i.e., the numberof edges that connect nodes in di�erent parts. Thisproblem has important applications in parallel com-puting. For instance, e�ciently parallelizing many�This is a revised version of a paper that appeared in Proc.IEEE Supercomputing Conf., 1994.ySanjay Ranka is currently at the University of Florida,Gainesville. His work was partially supported by NSF grantCCR-9110812 and DARPA contract #DABY63-91-C-0028.The contents of this paper do not necessarily reect the po-sition or policy of the United States government, and no o�cialendorsement should be inferred. cISSN 1063-9535. Copyright(c) 1994 IEEE. All rights reserved.

scienti�c and engineering applications requires parti-tioning data or tasks among processors, such that thecomputational load on each node is roughly the same,while inter-processor communication is minimized.Obtaining exact solutions for graph partitioningis computationally intractable, and several subopti-mal methods have been suggested for �nding goodsolutions to the graph partitioning problem. Im-portant heuristics include recursive coordinate bisec-tion, recursive graph bisection, recursive spectral bi-section, mincut based methods, clustering techniques,geometry-based mapping, block-based spatial decom-position, and scattered decomposition [3, 11, 12, 15].We present genetic algorithms for graph partition-ing, using new crossover operators that utilize infor-mation available from the history of genetic search.Our work is characterized by the following features:1. Use of prior information to improve solutions.2. E�cient partitioning of graphs to which incre-mental updates are made.3. Parallelizability, using a distributed genetic algo-rithm model.4. Re�nement of parts obtained by other methods.5. Optimization of the worst case communicationcost, a non-di�erentiable function.We have obtained excellent results due to newlydeveloped genetic recombination operators (KNUXand DKNUX) that exploit domain-speci�c knowledge.These give improved solutions and faster convergencerates when compared with the traditional crossoveroperators. Exact comparisons of the di�erent algo-rithms are not available due to the unavailability of

benchmark problems and results. However, our exper-iments with the traditional crossover operators usedby some of these researchers gave results of lower qual-ity than using the operators presented in this paper.The results achieved by our methods are better orcomparable to the best known methods for graph par-titioning, for graphs with a few hundred nodes. Thequality of solutions obtained using DKNUX is com-petitive with recursive spectral bisection as a graphpartitioning strategy, especially for incremental graphpartitioning. However, genetic algorithms do requiremuch more execution time than greedy algorithms,and are recommended in applications where the qual-ity of solution is important enough to warrant the ex-tra computational e�ort. Fortunately, GA's are read-ily parallelizable, with near-linear speedups. Applyinga prior graph contraction step should precede the par-titioning of very large graphs using GA's.Section 2 describes the task addressed by the ge-netic algorithm. Section 3 describes how genetic al-gorithms are applied to this problem. Experimentalresults are given in Section 4.2 Graph Partitioning as OptimizationLet V denote the set of vertices of the graph to bepartitioned, and let E denote its edges. The graph-partitioning problem consists of �nding an assignmentscheme M : V �! P that maps vertices to n parts.We denote by B(q) the set of vertices assigned to apart q, i.e., B(q) = fv 2 V : M (v) = qg. Edgesmay connect physically proximate vertices in graphsrepresenting the computational structure of a physicaldomain.Graph partitioning is a multi-objective optimiza-tion problem, since both load imbalance and commu-nication costs must be minimized. These objectivesare often achieved by minimizing eitherXq I(q) + �Xq C(q);where I(q) is the load imbalance attributed to part q,C(q) is the communication cost attributed to part q,and � expresses the relative importance of the two ob-jectives. This composite cost function focuses on thetotal communication cost; an alternative is to mini-mize Xq I(q) + �maxq C(q);which focuses on the communication cost for the worstpart. Our methods work with either formulation. For

domain decomposition methods, optimizing the latterfunction is more desirable. The former is often usedbecause most traditional methods require di�erentia-bility of the function being optimized.The weight wi corresponds to the computation cost(or weight) of a vertex vi 2 V . The average load ofeach part is Pvi2V wi=n. We de�ne the load imbal-ance attributed to the qth part asI(q) = (Pvi2B(q) wi �Pvi2V wi=n)2,where n is the number of parts into which the graphmust be partitioned.The communication cost we(v1; v2) correspondingto an edge describes the amount of interaction betweenvertices v1 and v2. The cost of all the outgoing edgesfrom a part isC(q) =Pvi2B(q); vj 62B(q) we(vi; vj)Genetic algorithms attempt to maximize a \�tness"function, whose value is relatively high for candidatesolutions of better quality. Our experiments were con-ducted using the following two �tness functions, whichassume unit (equal) computation cost (wi) for eachnode, unit communication cost (we) for each edge, and� = 1.Fitness1 : � Xq (jB(q)j � jV jn)2 +Xq C(q)!Fitness2 : � Xq (jB(q)j � jV jn)2 +maxq C(q)!3 Genetic Algorithms for Graph Par-titioningGenetic algorithms (GAs) are stochastic state-space search techniques modeled on natural evolution-ary mechanisms [4]. The population, a set of indi-viduals (potential solutions to the optimization prob-lem) steadily changes with time due to the applica-tion of operators such as crossover and mutation. Aselection process determines which individuals (fromamong parents and o�spring) remain in the next gen-eration. Genetic algorithms have been used in thepast to �nd good suboptimal solutions to the graph-partitioning problem [1, 8, 5, 6]. This section describesthe representation used to solve the graph partition-ing problem, the genetic operators used, and variousmethods of improving the performance of the GA.

3.1 RepresentationFor graph partitioning, we select a vector repre-sentation for each individual (candidate solution), inwhich the ith element of an individual is j i� the ithnode of the graph is allocated to the part labelled j.For instance, the string 11100011 represents the map-ping that assigns nodes 1,2,3,7,8 to part (processor)1 and nodes 4,5,6 to part (processor) 0. Accord-ing to our de�nitions of �tness, if the graph is one inwhich the ith node is adjacent to the (i+1)st node foreach i, then 11100011 would be less �t than 11100001(which is a more balanced partition), but more �t than10101011 (which has 6 inter-part edges).3.2 CrossoverOne-point crossover [4] works by selecting a site inchromosomes �� and � to produce �� and �. Apopular generalization is 2-point crossover, in whichthe parents �� and ��� produce o�spring �� and���. This has been further generalized to `k-pointcrossover'. In uniform crossover (UX) [14], the ithcomponent of an o�spring is chosen to be the same asthat of one of the two parents, with equal probability.UX ignores the fact that one parent may have muchbetter genetic material than another, or that one re-gion of the search space is already known to produceindividuals of higher �tness than other regions. UXcan be described in terms of a bit-vector mask, eachbit of which determines the parent from which an o�-spring inherits a value for a particular bit-position.Our new Knowledge-based Non-Uniform Crossoveroperator (KNUX) generalizes this idea, using a biasprobability vector p = (p1; : : : ; pn), where each pi is areal number 2 [0; 1]. The value of each bias prob-ability pi depends on i, the relative �tness of theparent strings, and on problem-speci�c knowledge.Given p and the two parents, a = (a1; : : : ; an) andb = (b1; : : : ; bn), the o�spring c = (c1; : : : ; cn) is ob-tained such that if ai = bi, then ci = ai, else theprobability that ci = ai is pi.For graph partitioning, an initial candidate solutionI is �rst generated. Let �(i) be the set of neighborsof node i in the graph under consideration. For anycandidate solution X, let #(i;X; I) be the number ofnodes in �(i) that are allocated by I to part Xi. If aand b are the two parents, then we de�nepi = (0:5 if #(i;a; I) = 0 & #(i; b; I) = 0#(i;a;I)#(i;a;I)+#(i;b;I) otherwise.

3.3 Dynamic KNUX (DKNUX)The quality of solutions obtained by KNUX de-pends on the quality of the heuristic estimate (Iabove) used to derive bias probabilities. It is thereforeimportant to obtain a good, fast heuristic estimate ofa solution. DKNUX utilizes information inherent inthe history of the genetic search, and continually up-dates the estimate I to be the current best solution,using this to build the bias vector.3.4 Distributed Population ModelWe use a coarse-grained, distributed-population ge-netic algorithm (DPGA), where individuals are dis-tributed into various subpopulations which may bephysically located on di�erent processors con�guredin some architecture (e.g., mesh). Crossovers are re-stricted to occur between members of the same sub-population. Each subpopulation periodically commu-nicates copies of its best individuals to its neighboringsubpopulations (situated on neighboring processors inthe parallel architecture); this is how genetic informa-tion is exchanged.3.5 Population InitializationThe initial population can be seeded with a pre-estimated heuristic solution such as that obtainedthrough an Index Based Partitioning scheme or theresults of recursive spectral bisection. In the incremen-tal case, the previous partitioning can itself be used togenerate a good partitioning for the changed graph byrandomly assigning new graph nodes to various nodes,while at the same time ensuring that balance is main-tained.3.6 Hill ClimbingIt is possible to perform hill-climbing on o�spring,to obtain the nearest local optima of the �tness func-tion. Only the \boundary points" of each part (withneighbors in other parts) are examined to see if migrat-ing them to the appropriate neighboring part improves�tness.4 Experimental ResultsIn this section, we compare the results obtained us-ing our approach with those of traditional heuristics(e.g., IBP or RSB) as well as with genetic algorithms

that invoke traditional crossover operators. The �g-ures are obtained by averaging the results of 5 runs,and the tables represent the best solutions obtainedin these 5 runs. All experiments were done with algo-rithm DPGA set with a total population size of 320.The crossover rate pc = 0:7 and the mutation ratepm = 0:01. Tables 1, 2 and 3 report Pq C(q)=2 val-ues, while Tables 4, 5 and 6 report maxq C(q) values,where C(q) is the number of edges that cut across partq. Experiments were conducted with a single popula-tion as well as with 16 subpopulations con�gured as afour dimensional hypercube. Graphs with unit weightnodes and edges were assumed, although weightededges and nodes can also be handled easily. For clar-ity, the cut-size numbers are given in the tables, in-stead of the actual �tness function values; for graph-partitioning, smaller cut-size numbers indicate supe-rior performance. The results establish very clearlythe excellent performance of KNUX and DKNUX incomparison with two-point crossover and also thatDKNUX is competitive with recursive spectral bisec-tion as a graph partitioning strategy.4.1 Improving solutions obtained usingother methodsFast heuristic algorithms can be used to obtain aninitial candidate solution which is then improved byapplying the genetic algorithm. Table 1 comparesthe results of Recursive Spectral Bisection (RSB)[11, 12, 13] with the GA initialized by a solutionobtained by the Index-Based Partitioning algorithm(IBP) [10] described in the Appendix.Number of Parts 2 4 8167 NodesCut Using DKNUX 20 63 109Cut Using RSB 20 59 120144 NodesCut Using DKNUX 33 65 120Cut Using RSB 36 78 119Table 1: A Comparison of the Best Solutions foundUsing DKNUX and RSB: starting with a populationinitialized with an IBP solution, using Fitness Func-tion 1. In each case, the total number of inter-partedges is reported for the best individual explored bythe GA.

Number of Parts 2 4 8139 NodesCut Using DKNUX 28 65 100Cut Using RSB 30 69 113213 NodesCut Using DKNUX 41 77 138Cut Using RSB 41 82 151243 NodesCut Using DKNUX 43 88 141Cut Using RSB 47 95 154279 NodesCut Using DKNUX 36 78 139Cut Using RSB 37 88 155Table 2: Improving the Solution found through Re-cursive Spectral Bisection, using Fitness Function 1.In each case, the total number of inter-part edges isreported for the best individual explored by the GA.4.2 Incremental Graph PartitioningFor this series of experiments, we start with agraph, partition it, then modify by adding some num-ber of nodes in a local area chosen randomly withinthe graph. The modi�ed graphs are then partitioned.Number of Parts 2 4 8118 plus 21 NodesCut Using DKNUX 31 61 103Cut Using RSB 30 69 113118 plus 41 NodesCut Using DKNUX 31 66 120Cut Using RSB 33 75 128183 plus 30 NodesCut Using DKNUX 37 72 133Cut Using RSB 41 82 151183 plus 60 NodesCut Using DKNUX 44 83 160Cut Using RSB 47 95 154Table 3: A Comparison of the Best Solutions foundUsing DKNUX and RSB: Incremental Graph Parti-tioning, using Fitness Function 1. In each case, thetotal number of inter-part edges is reported for thebest individual explored by the GA.

Number of Parts 4 878 NodesWorst Cut Using DKNUX 23 23Worst Cut Using RSB 26 2588 NodesWorst Cut Using DKNUX 28 21Worst Cut Using RSB 33 2798 NodesWorst Cut Using DKNUX 26 23Worst Cut Using RSB 30 30144 NodesWorst Cut Using DKNUX 53 42Worst Cut Using RSB 44 35167 NodesWorst Cut Using DKNUX 44 39Worst Cut Using RSB 40 41Table 4: A Comparison of the Best Solutions foundUsing DKNUX and RSB: Starting with a RandomlyInitialized Population and Using Fitness Function 2.\Worst Cut" refers to maxqC(q), where C(q) is thenumber of edges leading out of part q. For the GA,the maximumnumber of edges leading out of a part isreported, for the best individual explored by the GA.4.3 Minimizing Worst Case Communica-tion CostUnlike other methods which can be used only witha di�erentiable optimization function, genetic algo-rithms can be used directly to optimize Pq I(q) +�maxq C(q); a task that cannot be attempted withmethods that require availability of the �rst deriva-tive of the function to be optimized. Table 4 exhibitsthe e�ect of partitioning graphs of 78, 88, 98, 144 and167 nodes into 4 and 8 parts, respectively. Table 4shows the best solution found using operator DKNUXis better than that obtained using RSB in most cases.In other cases, improvements can be obtained by seed-ing the initial population with a heuristically obtainedgood solution such as the index based partitioner.5 ConclusionsWe have solved the graph partitioning problem us-ing GA's with new knowledge-based crossover opera-tors; problem-speci�c knowledge is used to generatebias probabilities, and the \environment" and currentpopulation play roles in controlling genetic expression.The trajectory that the population takes in search

Number of Parts 4 878 NodesWorst Cut Using DKNUX 23 20Worst Cut Using RSB 26 2588 NodesWorst Cut Using DKNUX 24 22Worst Cut Using RSB 33 2798 NodesWorst Cut Using DKNUX 24 22Worst Cut Using RSB 30 30213 NodesWorst Cut Using DKNUX 40 41Worst Cut Using RSB 46 45243 NodesWorst Cut Using DKNUX 45 41Worst Cut Using RSB 51 47279 NodesWorst Cut Using DKNUX 42 42Worst Cut Using RSB 46 47309 NodesWorst Cut Using DKNUX 44 47Worst Cut Using RSB 46 52Table 5: A Comparison of the Best Solutions foundUsing DKNUX: Improving Upon RSB Solutions UsingFitness Function 2. \Worst Cut" refers to maxqC(q),where C(q) is the number of edges leading out of partq. For the GA, the maximum number of edges lead-ing out of a part is reported, for the best individualexplored by the GA.

Number of Parts 4 878 plus 10 nodesWorst Cut Using DKNUX 27 25Worst Cut Using RSB 33 2778 plus 20 nodesWorst Cut Using DKNUX 29 27118 plus 21 NodesWorst Cut Using DKNUX 33 29Worst Cut Using RSB 38 34118 plus 41 NodesWorst Cut Using DKNUX 34 35Worst Cut Using RSB 40 39183 plus 30 NodesWorst Cut Using DKNUX 41 40Worst Cut Using RSB 46 45183 plus 60 NodesWorst Cut Using DKNUX 46 45Worst Cut Using RSB 51 47249 plus 30 NodesWorst Cut Using DKNUX 42 44Worst Cut Using RSB 51 47249 plus 60 NodesWorst Cut Using DKNUX 46 56Worst Cut Using RSB 46 52Table 6: A Comparison of the Best Solutions foundUsing DKNUX and RSB: Incremental Partitioningwith Fitness Function 2. \Worst Cut" refers tomaxqC(q), where C(q) is the number of edges lead-ing out of part q. For the GA, the maximum numberof edges leading out of a part is reported, for the bestindividual explored by the GA.

space is constrained, driving evolution in certain pre-ferred directions.We have introduced novel operators that exploit thelocality information inherent in most computationalgraphs. We have shown this enhances the speed andperformance of genetic search by orders of magnitude.We have demonstrated that genetic algorithms canbe used to greatly re�ne previously estimated partswith the help of KNUX and DKNUX. We show howthe strategies discussed in this paper extend naturallyto incremental graph partitioning. The incrementalpartitioning results obtained using DKNUX could notbe obtained by a simple deterministic algorithm thatassigns new nodes to the part to which most of itsnearest neighbors belong. Performance can further beimproved by incorporating a hill-climbing step.We have presented preliminary results showing thefeasibility of this approach and the gains obtainable byexamining the history of the search process; unfortu-nately, partitioning very large graphs does require highamounts of computation by the genetic algorithm. Aprior graph contraction step would allow these tech-niques to be applied to graphs much larger than thoseexplored in this paper [13]. Some gains can be ex-pected from executing the GA on parallel comput-ers, since DPGA is an inherently parallel algorithmfrom which we can expect near-linear speedups. Weare currently parallelizing the algorithm to run on dis-tributed memory machines such as the CM-5 and theIntel Paragon.References[1] J. P. Cohoon, W. N. Martin, and D. S.Richards, \A multi-population genetic algo-rithm for solving the k-partition problem onhypercubes," Proc. 4th ICGA, 1991, pp. 244{248.[2] R. Collins and D. Je�erson, \Selection inmassively parallel genetic algorithms," Proc.4th ICGA, 1991, pp. 249{256.[3] F. Ercal, \Heuristic Approaches to TaskAllocation for Parallel Computing", Ph.D.Thesis, Ohio State University , 1988.[4] J. H. Holland, Adaptation in Natural andArti�cial Systems, University of MichiganPress, Ann Arbor, 1975.[5] D. R. Jones and M. A. Beltramo, \Solv-ing partitioning problems with genetic algo-

rithms," Proc. of the 4th ICGA, 1991, pp.442{450.[6] G. von Laszewski, \Intelligent structuraloperators for the k-way graph partitioningproblem," Proc. of the 4th ICGA, 1991, pp.45{52.[7] H. S. Maini, \Incorporation of Knowledgein Genetic Recombination", Ph.D. Thesis,School of Computer & Information Science,Syracuse University, August 1994.[8] N. Mansour, Physical Optimization Algo-rithms for Mapping Data to Distributed-Memory Multiprocessors, Ph.D. Thesis,School of Computer and Information Sci-ence, Syracuse University, 1992.[9] H. Muhlenbein, \Parallel genetic algorithms,population genetics and combinatorial opti-mization," Proc. 3rd ICGA, 1989, pp. 416{422.[10] C.-W. Ou, S. Ranka, and G. Fox, \Fast map-ping and remapping algorithm for irregularand adaptive problems," Proc. of the In-ternational Conference on Parallel and Dis-tributed Computing, December 1993.[11] A. Pothen, H. Simon, and K-P. Liou, \Parti-tioning sparse matrices with eigenvectors ofgraphs," SIAM J. Matrix Anal. Appl., 11, 3(July), 1990, pp. 430{452.[12] H. Simon, \Partitioning of unstructuredmesh problems for parallel processing," Proc.Conf. Parallel Methods on Large Scale Struc-tural Analysis and Physics Applications,Pergamon Press, 1991.[13] S. T. Barnard, H. D. Simon, \A fast mul-tilevel implementation of recursive spec-tral bisection for partitioning unstructuredproblems," Technical Report RNR-92-033,November 1992.[14] G. Syswerda, \Uniform crossover in geneticalgorithms," Proc. of the 3rd ICGA, 1989,pp. 2{9.[15] R. D. Williams, \Performance of dynamicload balancing algorithms for unstructuredmesh calculations," Concurrency: Practiceand Experience, 3(5), 1991, pp. 457{481.

Appendix: Index-Based Partition (IBP)AlgorithmIndex-based algorithms to partition graphs havebeen described in [10]. An IBP algorithm in-cludes three phases| indexing, sorting, and coloring.The indexing scheme is based on converting an N -dimensional co-ordinate into a one-dimensional indexsuch that proximity in the multi-dimensional space ismaintained. Row-major indexing and shu�ed row-major indexing are two of the several ways of indexingpixels in a two-dimensional grid. These two indexingschemes are shown in Figure 1 for a graph in whichthe set of vertices are arranged in a grid of size 8� 8.00 01 02 03 04 05 06 07 00 01 04 05 16 17 20 2108 09 10 11 12 13 14 15 02 03 06 07 18 19 22 2316 17 18 19 20 21 22 23 08 09 12 13 24 25 28 2924 25 26 27 28 29 30 31 10 11 14 15 26 27 30 3132 33 34 35 36 37 38 39 32 33 36 37 48 49 52 5340 41 42 43 44 45 46 47 34 35 38 39 50 51 54 5548 49 50 51 52 53 54 55 40 41 44 45 56 57 60 6156 57 58 59 60 61 62 63 42 43 46 47 58 59 62 63(a) (b)Figure 1: (a) Row-Major and (b) Shu�ed Row-MajorIndexing for an 8� 8 imageA simple example of interleaving indices is as fol-lows. Suppose index1 = 001, index2 = 010, andindex3 = 110. Then the interleaved index would be001011100. In the above case the number of bits ineach dimension are equal. This could easily be gen-eralized to cases when the sizes are di�erent. For ex-ample if index1 = 101, index2 = 01, and index3 = 0,then the interleaved index would be 100110. This isdone by choosing bits (right to left) of each of thedimensions one by one, starting from dimension 3.When the bits of a particular dimension are no longeravailable, that dimension is not considered.After indexing is done, an e�cient sorting algo-rithm can be applied to sort these vertices accordingto their indices. Finally, this sorted list is divided intoP equal sublists.

	Genetic Algorithms for Graph Partitioning and Incremental Graph Partitioning
	Recommended Citation

	tmp.1286816405.pdf.4P7I9

