
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1994

Parallel Incremental Graph Partitioning Using Linear Programming Parallel Incremental Graph Partitioning Using Linear Programming

Chao Wei Ou
Syracuse University

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ou, Chao Wei and Ranka, Sanjay, "Parallel Incremental Graph Partitioning Using Linear Programming"
(1994). College of Engineering and Computer Science - Former Departments, Centers, Institutes and
Projects. 24.
https://surface.syr.edu/lcsmith_other/24

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/24?utm_source=surface.syr.edu%2Flcsmith_other%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Parallel Incremental Graph Partitioning Using Linear Programming�Chao-Wei Ou and Sanjay RankaSchool of Computer and Information ScienceSyracuse UniversitySyracuse, NY 13244-4100AbstractPartitioning graphs into equally large groups ofnodes while minimizing the number of edges betweendi�erent groups is an extremely important problem inparallel computing. For instance, e�ciently paralleliz-ing several scienti�c and engineering applications re-quires the partitioning of data or tasks among proces-sors such that the computational load on each nodeis roughly the same, while communication is min-imized. Obtaining exact solutions is computation-ally intractable, since graph-partitioning is an NP-complete.For a large class of irregular and adaptive dataparallel applications (such as adaptive meshes), thecomputational structure changes from one phase toanother in an incremental fashion. In incremen-tal graph-partitioning problems the partitioning of thegraph needs to be updated as the graph changes overtime; a small number of nodes or edges may be addedor deleted at any given instant.In this paper we use a linear programming-basedmethod to solve the incremental graph partitioningproblem. All the steps used by our method are in-herently parallel and hence our approach can be easilyparallelized. By using an initial solution for the graphpartitions derived from recursive spectral bisection-based methods, our methods can achieve repartitioningat considerably lower cost than can be obtained by ap-plying recursive spectral bisection from scratch. Fur-ther, the quality of the partitioning achieved is com-parable to that achieved by applying recursive spectralbisection to the incremental graphs from scratch.1 IntroductionGraph partitioning is a well-known problem forwhich fast solutions are extremely important in paral-�This research was supported in part by DARPA under con-tract #DABT63-91-C-0028.

lel computing and in research areas such as circuit par-titioning for VLSI design. For instance, parallelizationof many scienti�c and engineering problems requirespartitioning the data among the processors in such afashion that the computation load on each node is bal-anced, while communication is minimized. This is agraph-partitioning problem, where nodes of the graphrepresent computational tasks, and edges describe thecommunication between tasks with each partition cor-responding to one processor. Optimal partitioningwould allow optimal parallelization of the computa-tions with the load balanced over various processorsand with minimized communication time. For manyapplications, the computational graph can be derivedonly at runtime and requires that graph partitioningalso be done in parallel. Since graph partitioning isNP-complete, obtaining suboptimal solutions quicklyis desirable and often satisfactory.For a large class of irregular and adaptive dataparallel applications such as adaptive meshes [2], thecomputational structure changes from one phase toanother in an incremental fashion. In \incrementalgraph-partitioning" problems, the partitioning of thegraph needs to be updated as the graph changes overtime; a small number of nodes or edges may be addedor deleted at any given instant. A solution of theprevious graph-partitioning problem can be utilizedto partition the updated graph, such that the timerequired will be much less than the time required toreapply a partitioning algorithm to the entire updatedgraph. If the graph is not repartitioned, it may leadto imbalance in the time required for computation oneach node and cause considerable deterioration in theoverall performance. For many of these problems thegraph may be modi�ed after every few iterations (al-beit incrementally), and so the remapping must havea lower cost relative to the computational cost of exe-cuting the few iterations for which the computationalstructure remains �xed. Unless this incremental par-titioning can itself be performed in parallel, it maybecome a bottleneck.1

Several suboptimal methods have been suggestedfor �nding good solutions to the graph-partitioningproblem. Important heuristics include recursive co-ordinate bisection, recursive graph bisection, recur-sive spectral bisection, mincut-based methods, cluster-ing techniques, geometry-based mapping, block-basedspatial decomposition, and scattered decomposition[3, 4, 1, 6, 5, 8, 9, 10, 12].For many applications, the computational graph issuch that the vertices correspond to two- or three-dimensional coordinates and the interaction betweencomputations is limited to vertices that are physicallyproximate. In this paper we concentrate on meth-ods for which such information is not available, andwhich therefore have wider applicability. Our incre-mental graph-partitioning algorithm uses linear pro-gramming. Using recursive spectral bisection, which isregarded as one of the best-known methods for graphpartitioning, our methods can partition the new graphat considerably lower cost. The quality of partition-ing achieved is close to that achieved by applying re-cursive spectral bisection from scratch. Further, ouralgorithms are inherently parallel.The rest of the paper is outlined as follows. Section2 de�nes the incremental graph-partitioning problem.Section 3 describes the linear programming-based in-cremental graph partitioning. Experimental results ofour methods on sample meshes are described in Sec-tion 4. Conclusions are given in Section 5.1.1 Problem de�nitionConsider a graph G = (V;E), where V represents aset of vertices, E represents a set of undirected edges,the number of vertices is given by n = jV j, and thenumber of edges is given by m = jEj. The graph-partitioning problem can be de�ned as an assignmentscheme M : V �! P that maps vertices to partitions.We denote by B(q) the set of vertices assigned to apartition q, i.e., B(q) = fv 2 V :M (v) = qg.The weight wi corresponds to the computation cost(or weight) of the vertex vi. The cost of an edgewe(v1; v2) is given by the amount of interaction be-tween vertices v1 and v2. The weight of every partitioncan be de�ned asW (q) = Xvi2B(q)wi: (1)The cost of all the outgoing edges from a partitionrepresent the total amount of communication cost and

is given byC(q) = Xvi2B(q); vj 62B(q)we(vi; vj): (2)We would like to make an assignment such thatthe time spent by every node is minimized, i.e.,minq (W (q) + �C(q)), where � represents the ratioof cost of unit computation/cost of unit communica-tion on a machine. Assuming computational loads arenearly balanced (W (0) � W (1) � � � � � W (p � 1)),the second term needs to be minimized. In the lit-erature PC(q) has also been used to represent thecommunication.Assume that a solution is available for a graphG(V;E) by using one of the many available methodsin the literature, i.e., the mapping functionM is avail-able such thatB(1) � B(2) � B(3) � � � � � B(q � 1) (3)and the communication cost is close to optimal. LetG0(V 0; E0) be an incremental graph of G(V;E).V 0 = V [V1 � V2 where V2 � V; (4)i.e., some vertices are added and some vertices aredeleted. Similarly,E0 = E [E1�E2 where E2 � E;E1 \E2 6= �; (5)i.e., some edges are added and some are deleted. Wewould like to �nd a new mapping M 0 : V 0 �! Psuch that the new partitioning is as load balanced aspossible and the communication cost is minimized.The methods described in this paper assume thatG0(V 0; E0) is su�ciently similar to G(V;E) that thiscan be achieved, i.e., the number of vertices and edgesadded/deleted are a small fraction of the original num-ber of vertices and edges.2 Incremental partitioningIn this section we formulate incremental graph par-titioning in terms of linear programming. A high-leveloverview of the four phases of our incremental graph-partitioning algorithm is shown in Figure 1. Somenotation is in order.Let1. P be the number of partitions.2. B0(i) represent the set of vertices in partition i.

3. � represent the average load for each partition� = Pi jB0(i)jP .The four steps are described in detail in the follow-ing sections.Step 1: Assign the new vertices to one of the partitions (given byM 0).Step 2: Layer each partition to �nd the closest partition for eachvertex (given by L0).Step 3: Formulate the linear programming problem based on themapping of Step 1 and balance loads (i.e., modify M 0) mini-mizing the total number of changes in M 0.Step 4: Re�ne the mapping in Step 2 to reduce the communicationcost.Figure 1: The di�erent steps used in our incrementalgraph-partitioning algorithm.2.1 Assigning an initial partition to thenew nodesThe �rst step of the algorithm is to assign an ini-tial partition to the nodes of the new graph (given byM 0(V)). A simple method for initializing M 0(V) isgiven as follows. LetM 0(v) =M (v) for all v 2 V � V1: (6)For all the vertices v 2 V1,M 0(v) =M (x) where minx2V�V2(d(v; x)); (7)d(v; x) is the shortest distance in the graph G0(V 0; E0).For the examples considered in this paper we assumethat G0 is connected. If this is not the case, severalother strategies can be used.� If G00(V [V1; E[E1) is connected, this graph canbe used instead of G for calculation of M 0(V).� If G00(V [V1; E [E1) is not connected, then thenew nodes that are not connected to any of theold nodes can be clustered together (into poten-tially disjoint clusters) and assigned to the parti-tion that has the least number of vertices.For the rest of the paper we will assume thatM 0(v)can be calculated using the de�nition in (7), althoughthe strategies developed in this paper are, in general,

P

P

P

P2

1

0

3(a)
P

P

P

P2

1

0

3

*
*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*
*

* *
*

* * *

*

*(b)Figure 2: (a) Initial Graph (b) Incremental Graph(New vertices are shown by *").

independent of this mapping. Further, for ease of pre-sentation, we will assume that the edge and the vertexweights are of unit value. All of our algorithms canbe easily modi�ed if this is not the case. Figure 2 (a)describes the mapping of each the vertices of a graph.Figure 2 (b) describes the mapping of the additionalvertices using the above strategy.2.2 Layering each partitionf map[v[j]] represents the mapping of vertex j. gf adji[j] represents the jth element of the local adjacent list in par-tition i. gf xadji[v[j]] represents the starting address of vertex j in local ad-jacent list of partition i. gf S(j;k)i represents the set of vertices of partition i at a distance kfrom a node in partition j.f Neighbori represents the set of partitions which have commonboundaries with partition i. gFor each partition i doFor vertex v[j] 2 Vi doFor k � xadji[v[j]] to xadji [v[j + 1]] doif map[adji [k] 6= iCounti[map[adji [k]]] := Counti[map[adji [k]]] + 1ifPl Count[l] > 0Add v[j] into S(tag;0)if where Count[tag] = maxl Count[l] gVi Vi � fv[j]glevel := 0repeatFor k 2 Neighbori doFor vertex v[j] 2 S(k;level)i doFor l � xadji[v[j]] to xadji[v[j + 1]] doif adji [l] 62 S(k;level)icounti[adji [l]][k] := counti[adji [l]][k] + 1Add v[j] into tmpSlevel := level + 1For vertex v[j] 2 tmpS doAdd v[j] into S(tag;level)if where counti[j][tag] = maxl counti[j][l] gVi Vi � fv[j]guntil (Vi = �)For j 2 Neighbori do�ij := X0�k<leveljS(j;k)i jFigure 3: Layering AlgorithmThe above mapping would ordinarily generate par-titions of unequal size. We would like to move vertices

from one partition to another to achieve load balanc-ing, while keeping the communication cost as smallas possible. This is achieved by making sure that thevertices transferred between two partitions are closeto the boundary of the two partitions. We assign eachvertex of a given partition to a di�erent partition it isclose to (ties are broken arbitrarily).L0(v) =M (x) (8)where x is such that minx=2B0(M(v))(d(v; x)) (9)is satis�ed; d(v; x) is the shortest distance in the graphbetween v and x.
P

i Pj

P
k

j k

i

i

i

j

k

k

k

j

j

j

(a)
P

P

P

P2

1

0

3

3

3

3

3

33

3

3
3

3

33

2
2

2

22

2

2

1
1

11

1

1

1

1

1

00

0

0

0

0 0
0

0

0

2

2

2
2

2

2
2

2

2

2

2

0

0

0

0

0

0

0

2
2

2

2

2

0
0

1
1

1

1 1

1

1

0

3 3

3

3

3

3

3
3

3(b)Figure 4: Labeling the nodes of a graph to the closestoutside partition. (a) A microscopic view of the layer-ing for a graph near the boundary of three partitions.(b) Layering of the graph in Figure 2 (b); no edges areshown.

A simple algorithm to perform the layering is givenin Figure 3. It assumes the graph is connected. Let�ij represent the number of such vertices of partitioni that can be moved to partition j. For the examplecase of Figure 3, labels of all the vertices are given inFigure 4. A label 2 of vertex in partition 1 correspondsto the fact that this vertex belongs to the set thatcontributed to �12.2.3 Load balancingLet lij represent the number of vertices to be movedfrom partition i to partition j to achieve load balance.There are several methods for load balancing. How-ever, since one of our goals is to minimize the com-munication cost, we would like to minimizeXi Xj lij ,because this would correspond to a minimization ofthe amount of vertex movement (or \deformity") inthe original partitions. Thus, the load-balancing stepcan be formally de�ned as the following linear pro-gramming problem.Minimize X0�i6=j�P lij (10)subject to 0 � lij � �ij � jB0(i)j (11)X0�i<P(lij � lji) = jB0(j)j � � 0 � j < P: (12)Constraint 12 corresponds to the load balance condi-tion.The above formulation is based on the assumptionthat changes to the original graph are small and theinitial partitioning is well balanced. Hence, movingthe boundaries by a small amount will give balancedpartitioning with low communication cost.There are several approaches to solving the abovelinear programming problem. We decided to usethe simplex method because it has been shown towork well in practice and because it can be easilyparallelized.1 The simplex formulation of the examplein Figure 2 is given in Figure 5. The correspondingsolution is l03 = 8 and l12 = 1. The new partitioningis given in Figure 6.The above set of constraints may not have a feasiblesolution. One approach is to relax the constraint in(11) and not have lij � �ij as a constraint. Clearly,1We have used a dense version of simplex algorithm.The total time can potentially be reduced by using sparserepresentation.

Constraints in (11):l01 � 9 l02 � 7 l03 � 12 l10 � 10 l12 � 11l20 � 3 l21 � 7 l23 � 9 l30 � 7 l32 � 5Constraints in (12):l01 + l02 + l03 � l10 � l20 � l30 = 8l10 + l12 � l01 � l21 = 1�l20 � l21 � l23 + l02 + l12 + l32 = 1�l30 � l32 + l03 + l23 = 8Solution using the Simplex Methodl03 = 8, l12 = 1all other values are zero.Figure 5: Linear programming formulation and its so-lution based on the mapping of the graph in Figure 2(b) using the labeling information in Figure 4 (b).
P

P

P

P2

1

0

3

P

P

P

P2

1

0

3

Initial partitions

Incremental partitions

Figure 6: The new partition of the graph in Figure 2(b) after the Load Balancing step.

this would achieve load balance but may lead to majormodi�cations in the mapping. Another approach is toreplace the constraint in (12) by:X0�i<P(lij � lji) = jB0(j)j � �� 0 � j < P: (13)Assuming C > � > 1, this would not achieve loadbalancing in one step, but several such steps can beapplied to achieve load balancing. If a feasible solutioncannot be found with a reasonable value of � (withinan upper bound C), it would be better to start par-titioning from scratch or solve the problem by addingonly a fraction of the nodes at a given time, i.e., solvethe problem in multiple stages. Typically, such casesarise when all the new nodes correspond to a few parti-tions and the amount of incremental change is greaterthan the size of one partition.2.4 Re�nement of partitionsThe formulation in the previous section achievesload balance but does not try explicitly to reduce thenumber of cross-edges. The minimization term in (10)and the constraint in (11) indirectly keep the cross-edges to a minimum under the assumption that theinitial partition is good. In this section we describe alinear programming-based strategy to reduce the num-ber of cross-edges, while still maintaining the load bal-ance. This is achieved by �nding all the vertices of par-titions i on the boundary of partition i and j such thatthe cost of edges to the vertices in j are larger thanthe cost of edges to local vertices (Figure 7), i.e., thetotal cost of cross-edges will decrease by moving thevertex from partition i to j, which will a�ect the loadbalance. In the following a linear programming formu-lation is given that moves the vertices while keepingthe load balance.Let M 00(k) : V 0 �! P represent the mapping ofeach vertex after the load balancing step. Let out(k; j) represent the number of edges of vertex k inpartitionM 00(k) connected to partition j(j 6=M 00(k))and in (k) represent the number of vertices a vertex kis connected to in partition M 00(k). Let bij representthe number of vertices in partition i which have moreoutgoing edges to partition j than local edges.bij = jfV 2 B00i j out (V; j) � in (V) � 0:gjWe would like to maximize the number of verticesmoved so that moving a vertex will not increase thecost of cross-edges. The inequality in the above de�-nition can be changed to a strict inequality. We leave

Pj

P
k

P
i

local edges = 2

v

j

knon-local edge to partition = 1

non-local edge to partition = 3

(a)
P

P

P

P2

1

0

3(b)Figure 7: Choosing vertices for re�nement. (a) Micro-scopic view of a vertex which can be moved from par-tition Pi to Pj, reduceing the number of cross edges.(b) The set of vertices with the above property in thepartition of Figure 6.

the equality, however, since by including such verticesthe number of points that can be moved can be larger(because these vertices can be moved to satisfy loadbalance constraints without a�ecting the number ofcross-edges).The re�nement problem can now be posed as thefollowing linear programming problem:Maximize X0�i6=j�P lij (14)such that0 � lij � bij 0 � i 6= j < P (15)X0�i<j(lij � lji) = 0 0 � j < P: (16)Constraint (15)l01 � 1 l02 � 1 l03 � 1 l10 � 2 l12 � 1l20 � 0 l21 � 1 l23 � 1 l30 � 2 l32 � 1Load Balancing Constraint (16)l01 + l02 + l03 � l10 � l20 � l30 = 0l10 + l12 � l01 � l21 = 0�l20 � l21 � l23 + l02 + l12 + l32 = 0�l30 � l32 + l03 + l23 = 0Solution using Simplex Methodl01 = 0, l02 = 1, l03 = 1, l10 = 1, l12 = 1l20 = 0, l21 = 1, l23 = 1, l30 = 1, l32 = 1Figure 8: Formulation of the re�nement step usinglinear programming and its solution.This re�ning step can be applied iteratively untilthe e�ective gain by the movement of vertices is small.After a few steps, the inequalities (lij � bij) need tobe replaced by strict inequalities (lij < bij); other-wise, vertices having an equal number of local andnonlocal vertices may move between boundaries with-out reducing the total cost. The simplex formulationof the example in Figure 6 is given in Figure 8 and thenew partitioning after re�nement is given in Figure 9.3 Experimental results

P

P

P

P2

1

0

3

P

P

P

P2

1

0

3

P

P

P

P2

1

0

3

Incremental partitions

Refined partitions

Figure 9: The new partition of the graph in Figure 6after the Re�nement step.In this section, we present experimental results ofthe linear programming-based incremental partition-ing presented in the previous section (we will use theterm Incremental Graph Partitioner (IGP) to refer tothis algorithm). The timings are given for 32 parti-tions on a 1-node and 32-node CM-5.We have used two sets of adaptive meshes for ourexperiments. These meshes were generated using theDIME environment [11]. The initial mesh of the�rst set is given in Figure 10. The other incremen-tal meshes are generated by making re�nements in alocalized area of the initial mesh. These meshes repre-sent a sequence of re�nements in a localized area. Thenumber of nodes in the meshes are 1071, 1096, 1121,1152, and 1192 respectively.The partitioning of the initial mesh (size 1071nodes) was determined using Recursive Spectral bisec-tion. This was the partitioning used by algorithm IGPto determine the partition of the incremental mesh (ofsize 1096). The repartitioning of the next set of re�ne-ment (with 1121, 1152, and 1192 nodes, respectively)was achieved using the partitioning obtained by usingthe IGP for the previous mesh in the sequence. Theresults show that, even after multiple re�nements, thequality of partitioning achieved is comparable to thatachieved by recursive spectral bisection from scratch,thus this method can be used for repartitioning forseveral stages. The time required by repartitioning isabout half of the time required for partitioning usingRSB. The algorithm provides speedup of around 15 to20 on a 32 node CM-5.Most of the time spent by our algorithm is in the so-

Figure 10: Test graph A an irregular graph with 1071nodes and 3185 edges. The re�nement graph with1192 nodes and 3548 edges.

Initial Graph | Figure 10 CutsetPartitioner jV j jEj Total Max MinSB 1071 3185 734 56 35jV j = 1096 jEj = 3260 CutsetPartitioner Time-s Time-p Total Max MinSB 31.71 | 733 56 33IGP 14.75 0.68 747 55 34IGPR 16.87 0.88 730 54 34jV j = 1121 jEj = 3335 CutsetPartitioner Time-s Time-p Total Max MinSB 34.05 | 732 56 34IGP 13.63 0.73 752 54 33IGPR 16.42 1.05 727 54 33jV j = 1152 jEj = 3428 CutsetPartitioner Time-s Time-p Total Max MinSB 34.96 | 716 57 34IGP 15.89 0.92 757 56 33IGPR 18.32 1.28 741 56 33jV j = 1192 jEj = 3548 CutsetPartitioner Time-s Time-p Total Max MinSB 38.20 | 774 63 34IGP 15.69 0.94 815 63 34IGPR 18.43 1.26 779 59 34Time unit in seconds.p - parallel timing on a 32-node CM-5.s - timing on a one-node CM-5.SB - Spectral Bisection.IGP - Incremental Graph Partitioner.IGPR - Incremental Graph Partitioner with Re�nement.Figure 11: Incremental graph partitioning using linearprogramming and its comparison with spectral bisec-tion from scratch for meshes in Figure 10.
Figure 12: A mesh with 10166 nodes and 30471 edges.

Figure 13: A re�nement of mesh in Figure 12 with 672extra nodes.lution of the linear programming formulationusing thesimplex method. The cost of the simplex method de-pends on the number of variables (v) and the numberof constraints (c). Each iteration in the dense matrixformulation requires time proportional to the O(vc).The value of v and c depend largely on the number ofpartitions and the number of edges between the par-titions (corresponding to eij and lij as described insection 2.3 and section 2.4, respectively). The valuesof v and c for the formulation corresponding to per-forming the load balancing step for mesh in Figure11 with jV j = 1096 and jEj = 3260 for 32 partitionsare 188 and 126, respectively These costs are inde-pendent of the number of vertices in the mesh anddepend on the number of partitions. Thus, for largemeshes the performance should be much better. Oursoftware currently implements the simplex method us-ing a dense matrix formulation. Since the matrix ishighly sparse, this cost can be substantially reducedby using a sparse representation. Clearly, the latterwould be more di�cult to parallelize. Another optionis to use a multilevel approach and apply incrementalpartitioning recursively. We are currently exploringthis approach. Since most of the time (even for largemeshes) is spent on the solution of the linear program-ming using the simplex method, any improvements inthe time required will have a major impact on the totaltime required for partitioning.The next data set corresponds to highly irregularmesh with 10166 nodes and 30471 edges. This data setwas generated to study the e�ect of di�erent amountsof new data added to the original mesh. Figures 14(b), 14 (c), 14 (d), and 14 (e) correspond to meshs

(a) Initial Graph | Figure 12 CutsetPartitioner jV j jEj Total Max Min10166 30471 2118 171 82(b) jV j = 10214 jEj = 30615 CutsetPartitioner Time-s Time-p Total Max MinSB 800.05 | 2137 178 90IGP 13.90 1.01 2139 186 84IGPR 24.07 1.83 2040 172 82(c) jV j = 10305 jEj = 30888 CutsetPartitioner Time-s Time-p Total Max MinSB 814.36 | 2099 166 87IGP 18.89 1.08 2295 219 93IGPR 29.33 2.01 2162 206 85(d) jV j = 10395 jEj = 31158 CutsetPartitioner Time-s Time-p Total Max MinSB 853.35 | 2057 169 94IGP(2) 35.98 2.08 2418 256 92IGPR 43.86 2.76 2139 190 85(e) jV j = 10838 jEj = 32487 CutsetPartitioner Time-s Time-p Total Max MinSB 904.81 | 2158 158 94IGP(3) 76.78 3.66 2572 301 102IGPR 89.48 4.39 2270 237 96Time unit in seconds.p - parallel timing on a 32-node CM-5.s - timing on a one-node CM-5.SB - Spectral Bisection.IGP - Incremental Graph Partitioner.IGPR - Incremental Graph Partitioner with Re�nement.Figure 14: Incremental graph partitioning using linearprogramming and its comparison with spectral bisec-tion from scratch for meshes in Figure 12 and Figure13.

with 68, 139, 229, and 672 additional nodes over themesh in Figure 12. The partitioning achieved by algo-rithm IGP for mesh in Figure 13 using the partition ofmesh in Figure 12 for mesh is given in Figure 14. Thenumber of stages required (by choosing an appropriatevalue of �, as described in section 2.3) were 1, 1, 2, and3, respectively. 2 It is worth noting that although theload imbalance created by the additional nodes wassevere, the quality of partitioning achieved for eachof the cases was close to that of applying RecursiveSpectral Bisection from scratch. Further, the sequen-tial time is at least an order of magnitude better thanthat of Recursive Spectral Bisection. The CM-5 im-plementation improved the time required by a factorof 15 to 20. The time required for repartitioning Fig-ure 14 (b) and Figure 14 (c) is close to that requiredfor meshes in Figure 10. The timings for meshes inFigure 14 (d) and 14 (e) are larger because they usemultiple stages.The above results show that the IGP at a fractionof the cost, can be e�ectively used for repartitioning toachieve solutions similar in quality to those obtainedby applying recursive spectral bisection from scratch.Further, the algorithm can be parallelized e�ectively.4 ConclusionsIn this paper we have presented a novel linearprogramming-based formulation for solving incremen-tal graph-partitioning problems. The quality of par-titioning produced by our methods is close to thatachieved by applying the best partitioning methodsfrom scratch. Further, the time needed is a small frac-tion of the latter and our algorithms are inherentlyparallel. We believe the methods described in this pa-per are of critical importance to the parallelization ofthe adaptive and incremental problems described ear-lier.References[1] I. Angus, G. Fox, J. Kim, and D. Walker. SolvingProblems on Concurrent Processors, volume 2.Prentice Hall, Englewood Cli�s, NJ, 1990.[2] Alok Choudhary, Geo�rey C. Fox, Seema Hi-ranandani, Ken Kennedy, Charles Koelbel, San-jay Ranka, and Joel Saltz. Software Support for2The number of stages chosen were by trial and error, butcan be determined by the load imbalance.

Irregular and Loosely Synchronous Problems. InProceedings of the Conference on High Perfor-mance Computing for Flight Vehicles, 1992. Toappear.[3] F. Ercal. Heuristic Approaches to Task Allocationfor Parallel Computing. Ph.D. thesis, Ohio StateUniversity, 1988.[4] G. C. Fox and W. Furmanski. Load Balanc-ing Loosely Synchronous Problems with a NeuralNetwork. 1988.[5] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto,J. Salmon, and D. Walker. Solving Problems onConcurrent Processors, volume 1. Prentice Hall,Englewood Cli�s, NJ, 1988.[6] Geo�rey C. Fox. Graphical Approach to LoadBalancing and Sparse Matrix Vector Multiplica-tion on the Hypercube. 1988. M. Schultz, Ed.,Springer-Verlag, Berlin.[7] Harpal Maini, Kishan Mehrotra, Chilukuri Mo-han, and Sanjay Ranka. Genetic Algorithms forGraph Partitioning and Incremental Graph Par-titioning. Supercomputing '94[8] S. Nolting. Nonlinear Adaptive Finite Ele-ment Systems on Distributed Memory Comput-ers. In Proceedings of European Distributed Mem-ory Computing Conference, April 1991.[9] A. Pothen, H. Simon, and K-P Liou. Partition-ing Sparse Matrices with Eigenvectors of Graphs.SIAM Journal of Matrix Analysis and Applica-tion, 11(3), July 1990.[10] H. Simon. Partitioning of Unstructured MeshProblems for Parallel Processing. In Proceedingsof the Conference on Parallel Methods on LargeScale Structural Analysis and Physics Applica-tions. Permagon Press, 1991.[11] R.D.Williams.DIME: Distributed Irregular MeshEnviroment. California Institute of Technology,February 1990.[12] R.D. Williams. Performance of Dynamic Load-Balancing Algorithm for Unstructured Mesh Cal-culations. Concurrency Parctice and Experience,3:457{481, 1991.

	Parallel Incremental Graph Partitioning Using Linear Programming
	Recommended Citation

	tmp.1286816405.pdf.e9yxH

