Syracuse University

SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and College of Engineering and Computer Science
Projects

1994

Parallel Incremental Graph Partitioning Using Linear Programming

Chao Wei Ou
Syracuse University

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

b Part of the Computer Sciences Commons

Recommended Citation

Ou, Chao Wei and Ranka, Sanjay, "Parallel Incremental Graph Partitioning Using Linear Programming"
(1994). College of Engineering and Computer Science - Former Departments, Centers, Institutes and
Projects. 24.

https://surface.syr.edu/lcsmith_other/24

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/24?utm_source=surface.syr.edu%2Flcsmith_other%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Parallel Incremental Graph Partitioning Using Linear Programming*

Chao-Wei Ou and Sanjay Ranka
School of Computer and Information Science
Syracuse University

Syracuse, NY 13244-4100

Abstract

Partitioning graphs into equally large groups of
nodes while minimizing the number of edges between
different groups ts an extremely important problem n
parallel computing. For instance, efficiently paralleliz-
g several scientific and engineering applications re-
quires the partitioning of data or tasks among proces-
sors such that the computational load on ecach node
1s roughly the same, while communication is min-

wmized. Obtaining exact solutions is computation-
ally intractable, since graph-partitioning is an NP-
complete.

For a large class of wrregular and adaptive data
parallel applications (such as adaptive meshes), the
computational structure changes from one phase to
another in an incremental fashion. In incremen-
tal graph-partitioning problems the partitioning of the
graph needs to be updated as the graph changes over
time; a small number of nodes or edges may be added
or deleted at any given instant.

In this paper we use a linear programming-based
method to solve the incremental graph partitioning
problem. All the steps used by our method are in-
herently parallel and hence our approach can be easily
parallelized. By using an initial solution for the graph
partitions derived from recursive spectral bisection-
based methods, our methods can achieve repartitioning
at constderably lower cost than can be obtained by ap-
plying recursive spectral bisection from scratch. Fur-
ther, the quality of the partitioning achieved is com-
parable to that achieved by applying recursive spectral
bisection to the incremental graphs from scratch.

1 Introduction

Graph partitioning is a well-known problem for
which fast solutions are extremely important in paral-

*This research was supported in part by DARPA under con-
tract #DABT63-91-C-0028.

lel computing and in research areas such as circuit par-
titioning for VLSI design. For instance, parallelization
of many scientific and engineering problems requires
partitioning the data among the processors in such a
fashion that the computation load on each node is bal-
anced, while communication is minimized. This is a
graph-partitioning problem, where nodes of the graph
represent computational tasks, and edges describe the
communication between tasks with each partition cor-
responding to one processor. Optimal partitioning
would allow optimal parallelization of the computa-
tions with the load balanced over various processors
and with minimized communication time. For many
applications, the computational graph can be derived
only at runtime and requires that graph partitioning
also be done in parallel. Since graph partitioning is
NP-complete, obtaining suboptimal solutions quickly
is desirable and often satisfactory.

For a large class of irregular and adaptive data
parallel applications such as adaptive meshes [2], the
computational structure changes from one phase to
another in an incremental fashion. In “incremental
graph-partitioning” problems, the partitioning of the
graph needs to be updated as the graph changes over
time; a small number of nodes or edges may be added
or deleted at any given instant. A solution of the
previous graph-partitioning problem can be utilized
to partition the updated graph, such that the time
required will be much less than the time required to
reapply a partitioning algorithm to the entire updated
graph. If the graph is not repartitioned, it may lead
to imbalance in the time required for computation on
each node and cause considerable deterioration in the
overall performance. For many of these problems the
graph may be modified after every few iterations (al-
beit incrementally), and so the remapping must have
a lower cost relative to the computational cost of exe-
cuting the few iterations for which the computational
structure remains fixed. Unless this incremental par-
titioning can itself be performed in parallel, it may
become a bottleneck.

Several suboptimal methods have been suggested
for finding good solutions to the graph-partitioning
problem. Important heuristics include recursive co-
ordinate bisection, recursive graph bisection, recur-
sive spectral bisection, mincut-based methods, cluster-
ing techniques, geometry-based mapping, block-based
spatial decomposition, and scattered decomposition
[3,4,1,6,5,8,9, 10, 12].

For many applications, the computational graph is
such that the vertices correspond to two- or three-
dimensional coordinates and the interaction between
computations is limited to vertices that are physically
proximate. In this paper we concentrate on meth-
ods for which such information is not available, and
which therefore have wider applicability. Our incre-
mental graph-partitioning algorithm uses linear pro-
gramming. Using recursive spectral bisection, which is
regarded as one of the best-known methods for graph
partitioning, our methods can partition the new graph
at considerably lower cost. The quality of partition-
ing achieved is close to that achieved by applying re-
cursive spectral bisection from scratch. Further, our
algorithms are inherently parallel.

The rest of the paper is outlined as follows. Section
2 defines the incremental graph-partitioning problem.
Section 3 describes the linear programming-based in-
cremental graph partitioning. Experimental results of
our methods on sample meshes are described in Sec-
tion 4. Conclusions are given in Section 5.

1.1 Problem definition

Consider a graph G = (V, F'), where V represents a
set of vertices, E represents a set of undirected edges,
the number of vertices is given by n = |V|, and the
number of edges is given by m = |F|. The graph-
partitioning problem can be defined as an assignment
scheme M : V' — P that maps vertices to partitions.
We denote by B(q) the set of vertices assigned to a
partition ¢, i.e., B(q) = {v € V : M(v) = ¢}.

The weight w; corresponds to the computation cost
(or weight) of the vertex v;. The cost of an edge
we(v1,v2) is given by the amount of interaction be-
tween vertices v; and vo. The weight of every partition
can be defined as

W) = > wi (1)

vi€B(q)

The cost of all the outgoing edges from a partition
represent the total amount of communication cost and

is given by

Clg) = >

v:€B(q),v;€B(q)

we(vi, v). (2)

We would like to make an assignment such that
the time spent by every node is minimized, i.e.,
min, (W(q) + #C(q)), where 3 represents the ratio
of cost of unit computation/cost of unit communica-
tion on a machine. Assuming computational loads are
nearly balanced (W(0) = W(1) ~ --- & W(p — 1)),
the second term needs to be minimized. In the lit-
erature Y C(¢) has also been used to represent the
communication.

Assume that a solution 1s available for a graph
G(V, E) by using one of the many available methods
in the literature, i.e., the mapping function M 1is avail-
able such that

& Blg—1) (3

and the communication cost is close to optimal. Let

G'(V', E') be an incremental graph of G(V, E).
Vi =VUuV, — Vs where Vo CV, (4)

il.e., some vertices are added and some vertices are
deleted. Similarly,

E/IEUEl—EQ Where Eng,ElﬂE2¢¢, (5)

i.e., some edges are added and some are deleted. We
would like to find a new mapping M’ : V! — P
such that the new partitioning is as load balanced as
possible and the communication cost is minimized.

The methods described in this paper assume that
G'(V', E') is sufficiently similar to G(V, E') that this
can be achieved, i.e., the number of vertices and edges
added/deleted are a small fraction of the original num-
ber of vertices and edges.

2 Incremental partitioning

In this section we formulate incremental graph par-
titioning in terms of linear programming. A high-level
overview of the four phases of our incremental graph-
partitioning algorithm is shown in Figure 1. Some
notation is in order.

Let

1. P be the number of partitions.

2. B'(i) represent the set of vertices in partition ¢.

3. p represent the average load for each partition

|B' (1)
H= Zl P .

The four steps are described in detail in the follow-
ing sections.

Step 1: Assign the new vertices to one of the partitions (given by
1

Step 2: Layer each partition to find the closest partition for each
vertex (given by L').

Step 3: Formulate the linear programming problem based on the
mapping of Step 1 and balance loads (i.e., modify M’) mini-
mizing the total number of changes in M'.

Step 4: Refine the mapping in Step 2 to reduce the communication

cost.

Figure 1: The different steps used in our incremental
graph-partitioning algorithm.

2.1 Assigning an initial partition to the
new nodes

The first step of the algorithm is to assign an ini-
tial partition to the nodes of the new graph (given by
M’(V)). A simple method for initializing M'(V) is
given as follows. Let

M'(v) = M(v) forall veV —Vi. (6)
For all the vertices v € V7,

M'(v) = M(z) where min (d(v,z)), (7)

eV -V,
d(v, z) is the shortest distance in the graph G'(V', E').
For the examples considered in this paper we assume
that G’ is connected. If this is not the case, several
other strategies can be used.

o If G"(VUV, EUE) is connected, this graph can
be used instead of G for calculation of M'(V').

o If G"(V UV, E'U EY) is not connected, then the
new nodes that are not connected to any of the
old nodes can be clustered together (into poten-
tially disjoint clusters) and assigned to the parti-
tion that has the least number of vertices.

For the rest of the paper we will assume that M'(v)
can be calculated using the definition in (7), although
the strategies developed in this paper are, in general,

Figure 2: (a) Initial Graph (b) Incremental Graph
(New vertices are shown by “*7).

independent of this mapping. Further, for ease of pre-
sentation, we will assume that the edge and the vertex
weights are of unit value. All of our algorithms can
be easily modified if this is not the case. Figure 2 (a)
describes the mapping of each the vertices of a graph.
Figure 2 (b) describes the mapping of the additional
vertices using the above strategy.

2.2 Layering each partition

{ map[v[j]] represents the mapping of vertex j. }
{ adj;[j] represents the j*" element of the local adjacent list in par-
tition 4. }
{ wadji[v[j]] represents the starting address of vertex j in local ad-
jacent list of partition 7. }
{ ng’k) represents the set of vertices of partition ¢ at a distance &
from a node in partition j.
{ Neighbor; represents the set of partitions which have common
boundaries with partition 7. }
For each partition ¢ do
For vertex v[j] € V; do
For k —— wzadj;[v[j]] to zadj;[v]j + 1]] do
if mapladj;[k] # ¢
Count;[mapladj;[k]]] := Count;[map[adj;[k]]] + 1
if Zl Count[l] > 0
Add v[j] into §¢1%90)
{ where Countl[tag] = max; Count[l] }
Vi = Vi — {o[]}
level := 0
repeat
For k € Neighbor; do
For vertex v[j] € Sgk’levd) do
For | —— zadj;[v[j]] to zadj;[v[j + 1]] do
if adj;[l] € Sgk,level)
count;[adj;[1]|[k] := count,[adj;[{]][k] + 1
Add v[j] into tmps
level .= level + 1
For vertex v[j] € tmps do
Add v[j] into s{teeteret)
{ where count;[j][tag] = max; count;[F][{] }
Vi = Vi — {o[]}
until (V; = ¢)
For j € Neighbor; do

Q= Z |ng’k)|

0<k<level

Figure 3: Layering Algorithm

The above mapping would ordinarily generate par-
titions of unequal size. We would like to move vertices

from one partition to another to achieve load balanc-
ing, while keeping the communication cost as small
as possible. This is achieved by making sure that the
vertices transferred between two partitions are close
to the boundary of the two partitions. We assign each
vertex of a given partition to a different partition it is
close to (ties are broken arbitrarily).

L'(v) = M(x) (8)
where z 1s such that

min (d(v,z)) (9)

cgB'(M(v))

is satisfied; d(v,) is the shortest distance in the graph

between v and z.
®/ P

Figure 4: Labeling the nodes of a graph to the closest
outside partition. (a) A microscopic view of the layer-
ing for a graph near the boundary of three partitions.
(b) Layering of the graph in Figure 2 (b); no edges are
shown.

A simple algorithm to perform the layering is given
in Figure 3. It assumes the graph is connected. Let
«;; represent the number of such vertices of partition
¢ that can be moved to partition j. For the example
case of Figure 3, labels of all the vertices are given in
Figure 4. A label 2 of vertex in partition 1 corresponds
to the fact that this vertex belongs to the set that
contributed to os.

2.3 Load balancing

Let [;; represent the number of vertices to be moved
from partition ¢ to partition j to achieve load balance.
There are several methods for load balancing. How-
ever, since one of our goals is to minimize the com-
munication cost, we would like to minimize Z lej,

2
because this would correspond to a minimizatién of
the amount of vertex movement (or “deformity”) in
the original partitions. Thus, the load-balancing step
can be formally defined as the following linear pro-
gramming problem.

Minimize
Z l;; (10)
0<iZj <P
subject to
0 <l < ay; < |B'(3)] (11)

0<i< P

Constraint 12 corresponds to the load balance condi-
tion.

The above formulation is based on the assumption
that changes to the original graph are small and the
initial partitioning is well balanced. Hence, moving
the boundaries by a small amount will give balanced
partitioning with low communication cost.

There are several approaches to solving the above
We decided to use

the simplex method because 1t has been shown to

linear programming problem.

work well in practice and because it can be easily
parallelized.! The simplex formulation of the example
in Figure 2 is given in Figure 5. The corresponding
solution is lg3 = 8 and /15 = 1. The new partitioning
is given in Figure 6.

The above set of constraints may not have a feasible
solution. One approach is to relax the constraint in
(11) and not have l;; < @;; as a constraint. Clearly,

1We have used a dense version of simplex algorithm.
The total time can potentially be reduced by using sparse
representation.

Constraints in (11):

logn € 91gp < 7lp3 <1219 10112 <11
log 3121 S Tlp3 <9130 <Tl32<5

Constraints in (12):

lo1 + o2 + o3 —l10 —l20 — 30 =8
lig +l12 —lp1 —l21 =1

—logg —l21 —laa + g2 + 12+ 132 =1
—l3g —l32 +1p3 +123 =8

Solution using the Simplex Method

log =8, 1120 =1
all other values are zero.

Figure 5: Linear programming formulation and its so-
lution based on the mapping of the graph in Figure 2
(b) using the labeling information in Figure 4 (b).

Initid partitions ~ +--e

Incremental partitions ==

ORMIZEND

N £ ,,‘A

AN

QLT

“ FZNN ‘ (‘

o=y
')

P

\/|
A \

Figure 6: The new partition of the graph in Figure 2
(b) after the Load Balancing step.

this would achieve load balance but may lead to major
modifications in the mapping. Another approach is to
replace the constraint in (12) by:

B'(j)] —)
Z (lij—lj'):% 0<j <P (13)
0<i<P

Assuming C' > A > 1, this would not achieve load
balancing in one step, but several such steps can be
applied to achieve load balancing. If a feasible solution
cannot be found with a reasonable value of A (within
an upper bound C'), it would be better to start par-
titioning from scratch or solve the problem by adding
only a fraction of the nodes at a given time, i.e., solve
the problem in multiple stages. Typically, such cases
arise when all the new nodes correspond to a few parti-
tions and the amount of incremental change is greater
than the size of one partition.

2.4 Refinement of partitions

The formulation in the previous section achieves
load balance but does not try explicitly to reduce the
number of cross-edges. The minimization term in (10)
and the constraint in (11) indirectly keep the cross-
edges to a minimum under the assumption that the
initial partition is good. In this section we describe a
linear programming-based strategy to reduce the num-
ber of cross-edges, while still maintaining the load bal-
ance. This is achieved by finding all the vertices of par-
titions ¢ on the boundary of partition ¢ and j such that
the cost of edges to the vertices in j are larger than
the cost of edges to local vertices (Figure 7), i.e., the
total cost of cross-edges will decrease by moving the
vertex from partition ¢ to j, which will affect the load
balance. In the following a linear programming formu-
lation is given that moves the vertices while keeping
the load balance.

Let M"(k) : V! — P represent the mapping of
each vertex after the load balancing step. Let out
(k,j) represent the number of edges of vertex k in
partition M (k) connected to partition j(j # M"(k))
and in (k) represent the number of vertices a vertex k
is connected to in partition M (k). Let b;; represent
the number of vertices in partition ¢z which have more
outgoing edges to partition j than local edges.

bi; = |{V € B}| out (V,j) — in (V) > 0.}]

We would like to maximize the number of vertices
moved so that moving a vertex will not increase the
cost of cross-edges. The inequality in the above defi-
nition can be changed to a strict inequality. We leave

' non-local edgeto partition j=3
. non-local edge to partition k=1 P
N loca edges=2 J

Figure 7: Choosing vertices for refinement. (a) Micro-
scopic view of a vertex which can be moved from par-
tition P; to P;, reduceing the number of cross edges.
(b) The set of vertices with the above property in the
partition of Figure 6.

the equality, however, since by including such vertices
the number of points that can be moved can be larger
(because these vertices can be moved to satisfy load
balance constraints without affecting the number of
cross-edges).

The refinement problem can now be posed as the
following linear programming problem:

Maximize
Z l;; (14)
0<i#jCP
such that
0<li; <by; 0<i#j<P (15)
> ij—Li)=0 0<j<P. (16)
0<i<j
Constraint (15)
lon € 1llga < 1lp3 < 1l10 <212 <1
log 0lpp <13 <130 <2132 <1

Load Balancing Constraint (16)

lo1 + o2 + o3 — 110 —l20 —l30 = 0
lig +l12 —lp1 —l21 =0

—logg —l21 —la+lg2 +l124+132 =0
—l3g —l32 +1p3 +123 =0

Solution using Simplex Method

lor =0,lpo=1,lgs =1, l1p =1, 112 =1
log = 0,11 =1, lp3 =1,1l30 =1,130 =1

Figure 8: Formulation of the refinement step using
linear programming and its solution.

This refining step can be applied iteratively until
the effective gain by the movement of vertices is small.
After a few steps, the inequalities (;; < b;;) need to
be replaced by strict inequalities ({;; < b;;); other-
wise, vertices having an equal number of local and
nonlocal vertices may move between boundaries with-
out reducing the total cost. The simplex formulation
of the example in Figure 6 is given in Figure 8 and the
new partitioning after refinement is given in Figure 9.

3 Experimental results

Incremental partitions ==
Refined partitions = = =

RE Dy

X3/ 7
e
s

B =

Figure 9: The new partition of the graph in Figure 6
after the Refinement step.

In this section, we present experimental results of
the linear programming-based incremental partition-
ing presented in the previous section (we will use the
term Incremental Graph Partitioner (IGP) to refer to
this algorithm). The timings are given for 32 parti-
tions on a l-node and 32-node CM-5.

We have used two sets of adaptive meshes for our
experiments. These meshes were generated using the
DIME environment [11]. The initial mesh of the
first set is given in Figure 10. The other incremen-
tal meshes are generated by making refinements in a
localized area of the initial mesh. These meshes repre-
sent a sequence of refinements in a localized area. The
number of nodes in the meshes are 1071, 1096, 1121,
1152, and 1192 respectively.

The partitioning of the initial mesh (size 1071
nodes) was determined using Recursive Spectral bisec-
tion. This was the partitioning used by algorithm IGP
to determine the partition of the incremental mesh (of
size 1096). The repartitioning of the next set of refine-
ment (with 1121, 1152, and 1192 nodes, respectively)
was achieved using the partitioning obtained by using
the IGP for the previous mesh in the sequence. The
results show that, even after multiple refinements, the
quality of partitioning achieved is comparable to that
achieved by recursive spectral bisection from scratch,
thus this method can be used for repartitioning for
several stages. The time required by repartitioning is
about half of the time required for partitioning using
RSB. The algorithm provides speedup of around 15 to
20 on a 32 node CM-5.

Most of the time spent by our algorithm is in the so-

Initial Graph — Figure 10 Cutset
Partitioner | [V] |E| Total [Max | Min
SB 1071 3185 734 56 | 35
[V = 1096 [E] = 3260 Cutset
Partitioner | Time-s | Time-p Total | Max Min
SB 31.71 — 733 56 33
IGP 14.75 0.68 747 55 34
IGPR 16.87 0.88 730 54 34
V= 1121 [E] = 3335 Cutset
Partitioner | Time-s | Time-p Total | Max Min
SB 34.05 — 732 56 34
IGP 13.63 0.73 752 54 33
IGPR 16.42 1.05 727 54 33
[VI= 1152 [E| = 3428 Cutset
N Y2 RS Partitioner | Time-s | Time-p Total | Max Min
’A‘ e ‘,ﬁ;}"gg‘ SB 34.96 — 716 57 34
Vs, il 6P | 1msy | voe | a1 | s | 55
1&&%:‘:@?7%”‘4"‘%&?@%’4 [VI=1192 [E| = 3548 Cutset
Vmﬁ%@@%ﬂwsg Aﬁ?%@,éigé Partitioner | Time-s | Time-p | Total | Max | Min
\Mﬁiﬂl’@ﬁi‘ﬂ%%’é@%ﬁﬂ SB 3820 — 774 63 34
\“!@V}Vﬁgg&‘bs‘g%ﬁgs IGP 15.69 0.94 815 63 34
(“ﬁgﬁi‘gﬁﬁ&\!ﬁﬂ IGPR 1843 | 126 | 779 | 50 | 34
“‘\V’A’i&"‘iﬁ@“ Time unit in seconds.
v V"'" p - parallel timing on a 32-node CM-5.
s - timing on a one-node CM-5.
SB - Spectral Bisection.
IGP - Incremental Graph Partitioner.
IGPR - Incremental Graph Partitioner with Refinement.

Figure 11: Incremental graph partitioning using linear
programming and its comparison with spectral bisec-
tion from scratch for meshes in Figure 10.

</ N g

S, I

O e

NN ERA
(XSS Sy
ﬁﬁi\‘ﬁ'ﬁ?ﬁiﬁ;‘a ¢ «4'5,«% g
SAK KN IR
N JANRNY; KX i
‘;“’va%‘w‘%' .

—&

Wil
a

<
K
AN

Figure 10: Test graph A an irregular graph with 1071

nodes and 3185 edges. The refinement graph with X
1192 nodes and 3548 edges. ‘1%!‘47 'A"ﬁrzg
NV DN AATSaVAY;

BTSN

A2

Figure 12: A mesh with 10166 nodes and 30471 edges.

<

Y%
R,
!'g N Vﬁ‘,’,‘i‘i)

Figure 13: A refinement of mesh in Figure 12 with 672
extra nodes.

lution of the linear programming formulation using the
simplex method. The cost of the simplex method de-
pends on the number of variables (v) and the number
of constraints (¢). Each iteration in the dense matrix
formulation requires time proportional to the O(ve).
The value of v and ¢ depend largely on the number of
partitions and the number of edges between the par-
titions (corresponding to e;; and I; as described in
section 2.3 and section 2.4, respectively). The values
of v and ¢ for the formulation corresponding to per-
forming the load balancing step for mesh in Figure
11 with |V| = 1096 and |E| = 3260 for 32 partitions
are 188 and 126, respectively These costs are inde-
pendent of the number of vertices in the mesh and
depend on the number of partitions. Thus, for large
meshes the performance should be much better. QOur
software currently implements the simplex method us-
ing a dense matrix formulation. Since the matrix is
highly sparse, this cost can be substantially reduced
by using a sparse representation. Clearly, the latter
would be more difficult to parallelize. Another option
is to use a multilevel approach and apply incremental
partitioning recursively. We are currently exploring
this approach. Since most of the time (even for large
meshes) is spent on the solution of the linear program-
ming using the simplex method, any improvements in
the time required will have a major impact on the total
time required for partitioning.

The next data set corresponds to highly irregular
mesh with 10166 nodes and 30471 edges. This data set
was generated to study the effect of different amounts
of new data added to the original mesh. Figures 14
(b), 14 (e), 14 (d), and 14 (e) correspond to meshs

(a) Initial Graph — Figure 12 Cutset
Partitioner | [V[[[E] Total [Max | Min
| 1olee | 30471 2118 | 171 | 82
(6) [V = 10214 |E] = 30615 Cutset
Partitioner | Time-s | Time-p Total | Max Min
SB 800.05 — 2137 178 90
IGP 13.90 1.01 2139 186 84
IGPR 24.07 1.83 2040 172 82
(c) [V] = 10305 |E] = 30888 Cutset
Partitioner | Time-s | Time-p Total | Max Min
SB 814.36 — 2099 166 87
IGP 18.89 1.08 2295 219 93
IGPR 29.33 2.01 2162 206 85
{d) [V] = 10395 |E] = 31158 Cutset
Partitioner | Time-s | Time-p Total | Max Min
SB 853.35 — 2057 169 94
IGP(2) 35.98 2.08 2418 256 92
IGPR 43.86 2.76 2139 1950 85
(e) [V] = 10838 |E| = 32487 Cutset
Partitioner | Time-s | Time-p Total | Max Min
SB 904.81 — 2158 158 94
IGP(3) 76.78 3.66 2572 301 102
IGPR 89.48 4.39 2270 237 96
Time unit in seconds.
p - parallel timing on a 32-node CM-5.
s - timing on a one-node CM-5.
SB - Spectral Bisection.
IGP - Incremental Graph Partitioner.
IGPR - Incremental Graph Partitioner with Refinement.

Figure 14: Incremental graph partitioning using linear
programming and its comparison with spectral bisec-
tion from scratch for meshes in Figure 12 and Figure

13.

with 68, 139, 229, and 672 additional nodes over the
mesh in Figure 12. The partitioning achieved by algo-
rithm IGP for mesh in Figure 13 using the partition of
mesh in Figure 12 for mesh is given in Figure 14. The
number of stages required (by choosing an appropriate
value of A as described in section 2.3) were 1, 1, 2, and
3, respectively. 2 It is worth noting that although the
load imbalance created by the additional nodes was
severe, the quality of partitioning achieved for each
of the cases was close to that of applying Recursive
Spectral Bisection from scratch. Further, the sequen-
tial time is at least an order of magnitude better than
that of Recursive Spectral Bisection. The CM-5 im-
plementation improved the time required by a factor
of 15 to 20. The time required for repartitioning Fig-
ure 14 (b) and Figure 14 (¢) is close to that required
for meshes in Figure 10. The timings for meshes in
Figure 14 (d) and 14 (e) are larger because they use
multiple stages.

The above results show that the IGP at a fraction
of the cost, can be effectively used for repartitioning to
achieve solutions similar in quality to those obtained
by applying recursive spectral bisection from scratch.
Further, the algorithm can be parallelized effectively.

4 Conclusions

In this paper we have presented a novel linear
programming-based formulation for solving incremen-
tal graph-partitioning problems. The quality of par-
titioning produced by our methods is close to that
achieved by applying the best partitioning methods
from scratch. Further, the time needed is a small frac-
tion of the latter and our algorithms are inherently
parallel. We believe the methods described in this pa-
per are of critical importance to the parallelization of
the adaptive and incremental problems described ear-
lier.

References

[1] I. Angus, G. Fox, J. Kim, and D. Walker. Solving
Problems on Concurrent Processors, volume 2.

Prentice Hall, Englewood Cliffs; NJ, 1990.

[2] Alok Choudhary, Geoffrey C. Fox, Seema Hi-
ranandani, Ken Kennedy, Charles Koelbel, San-
jay Ranka, and Joel Saltz. Software Support for

2The number of stages chosen were by trial and error, but
can be determined by the load imbalance.

[3]

[4]

[10]

Irregular and Loosely Synchronous Problems. In
Proceedings of the Conference on High Perfor-
mance Computing for Flight Vehicles, 1992. To
appear.

F. Ercal. Heuristic Approaches to Task Allocation
for Parallel Computing. Ph.D. thesis, Ohio State
University, 1988.

G. C. Fox and W. Furmanski. Load Balanc-
ing Loosely Synchronous Problems with a Neural

Network. 1988.

G. C. Fox, M. Johnson, G. Lyzenga, S. Otto,
J. Salmon, and D. Walker. Solving Problems on
Concurrent Processors, volume 1. Prentice Hall,

Englewood Cliffs, NJ, 1988.

Geoffrey C. Fox. Graphical Approach to Load
Balancing and Sparse Matriz Vector Multiplica-
tion on the Hypercube. 1988. M. Schultz, Ed.,
Springer-Verlag, Berlin.

Harpal Maini, Kishan Mehrotra, Chilukuri Mo-
han, and Sanjay Ranka. Genetic Algorithms for
Graph Partitioning and Incremental Graph Par-
titioning. Supercomputing '94

S. Nolting. Nonlinear Adaptive Finite Ele-
ment Systems on Distributed Memory Comput-
ers. In Proceedings of Furopean Distributed Mem-
ory Computing Conference, April 1991.

A. Pothen, H. Simon, and K-P Liou. Partition-
ing Sparse Matrices with Eigenvectors of Graphs.
SIAM Journal of Matriz Analysis and Applica-
tion, 11(3), July 1990.

H. Simon. Partitioning of Unstructured Mesh
Problems for Parallel Processing. In Proceedings
of the Conference on Parallel Methods on Large
Scale Structural Analysis and Physics Applica-
tions. Permagon Press, 1991.

R.D. Williams. DIME: Distributed Irreqular Mesh
Enviroment. California Institute of Technology,

February 1990.

R.D. Williams. Performance of Dynamic Load-
Balancing Algorithm for Unstructured Mesh Cal-
culations. Concurrency Parctice and Ezxperience,

3:457-481, 1991.

	Parallel Incremental Graph Partitioning Using Linear Programming
	Recommended Citation

	tmp.1286816405.pdf.e9yxH

