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Abstract

Partitioning graphs into equally large groups of
nodes, minimizing the number of edges between dif-
ferent groups, is an extremely important problem in
parallel computing. This paper presents genetic al-
gorithms for suboptimal graph partitioning, with new
crossover operators (KNUX, DKNUX) that lead to or-
ders of magnitude improvement over traditional ge-
netic operators wn solution quality and speed. QOur
method can tmprove on good solutions previously ob-
tained by using other algorithms or graph theoretic
heuristics in minimizing the total communication cost
or the worst case cost of communication for a single
processor. We also extend our algorithm to Incremen-
tal Graph Partitioning problems, in which the graph
structure or system properties changes with time.

1 Introduction

Graph partitioning is the task of dividing the nodes
of a graph into groups called parts (or bins), in such
a way that each part has roughly the same number of
nodes, and minimizing the cut-size, i.e., the number
of edges that connect nodes in different parts. This
problem has important applications in parallel com-
puting. For instance, efficiently parallelizing many
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scientific and engineering applications requires parti-
tioning data or tasks among processors, such that the
computational load on each node is roughly the same,
while inter-processor communication is minimized.
Obtaining exact solutions for graph partitioning
is computationally intractable, and several subopti-
mal methods have been suggested for finding good
solutions to the graph partitioning problem. Im-
portant heuristics include recursive coordinate bisec-
tion, recursive graph bisection, recursive spectral bi-
section, mincut based methods, clustering techniques,
geometry-based mapping, block-based spatial decom-
position, and scattered decomposition [3, 11, 12, 15].
We present genetic algorithms for graph partition-
ing, using new crossover operators that utilize infor-
mation available from the history of genetic search.
Our work is characterized by the following features:

1. Use of prior information to improve solutions.

2. Efficient partitioning of graphs to which incre-
mental updates are made.

3. Parallelizability, using a distributed genetic algo-
rithm model.

4. Refinement of parts obtained by other methods.

5. Optimization of the worst case communication
cost, a non-differentiable function.

We have obtained excellent results due to newly
developed genetic recombination operators (KNUX
and DKNUX) that exploit domain-specific knowledge.
These give improved solutions and faster convergence
rates when compared with the traditional crossover
operators. Exact comparisons of the different algo-
rithms are not available due to the unavailability of



benchmark problems and results. However, our exper-
iments with the traditional crossover operators used
by some of these researchers gave results of lower qual-
ity than using the operators presented in this paper.

The results achieved by our methods are better or
comparable to the best known methods for graph par-
titioning, for graphs with a few hundred nodes. The
quality of solutions obtained using DKNUX is com-
petitive with recursive spectral bisection as a graph
partitioning strategy, especially for incremental graph
partitioning. However, genetic algorithms do require
much more execution time than greedy algorithms,
and are recommended in applications where the qual-
ity of solution is important enough to warrant the ex-
tra computational effort. Fortunately, GA’s are read-
ily parallelizable, with near-linear speedups. Applying
a prior graph contraction step should precede the par-
titioning of very large graphs using GA’s.

Section 2 describes the task addressed by the ge-
netic algorithm. Section 3 describes how genetic al-
gorithms are applied to this problem. Experimental
results are given in Section 4.

2 Graph Partitioning as Optimization

Let V' denote the set of vertices of the graph to be
partitioned, and let £ denote its edges. The graph-
partitioning problem consists of finding an assignment
scheme M : V' —— P that maps vertices to n parts.
We denote by B(g) the set of vertices assigned to a
part ¢, i.e., B(q) = {v € V : M(v) = ¢q}. Edges
may connect physically proximate vertices in graphs
representing the computational structure of a physical
domain.

Graph partitioning is a multi-objective optimiza-
tion problem, since both load imbalance and commu-
nication costs must be minimized. These objectives
are often achieved by minimizing either

> Ig)+ 8> Clg),

q

where I(g) is the load imbalance attributed to part ¢,
C'(q) is the communication cost attributed to part ¢,
and (3 expresses the relative importance of the two ob-
jectives. This composite cost function focuses on the
total communication cost; an alternative is to mini-

Zl(q) + quax(](q),

q

which focuses on the communication cost for the worst
part. Our methods work with either formulation. For

domain decomposition methods, optimizing the latter
function is more desirable. The former is often used
because most traditional methods require differentia-
bility of the function being optimized.

The weight w; corresponds to the computation cost
(or weight) of a vertex v; € V. The average load of
each part is ) i wi/n. We define the load imbal-
ance attributed to the ¢th part as

Hq) = Ly Wi = Luev wi/n),

where n is the number of parts into which the graph
must be partitioned.

The communication cost w, (v, vz) corresponding
to an edge describes the amount of interaction between
vertices v; and vs. The cost of all the outgoing edges
from a part is

Clg) = ZU,EB(q),Ung(q) we (vi, vj)

Genetic algorithms attempt to maximize a “fitness”
function, whose value is relatively high for candidate
solutions of better quality. Our experiments were con-
ducted using the following two fitness functions, which
assume unit (equal) computation cost (w;) for each
node, unit communication cost (we ) for each edge, and

8=1.

Fitness; : — (Z(|B(q)| - H;—|)2 + ZC(‘]))

Fitness, : — (Z(|B(q)| - H;_|)2 _|_manC'(q))

3 Genetic Algorithms for Graph Par-
titioning

Genetic algorithms (GAs) are stochastic state-
space search techniques modeled on natural evolution-
ary mechanisms [4]. The population, a set of indi-
viduals (potential solutions to the optimization prob-
lem) steadily changes with time due to the applica-
tion of operators such as crossover and mutation. A
selection process determines which individuals (from
among parents and offspring) remain in the next gen-
eration. Genetic algorithms have been used in the
past to find good suboptimal solutions to the graph-
partitioning problem [1, 8, 5, 6]. This section describes
the representation used to solve the graph partition-
ing problem, the genetic operators used, and various
methods of improving the performance of the GA.



3.1 Representation

For graph partitioning, we select a vector repre-
sentation for each individual (candidate solution), in
which the i** element of an individual is j iff the "
node of the graph is allocated to the part labelled j.
For instance, the string 11100011 represents the map-
ping that assigns nodes 1,2,3,7,8 to part (processor)
1 and nodes 4,56 to part (processor) 0. Accord-
ing to our definitions of fitness, if the graph is one in
which the * node is adjacent to the (i+ 1)** node for
each ¢, then 11100011 would be less fit than 11100001
(which is a more balanced partition), but more fit than
10101011 (which has 6 inter-part edges).

3.2 Crossover

One-point crossover [4] works by selecting a site in
chromosomes a3 and 4J to produce «d and y58. A
popular generalization is 2-point crossover, in which
the parents aBy and de¢ produce offspring aey and
d8¢. This has been further generalized to ‘k-point
crossover’. In uniform crossover (UX) [14], the i'h
component of an offspring is chosen to be the same as
that of one of the two parents, with equal probability.

UX ignores the fact that one parent may have much
better genetic material than another, or that one re-
gion of the search space 1s already known to produce
individuals of higher fitness than other regions. UX
can be described in terms of a bit-vector mask, each
bit of which determines the parent from which an off-
spring inherits a value for a particular bit-position.

Our new Knowledge-based Non-Uniform Crossover
operator (KNUX) generalizes this idea, using a bias
probability vector p = (p1,...,pn), where each p; is a
real number € [0,1]. The value of each bias prob-
ability p; depends on i, the relative fitness of the
parent strings, and on problem-specific knowledge.
Given p and the two parents, @ = (ai,...,a,) and
b = (by,...,by), the offspring ¢ = (c1,...,¢,) is ob-
tained such that if a; = b;, then ¢; = a;, else the
probability that ¢; = a; is p;.

For graph partitioning, an initial candidate solution
I is first generated. Let v(é) be the set of neighbors
of node ¢ in the graph under consideration. For any
candidate solution X, let #(i, X, I) be the number of
nodes in v(%) that are allocated by I to part X;. If a
and b are the two parents, then we define

{ 0.5 if #(i,a,1)=0& #(i,b,1) =0
bi =

#0,a,1) :
FGantaa b Otherwise.

3.3 Dynamic KNUX (DKNUX)

The quality of solutions obtained by KNUX de-
pends on the quality of the heuristic estimate (I
above) used to derive bias probabilities. It is therefore
important to obtain a good, fast heuristic estimate of
a solution. DKNUX utilizes information inherent in
the history of the genetic search, and continually up-
dates the estimate [ to be the current best solution,
using this to build the bias vector.

3.4 Distributed Population Model

We use a coarse-grained, distributed-population ge-
netic algorithm (DPGA), where individuals are dis-
tributed into various subpopulations which may be
physically located on different processors configured
in some architecture (e.g., mesh). Crossovers are re-
stricted to occur between members of the same sub-
population. Each subpopulation periodically commu-
nicates copies of its best individuals to its neighboring
subpopulations (situated on neighboring processors in
the parallel architecture); this is how genetic informa-
tion is exchanged.

3.5 Population Initialization

The initial population can be seeded with a pre-
estimated heuristic solution such as that obtained
through an Index Based Partitioning scheme or the
results of recursive spectral bisection. In the incremen-
tal case, the previous partitioning can itself be used to
generate a good partitioning for the changed graph by
randomly assigning new graph nodes to various nodes,
while at the same time ensuring that balance is main-
tained.

3.6 Hill Climbing

It is possible to perform hill-climbing on offspring,
to obtain the nearest local optima of the fitness func-
tion. Only the “boundary points” of each part (with
neighbors in other parts) are examined to see if migrat-
ing them to the appropriate neighboring part improves
fitness.

4 Experimental Results
In this section, we compare the results obtained us-

ing our approach with those of traditional heuristics
(e.g., IBP or RSB) as well as with genetic algorithms



that invoke traditional crossover operators. The fig-
ures are obtained by averaging the results of 5 runs,
and the tables represent the best solutions obtained
in these 5 runs. All experiments were done with algo-
rithm DPGA set with a total population size of 320.
The crossover rate p. = 0.7 and the mutation rate
pm = 0.01. Tables 1, 2 and 3 report Zq C(q)/2 val-
ues, while Tables 4, 5 and 6 report max, C'(¢q) values,
where C'(q) is the number of edges that cut across part
q.

Experiments were conducted with a single popula-
tion as well as with 16 subpopulations configured as a
four dimensional hypercube. Graphs with unit weight
nodes and edges were assumed, although weighted
edges and nodes can also be handled easily. For clar-
ity, the cut-size numbers are given in the tables, in-
stead of the actual fitness function values; for graph-
partitioning, smaller cut-size numbers indicate supe-
rior performance. The results establish very clearly
the excellent performance of KNUX and DKNUX in
comparison with two-point crossover and also that
DKNUX is competitive with recursive spectral bisec-
tion as a graph partitioning strategy.

4.1 Improving solutions obtained using
other methods

Fast heuristic algorithms can be used to obtain an
initial candidate solution which is then improved by
applying the genetic algorithm. Table 1 compares
the results of Recursive Spectral Bisection (RSB)
[11, 12, 13] with the GA initialized by a solution
obtained by the Index-Based Partitioning algorithm
(IBP) [10] described in the Appendix.

| Number of Parts || 2 | 4 | 8 ||
167 Nodes
Cut Using DKNUX || 20 | 63 | 109
Cut Using RSB 20 | 59 | 120
144 Nodes
Cut Using DKNUX || 33 | 65 | 120
Cut Using RSB 36 | 78 | 119

Table 1: A Comparison of the Best Solutions found
Using DKNUX and RSB: starting with a population
initialized with an IBP solution, using Fitness Func-
tion 1. In each case, the total number of inter-part
edges is reported for the best individual explored by
the GA.

| Number of Parts || 2 | 4 | 8 ||
139 Nodes
Cut Using DKNUX || 28 | 65 | 100
Cut Using RSB 30 | 69 | 113
213 Nodes
Cut Using DKNUX || 41 | 77 | 138
Cut Using RSB 41 | 82 | 151
243 Nodes
Cut Using DKNUX || 43 | 88 | 141
Cut Using RSB 47 1 95 | 154
279 Nodes
Cut Using DKNUX || 36 | 78 | 139
Cut Using RSB 37 | 88 | 155

Table 2: Improving the Solution found through Re-
cursive Spectral Bisection, using Fitness Function 1.
In each case, the total number of inter-part edges is
reported for the best individual explored by the GA.

4.2 Incremental Graph Partitioning

For this series of experiments, we start with a
graph, partition it, then modify by adding some num-
ber of nodes in a local area chosen randomly within
the graph. The modified graphs are then partitioned.

Number of Parts

118 plus 21 Nodes
Cut Using DKNUX || 31 | 61 | 103
Cut Using RSB 30 | 69 | 113

118 plus 41 Nodes
Cut Using DKNUX || 31 | 66 | 120
Cut Using RSB 33 | 75| 128

183 plus 30 Nodes
Cut Using DKNUX || 37 | 72 | 133
Cut Using RSB 41 | 82 | 151
183 plus 60 Nodes
Cut Using DKNUX || 44 | 83 | 160
Cut Using RSB 47 1 95 | 154

| 2[4]38 |

Table 3: A Comparison of the Best Solutions found
Using DKNUX and RSB: Incremental Graph Parti-
tioning, using Fitness Function 1. In each case, the
total number of inter-part edges is reported for the
best individual explored by the GA.



| Number of Parts || 4 | 8 ||

78 Nodes

Worst Cut Using DKNUX || 23 | 23
Worst Cut Using RSB 26 | 25
88 Nodes

Worst Cut Using DKNUX || 28 | 21
Worst Cut Using RSB 33 | 27
98 Nodes

Worst Cut Using DKNUX || 26 | 23
Worst Cut Using RSB 30 | 30
144 Nodes

Worst Cut Using DKNUX || 53 | 42
Worst Cut Using RSB 44 | 35
167 Nodes

Worst Cut Using DKNUX || 44 | 39
Worst Cut Using RSB 40 | 41

Table 4: A Comparison of the Best Solutions found
Using DKNUX and RSB: Starting with a Randomly
Initialized Population and Using Fitness Function 2.
“Worst Cut” refers to maxz,C(q), where C(q) is the
number of edges leading out of part ¢q. For the GA,
the maximum number of edges leading out of a part is
reported, for the best individual explored by the GA.

4.3 Minimizing Worst Case Communica-
tion Cost

Unlike other methods which can be used only with
a differentiable optimization function, genetic algo-
rithms can be used directly to optimize Zq I(q) +
fmax, C(q), a task that cannot be attempted with
methods that require availability of the first deriva-
tive of the function to be optimized. Table 4 exhibits
the effect of partitioning graphs of 78, 88, 98, 144 and
167 nodes into 4 and 8 parts, respectively. Table 4
shows the best solution found using operator DKNUX
is better than that obtained using RSB in most cases.
In other cases, improvements can be obtained by seed-
ing the initial population with a heuristically obtained
good solution such as the index based partitioner.

5 Conclusions

We have solved the graph partitioning problem us-
ing GA’s with new knowledge-based crossover opera-
tors; problem-specific knowledge is used to generate
bias probabilities, and the “environment” and current
population play roles in controlling genetic expression.
The trajectory that the population takes in search

| Number of Parts || 4 | 8 ||

78 Nodes

Worst Cut Using DKNUX || 23 | 20
Worst Cut Using RSB 26 | 25
88 Nodes

Worst Cut Using DKNUX || 24 | 22
Worst Cut Using RSB 33 | 27
98 Nodes

Worst Cut Using DKNUX || 24 | 22
Worst Cut Using RSB 30 | 30
213 Nodes

Worst Cut Using DKNUX || 40 | 41
Worst Cut Using RSB 46 | 45
243 Nodes

Worst Cut Using DKNUX || 45 | 41
Worst Cut Using RSB 51 | 47
279 Nodes

Worst Cut Using DKNUX || 42 | 42
Worst Cut Using RSB 46 | 47
309 Nodes

Worst Cut Using DKNUX || 44 | 47
Worst Cut Using RSB 46 | 52

Table 5: A Comparison of the Best Solutions found
Using DKNUX: Improving Upon RSB Solutions Using
Fitness Function 2. “Worst Cut” refers to maxz,C(q),
where C(q) is the number of edges leading out of part
g. For the GA, the maximum number of edges lead-
ing out of a part is reported, for the best individual

explored by the GA.



Number of Parts

78 plus 10 nodes
Worst Cut Using DKNUX || 27 | 25
Worst Cut Using RSB 33 | 27
78 plus 20 nodes
Worst Cut Using DKNUX || 29 | 27
118 plus 21 Nodes
Worst Cut Using DKNUX || 33 | 29
Worst Cut Using RSB 38 | 34
118 plus 41 Nodes
Worst Cut Using DKNUX || 34 | 35
Worst Cut Using RSB 40 | 39
183 plus 30 Nodes
Worst Cut Using DKNUX || 41 | 40
Worst Cut Using RSB 46 | 45
183 plus 60 Nodes
Worst Cut Using DKNUX || 46 | 45
Worst Cut Using RSB 51 | 47
249 plus 30 Nodes
Worst Cut Using DKNUX || 42 | 44
Worst Cut Using RSB 51 | 47
249 plus 60 Nodes
Worst Cut Using DKNUX || 46 | 56
Worst Cut Using RSB 46 | 52

| 418 ]

Table 6: A Comparison of the Best Solutions found
Using DKNUX and RSB: Incremental Partitioning
with Fitness Function 2. “Worst Cut” refers to
maxz,C(q), where C(g) is the number of edges lead-
ing out of part ¢. For the GA, the maximum number
of edges leading out of a part is reported, for the best
individual explored by the GA.

space is constrained, driving evolution in certain pre-
ferred directions.

We have introduced novel operators that exploit the
locality information inherent in most computational
graphs. We have shown this enhances the speed and
performance of genetic search by orders of magnitude.
We have demonstrated that genetic algorithms can
be used to greatly refine previously estimated parts
with the help of KNUX and DKNUX. We show how
the strategies discussed in this paper extend naturally
to incremental graph partitioning. The incremental
partitioning results obtained using DKNUX could not
be obtained by a simple deterministic algorithm that
assigns new nodes to the part to which most of its
nearest neighbors belong. Performance can further be
improved by incorporating a hill-climbing step.

We have presented preliminary results showing the
feasibility of this approach and the gains obtainable by
examining the history of the search process; unfortu-
nately, partitioning very large graphs does require high
amounts of computation by the genetic algorithm. A
prior graph contraction step would allow these tech-
niques to be applied to graphs much larger than those
explored in this paper [13]. Some gains can be ex-
pected from executing the GA on parallel comput-
ers, since DPGA is an inherently parallel algorithm
from which we can expect near-linear speedups. We
are currently parallelizing the algorithm to run on dis-
tributed memory machines such as the CM-5 and the
Intel Paragon.
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Appendix: Index-Based Partition (IBP)
Algorithm

Index-based algorithms to partition graphs have
been described in [10].  An IBP algorithm in-
cludes three phases— indexing, sorting, and coloring.
The indexing scheme is based on converting an N-
dimensional co-ordinate into a one-dimensional index
such that proximity in the multi-dimensional space is
maintained. Row-major indexing and shuffled row-
major indexing are two of the several ways of indexing
pixels in a two-dimensional grid. These two indexing
schemes are shown in Figure 1 for a graph in which
the set of vertices are arranged in a grid of size 8 x 8.

00 01 02 03 04 05 06 07 00 01 04 05 16 17 20 21
08 09 10 11 12 13 14 15 02 03 06 07 18 19 22 23
16 17 18 19 20 21 22 23 08 09 12 13 24 25 28 29
24 25 26 27 28 29 30 31 10 11 14 15 26 27 30 31
32 33 34 35 36 37 38 39 32 33 36 37 48 49 52 53
40 41 42 43 44 45 46 47 34 35 38 39 50 51 54 55
48 49 50 51 52 53 54 b5 40 41 44 45 56 57 60 61
56 57 58 59 60 61 62 63 42 43 46 47 58 59 62 63

(a) (b)

Figure 1: (a) Row-Major and (b) Shuffled Row-Major

Indexing for an 8 x 8 image

A simple example of interleaving indices is as fol-
lows. Suppose index; = 001, indexs = 010, and
indexs = 110. Then the interleaved index would be
001011100. In the above case the number of bits in
each dimension are equal. This could easily be gen-
eralized to cases when the sizes are different. For ex-
ample if index; = 101, indexs = 01, and indexs = 0,
then the interleaved index would be 100110. This is
done by choosing bits (right to left) of each of the
dimensions one by one, starting from dimension 3.
When the bits of a particular dimension are no longer
available, that dimension 1s not considered.

After indexing i1s done, an efficient sorting algo-
rithm can be applied to sort these vertices according
to their indices. Finally, this sorted list 1s divided into
P equal sublists.
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