The Range Test: A Dependence Test for Symbolic, Non-linear

Expressions *

William Blume

blume@csrd.uiuc.edu

Rudolf Eigenmann
eigenman@csrd.uiuc.edu

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign
1308 W. Main St., Urbana, Illinois 61801-2307

Abstract

Most current data dependence tests cannot handle loop
bounds or array subscripts that are symbolic, nonlinear ex-
pressions (e.g. A(nxi+y), where 0 < j < n). In this paper,
we describe a dependence test, called the range test, that
can handle such expressions. Briefly, the range test proves
independence by determining whether certain symbolic in-
equalities hold for a permutation of the loop nest. Power-
ful symbolic analyses and constraint propagation techniques
were developed to prove such inequalities. The range test
has been implemented in Polaris, a parallelizing compiler
being developed at the University of Illinois.

1 Introduction

To allow sequential programs to run efficiently on par-
allel machines, parallelizing compilers were developed to
transform these programs into parallel ones [3]. These
compilers must be able to identify the important loops
that can be run in parallel if they are to achieve decent
speedups. Powerful dependence tests are needed to effec-
tively exploit the inherent parallelism in these sequential
programs.

There has been much research in the area of data de-
pendence analysis [1, 14, 20, 21, 24]. Modern day data

*This work was supported by contract DABT63-92-C-0033
from the Advanced Research Project Agency. This work is not
necessarily representative of the positions or policies of the U.S.
Army or the government.

ISSN 1063-9535. Copyright ©1994 IEEE. All rights reserved.

Personal use of this material is permitted. However, permis-
sion to reprint /republish this material for advertising or promo-
tional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE. For infor-
mation on obtaining permission, send a blank email message to
info.pub.permission@ieee.org.

By choosing to view this document, you agree to all provisions
of the copyright laws protecting it.

k=0
DO j =1, m DO j =1, m
DOi=1,n DOi=1,n
k=k+1
Ak) = --- AG + nx(j-1)) = .-
ENDDO ENDDO
ENDDO ENDDO

Figure 1: Before and after induction variable substi-
tution

dependence tests have become very accurate and efficient.
However, most of these tests require the loop bounds and
array subscripts to be represented as a linear (affine) func-
tion of loop index variables. That is, the expressions must
be in the form ¢y + 23;1 c;t; where ¢; are integer con-
stants and ¢; are loop index variables. Expressions not of
this form are called nonlinear.

Because nonlinear expressions prevent the application
of dependence tests, parallelizing compilers perform sev-
eral analyses and optimizations to eliminate nonlinear ex-
pressions. For example, constant propagation and induc-
tion variable substitution are used to remove loop-variant
variables. Other techniques have also been developed to
handle additive, loop-invariant, symbolic terms or to elim-
inate unwanted operations such as divisions [14, 20, 21].

Unfortunately, not all nonlinear expressions can be re-
moved. It was believed that this would not be a problem
for dependence testing real programs since nonlinear ex-
pressions would be rare. However, our manual paralleliza-
tion effort of the Perfect Benchmarks have shown us that
this is not the case [12, 11]. For example, a parallelizing
compiler could achieve a speedup of at most two for the
codes OCEAN and TRFD from the Perfect Benchmarks
if it could not parallelize loops with nonlinear array sub-
scripts [6]. For some of these loops, nonlinear expressions
occurred in the original program text. For other loops,
nonlinear expressions were introduced by the compiler.

Two common compiler passes can introduce nonlinear-
ities into array subscript expressions: induction variable

substitution and array linearization. Induction variable
substitution replaces variables that are incremented by
a constant value for each loop iteration with a closed-
form expression made up of only loop invariants and loop
indices. However, when induction variable substitution
is performed upon multiply nested loops, the resulting
closed-form expression may be nonlinear. For example,
performing induction variable substitution on the loop nest
in Figure 1 introduces a nonlinear expression into the sub-
script of array A. (Remember that, by our definition of the
term nonlinear terms like n*j are considered to be nonlin-
ear, even though the variable n is loop-invariant.)

Array linearization transforms two or more dimensions
of an array into a single dimension. Array linearization
is needed by subroutine inlining or interprocedural anal-
ysis when an array is dimensioned differently across pro-
cedure boundaries. If the declared dimensions of a multi-
dimensional array are symbolic expressions, the resulting
linearized array may be nonlinear. For example, if the ar-
ray A, which was originally dimensioned as A(n,m), was
linearized, its declaration will be changed to A(n*m), and
a reference A(i, j) will be changed to A(i + n*(j-1)).

In this paper, we will present the range test, a depen-
dence test that can handle symbolic, nonlinear array sub-
scripts and loop bounds. In the range test, we mark a loop
as parallel if we can prove that the range of elements ac-
cessed by an iteration of that loop do not overlap with the
range of elements accessed by other iterations. We prove
this by determining whether certain symbolic inequality
relationships hold. Powerful variable constraint propaga-
tion and symbolic simplification techniques were developed
to determine such inequality relationships. To maximize
the number of loops found parallel using the range test, we
examine the loops in the loop nest in a permuted order.

Section 2 briefly defines data dependences and direc-
tion vectors. Section 3 then describes the range test. Sec-
tion 4 gives an overview of the range propagation algo-
rithm, which allows us to compare symbolic expressions.
Real-life examples of important loop nests that the range
test can parallelize but current tests cannot are given in
section 5. We will then compare our work with other sym-
bolic data dependence tests in Section 6. Section 7 presents
our conclusions and plans for future work.

2 Data dependence

In this section we will give a brief definition of data de-
pendences. For a more thorough description of data depen-
dence and dependence analysis, see Banerjee et al [3, 1, 24].

To ease the presentation of the range test, we will
assume that we have a perfectly nested, normalized,
FORTRAN-77 loop nest as shown in Figure 2. We will
also assume that the tested array A has only one dimen-
sion. The array access functions (f and g) and loop up-
per bounds (N;) may be arbitrary symbolic expressions
made up of loop-invariant variables and loop indices (i.e.

L1ZDUi1:0,N1

Ly DO ¢, = 0, N,

St A(f(il’“"i")):”.
52: ...:A(g(i1,~~~’in))
ENDDO
ENDDO

Figure 2: Model of loop nest for dependence testing

zm) of enclosing loops. It is not difficult to extend our
test to handle imperfectly nested loops, symbolic lower
bounds, non-unit strides, multidimensional arrays, and
loop-variant variables. In fact, our implementation in-
cludes these extensions.

2.1 Data dependence

We define an index subspace R;, where 1 < 5 < n,
to be the set of all loop index vectors (ai,...,a;) that
fall within loop bounds of the outermost j loops. More
formally,

Rj={(a1,...,aj):0< a1 < Nyp,...,0< a; < Nj}.

The index space R is defined to be equal to the index
subspace R,.
A data dependence exists between array accesses

S

A(f(&)) and A(g(B8)) if and only if at least one of the two
accesses is a write, f(&) = g([;), and @’,B' e R.

2.2 Direction vectors
Suppose that a dependence exists between A(f(&)) and

A(g(ﬁ)) Then, the direction vector d= (di,...,dyn) for

this dependence is defined as:

< o< B
di={ = if o= ps
> i a; > B

Since there may be more than one pair of integer vectors
@ and B' that satisfy the dependence equation, there may
be more than one direction vector between S; and Ss.

A dependence is carried by loop L; (or loop at level 1) if
and only if there exists a dependence vector d where d; =
‘=" ..., di—1 = ‘="and d; # ‘=". If a loop does not carry
any dependences, then that loop may be run in parallel
without synchronization.

3 The range test

The range test grew out of a simple observation in our
hand analysis of real programs: most parallel loop itera-
tions access adjacent array ranges. These ranges can be

very regular (e.g., an inner loop accesses a fixed-length ar-
ray section and the outer loop strides over this section),
they can be increasing or decreasing (e.g., if the two loops
are triangular); or, they can be irregular (e.g., if they rep-
resent array sections that are carved out of a large array;
start and length of the sections are typically stored in index
arrays)'. With one additional observation we can describe
the majority of all access patterns: the loops visiting these
ranges may be interchanged, such that the access patterns
appear “interleaved”. Now, if we managed to prove that
such adjacent array ranges do not overlap — possibly “look-
ing through interchanged loops” — we could tell that the
loops are parallel. The following section describes such a
test formally.

3.1 Disproving dependence between sym-
bolic expressions

Essentially, the range test disproves carried depen-
dences between A(f(7)) and A(g(?')) for a loop at level
7, by proving that the range of elements taken by f and ¢
do not overlap for adjacent iterations of the loop at level j.
It determines whether these ranges overlap by comparing
the minimum and maximum values of these ranges. The
formal definition of these minimum and maximum values
are defined below. Section 3.4 describes how to compute
these minimum and maximum values

Definition 1 Let fm”‘(zl, coyty) and fP(A, .. 4y) be
functions that obey the followmg constraints:
f]min(ilwu ZJ)S
mm{ (@) :7' € R, 11_11,...,i;:i]}
£) >
max{f(i" ER,i;:il,...,i;:i]}
Intuitively,]mi“(il, co,ty) and (4, ... 4;) are

functions that return the minimum and maximum values
that f may take for a particular iteration of the outermost
7 loops. In our implementation of the range test, these
functions are represented as symbolic expressions made up
of loop indices 11, ...,1; and loop-invariant variables.

The ability to determine the minimum or maximum of
f or g in respect to some set of loops leads us to our first
dependence test. If the maximum of f is less than the
minimum of ¢ in respect to some subset of loops, then
these loops cannot carry any dependences. The theorem
below states this formally.

Theorem 1 If fj**(i1,...,4;) < g]"”"(zl, ..o, 1y5) for all
(i1,...,15) € R;, then there can be no dependences between

A((T)) and A(g(7)) wzth a direction vector d of the form
f =,

PRI

1The range test does not yet handle such subscripted sub-
script patterns (e.g., A(X (¢)))

%) q*,*)

v

8 f(i, =i, g(,)=i+n

(0, *) 9(0, *) f(1,%) (L, *) f(2,%) 92, %)
OI nI 2In I«;n z{n F:n 6In o
b) (i, j) =20h0 +, (i,) =20h0 +j +n
f0,) g0 1) (11 g1
Eﬁ \Eﬁ/ W

n an 6n

c) f(i,j)=2*i+20hg, go@,j)=2*+2h0g +1

Figure 3: Examples of how array accesses can be in-
terleaved in respect to a particular loop (loop with in-
dex i for these examples.) All examples assume that
0<14,7<n.

PROOF. Suppose that such a dependence exists, (i.e.,
F(?) = g(¢") with direction vector d). By Definition 1,

we have f(?) < f"**(i1,...,¢;) and gmm(zl,...,i;) <
g(7'). Because of the direction Vectord q; min (th,...,15) =
g]"”"(zl,.. yig). Since f" (i1, ... 05) < g7 " (i1, .., 1),

it must hold that f(7) < g(7"). Contradiction. O

Theorem 1 proves that there are no carried depen-
dences between A(f(7)) and A(g(7")) for loops with indices
ij41,--.,%n, if the range of possible values taken by f for
these loops does not overlap with the range of possible val-
ues taken by ¢g. However, it cannot prove that there are
no carried dependences for a certain loop if the possible
values taken by f and g are interleaved for that loop. Fig-
ure 3 shows some examples of how array accesses can be
interleaved for a particular loop nest. We have found such
examples do occur often in practice. All these examples
assume that we have a loop nest of the form

L1:D0¢=0,n—1
L: DOjy=0,n—1
it A(G) =
Spi e = Kgli)
ENDDO
ENDDO

and that the range test is currently attempting to prove
that S; and Sz do not carry dependences for loop Li. For
figure 3a, the range of accesses made by A(f(7,7)) and

A(g(z, 7)) never overlap, so Theorem 1 can prove that loop
L1 does not carry a dependence for this access pair. How-
ever, the set of accesses made by A(f(4,7)) and A(g(s, 5))
are interleaved in figures 3b and 3c, causing the test from
Theorem 1 to fail, even though there isn’t a carried de-
pendence. We will present a second dependence test that
can disprove carried dependences for a special case of these
interleavings, where the possible values taken by f and ¢
for a single iteration are not interleaved with the possi-
ble values taken by other iterations of f and g. Figure 3b
shows an example of this case. However, before we describe
this test, we must define the property of monotonicity for
a particular loop index. (We will deal with Figure 3c in
Section 3.2.)

Definition 2 A function f(7) ¢s monotonically non-
decreasing for index i; iff f(i1,...,a5,...,00) <
flin, .., B, ..., tn) whenever 0 < ay; < fB; < Nj.
Similarly, a function f(7) is monotonically non-
increasing for index i; iff f(i1,..., a5, ... 0n) >
flin, .., B, ..., tn) whenever 0 < ay; < fB; < Nj.

We can prove whether an expression is monotonically
non-decreasing for a loop level j by proving that the dif-
ference f(i1,...,45 +1,...,00) — f(t1,...,05,..., 1) is al-
ways greater than or equal to zero, using the techniques
described in Section 4. Similarly, we can prove whether an
expression is monotonically non-increasing for a loop level
7 by proving that the difference is always less than or equal
to zero.

Using this definition, we will now show how one can
disprove dependences carried at level § when the possible
values taken by f and g are not interleaved for a single
iteration of the loop at level j.

Theorem 2 If g;"i"(il, .., 15) is monotonically non-
decreasing for i; and if f7** (i1, ... 4;) < g7 (41, ..., b5+
1) forall (i1,...,1;) € Rj and for 0 < 1; < N; — 1, then
there can be no dependences from A(f()) to A(g(T')) with

a direction vector d of the formd, = =", ..., d;_1 = =,

d; = ‘<.

PROOF. Suppose that such a dependence exists, (i.e.,
F(?) = g(¢") with direction vector d). By Definition 1,

we have f(?) < f"**(i1,...,¢;) and g]"”"(zﬂ,,z;) <

g(7'). Because of the direction vector d and because
g]m""(il,...,‘ i;) is monotonically non-decreasing for in-
dex iy, g7 (ih,...,45) > g7 (i1,...,4; + 1). Since
T, ., 15) < g7 (41, ..., 45 + 1), it must hold that
F(?) < g(7"). Contradiction. O

Theorem 3 If g;"i"(il, .., 15) is monotonically non-
increasing for v; and if {77 (i1, ... 1;) < g7 " (41, ..., 05—
1), forall (i1,...,1;) € R; and for 1 <1i; < Nj, then there
can be no dependences from A(g(7')) to A(f(?)) with a di-
rection vector d of the form dv = =", ..., d;j_1 = =,
d; = ‘<.

ProOF. Similar to proof of Theorem 2.

By definition of loop-carried dependences, the test from
Theorem 2 (or Theorem 3) must be applied twice to prove
that a pair of access functions f and ¢ do not carry de-
pendences for the loop with index ¢;: once to disprove a
dependence with direction vector d from f to g, and once
to disprove a dependence with direction vector d from g to
f. Also note that the tests from these two theorems can
disprove a dependence direction d from f to g and from ¢
to f, and thus disprove that the loop with index ¢; does
not carry a dependence, only if both f and ¢ are monoton-
ically non-decreasing or monotonically non-increasing for
1.

In the previous definitions and theorems, we have as-
sumed that the subset of loops that we are attempting to
disprove dependence for are the innermost loops with in-
dices ¢; to 2,,. With some minor changes in notation, these
definitions and theorems still hold for arbitrary subsets of
loops. The following subsection will exploit this property.

3.2 Permuting loops for dependence test-
ing

As described earlier, the test from Theorem 1 can be
used to prove independence when the values of access func-
tions f and g are not interleaved, and the tests from The-
orems 2 and 3 can be used to prove independence when
the values of f and g are interleave, but the values taken
by f and ¢ for a loop iteration are not interleaved with
values taken by other iterations. For more complex in-
terleavings, the tests from all three Theorems would fail.
Figure 3c gives an example of one of these more complex
interleavings. Fortunately, we have observed that most of
these interleavings can be eliminated by permuting the or-
der in which we test the loops. For example, if loop L1,
with index ¢, and loop L2, with index j were “swapped” so
that L2 is now treated as the outermost loop, we would be
able to use Theorem 1 to prove that there are no carried
dependences in the “inner” L; loop, and use Theorem 2 to
prove that there are no carried dependences in the “outer”
L2 loop.

So, the range test attempts to maximize the number of
loops that it can identify as not carrying dependences by
applying its tests upon a permuted ordering of the loops in
the loop nest. The range test does not physically permute
the loops; it is done logically and temporarily by the test.
Also, the range test only tries those permutations such that
all loops identified as not carrying any dependences for the
permuted loop nest also will not carry any dependences in
the original nest.

The range test uses a heuristic to find a valid logical per-
mutation of a loop nest, which seems to be quite acceptable
in practice. This heuristic determines a valid permutation
of a loop nest by recursively finding a valid permutation
of the inner loops of the loop nest, then finding a loca-
tion where it may safely insert the outermost loop in this
permutation. The final location of the outermost loop is

found by repeatedly moving inwards by one until it reaches
a location where it can be proven that it carries no depen-
dences, or the loop just inside this location either carries a
dependence or would carry a dependence if outermost loop
was inserted inside of it.

To prove that all loops not carrying dependences in the
permuted loop nest generated by the heuristic above also
do not carry dependences in the original loop nest, we will
need the following lemma. Due to lack of space, no proof is
given, but techniques similar to Banerjee’s [2] can be used
to do so.

Lemma 1 A loop that does not carry a dependence can be
legally moved deeper into the loop nest and all loops that
didn’t carry a dependence beforchand would still not do so.

We will prove that the heuristic generates a legal per-
mutation by induction. For the base case, where the loop
nest is a single loop, the permutation is trivially legal. For
the inductive step, assume that the heuristic generates le-
gal permutations for loop nests of ¢ loops. For a nest of
t + 1 loops, the heuristic first recursively finds a permu-
tation of the innermost : loops, then finds a location for
the (2 4+ 1)th loop in this permutation. By the inductive
hypothesis, the recursive first step results in a legal permu-
tation. For the second step, which moves the (:+1)th loop
inwards, all loops between the original and final positions
of the (i + 1)th loop do not carry dependences, by defini-
tion of the heuristic. Thus, we can undo this second step
by moving all these loops back inside the (i 4+ 1)th loop;
and, by Lemma 1, all loops not carrying dependences still
do not so. Therefore, the heuristic generates a legal per-
mutation for a nest of ¢ + 1 loops.

3.3 Algorithm

The algorithm for the Range Test, which implements
the permutation heuristic described previously, is dis-
played in Figure 4. It generates the permuted loop nest,
represented by the ordered list P, by visiting each loop L;
in the original loop nest, from innermost to outermost,
and finding its proper location in the set of inner per-
muted loops P. Simultaneously, the algorithm determines
whether each I; carries any dependences. Loops proven
not to carry dependences are added to the set D). The
outer for loop visits each loop L; while the inner while
loop determines whether the current I; carries any depen-
dence and where to insert it in the list of permuted inner
loops P. Statement S; tests if L; does not carry a depen-
dence at a particular location in P. If it doesn’t carry a
dependence, it is added to the set of parallel loops I} and
inserted into P at this location. Statement Ss tests if it is
legal to move the current location of loop L; in P inward
by one. If not, it is inserted into P at this location. (It is
not legal to move the current location of L; in P inwards
by one if the current location is the innermost location in
P, if the next inner loop in P carries a dependence, or if

INPUT: Normalized, perfectly nested loops
(L1,...,Ln) and array access functions f and g.
OuTPUT: Set of loops D that do not have carried
dependences between f and g.
P — () (x P is an ordered list representing
the permuted loop nest *)
D~
for : — n downto 1 do
placed — false ; 5 — 0
while not placed do
J=Jj+1
Syt ifRTESTI(f,9,{Li, P, ..., Pp|})
or RTEST2(f,g,Li, {P;,..., Pjp|}) then
D — DU{L;} ; placed — true
So: elseifj=|P|+1or P;gD
or not RTEST2(f,g, P;,
{Li, Piy1,..., Pp|}) then
placed — true
end if
end while
Sg : P<— (P1,...
end for

aPJ—laLiaPJa"'aP|P|)
Figure 4: The range test algorithm

the next inner loop in P would become carry a dependence
should I; be inserted inside of it.) Statement S5 performs
the actual insertion of L; into P.

Functions RTEST1 and RTEST?2 are displayed in Fig-
ure 5. Function RTEST1, which applies Theorem 1, re-
turns true if and only if it can prove that the loops in
L do not carry any dependences for access functions f
and ¢g. Function RTEST2, which calls RTEST2X that
implements Theorems 2 and 3, returns true if and only
if it can prove that loop L; carries no dependences for
access functions f and ¢ and the inner permuted loops
L. The functions MIN and MAX represent the f]mi“
and the ¢;"“* functions described earlier. (The expres-
sion f;"** used in Section 3, can be computed by calling

MAX(f,{Lj+1,---,Ln}). The expression f]mi“ is similar.)
The function MAX(f, £) returns the maximum value that
function f can take for the indices of the loops in £. This
maximum value is a symbolic expression made up of loop-
invariant variables and indices of loops not in £. The func-
tion MIN is similar. The implementations of MIN and

MAX will be described in the next subsection.
3.4 Computing f]min and fj"ex

There are several methods in which one can compute
the minimum or maximum of an expression for a subset
of loop indices. One simple but powerful method is to
substitute the lower or upper bound of each index, de-
pending on the index’s monotonicity. Figure 6 shows how
the range test computes the maximum of an expression
for a given set of loops. The algorithm for computing the

boolean function RTESTI1(f,g, £)
(* Apply Theorem 1 *)
Ry @ return MAX(f, £) < MIN(y, £)
Ry: or MAX(g,£) < MIN({, £)
end function

boolean function RTEST2(f,g, L;, £)
return f and g are both mono. non-decreasing
or mono. non-increasing for L;
Rs : and RTEST2x(f,g, L;, L)
Ry : and RTEST2x(y, f, L;, £)
end function

boolean function RTEST2X(f, g, L;, £)
(* Apply Theorem 2 or 3 =)
s — MAX(f, L)
t — MIN(g, £)
if ¢t is mono. non-decreasing for L; then
t «— t with z; substituted by ; 4+ 1
else
t «— t with z; substituted by s; — 1
endif
return (s < t)
end function

Figure 5: Algorithm for disproving carried depen-
dences for loop L; in respect to loops L. Loop L;
is assumed to have index ¢;. The word monotonically
has been abbreviated to “mono.”

minimum is very similar; simply switch the monotonically
non-decreasing and monotonically non-increasing cases. [t
can be proven that the result of these functions meets Def-
inition 1; that is, they are the minimum or maximum of f
in the subspace spanned by indices ¢;41, ..., in.

Although the algorithm for computing the maximum in
Figure 6 is powerful, a naive implementation of it, which
computes the monotonicity of the intermediate maximum
expression y for each index, can be inefficient. This is
because each monotonicity computation for y requires a
symbolic expression comparison, which can be quite ex-
pensive. To avoid these costs, the range test attempts to
determine the monotonicity states of y from the precom-
puted monotonicity states of the input access expression f
and the the loop bounds. (The monotonicity states of all
array accesses f and all loop bounds are computed only
once, at the beginning of dependence testing of the pro-
gram.) More specifically, the range test initially sets the
monotonicity states of y to the monotonicity states of f,
then update y’s monotonicity states after each substitu-
tion, using the monotonicity states of the substituted loop
bound. For those cases where the range test couldn’t de-
termine the new monotonicity of y for index ¢ from the
old monotonicity of y for + and the monotonicity of the
substituted loop bound for ¢, it marks the monotonicity of

expression function MAX(f, £)
y—f
for each L € £ from
innermost to outermost loops do
if y is mono. non-decreasing for i then
y «— y with 15 substituted with Ny
else if y is mono. non-increasing for i then
y «— y with 15 substituted with 0
else
Yy — Fo0
end if
end for
return y
end function

Figure 6: Algorithm for calculating the maximum
value of function f for fixed values of indices 4; of
loops Lj;, where L; & L.

y for ¢+ as unknown. Later, when it finds the monotonicity
of y for 7 to be marked as unknown when it is substituting
for 1, it computes the monotonicity for ¢ using an expen-
sive symbolic expression comparison. We have found this
optimization to be very effective in practice. For many ar-
ray accesses, the monotonicity states of y never need to be
computed with symbolic comparisons.

3.5 Time complexity

Since the range test spends nearly all of its time per-
forming symbolic expression comparisons, its time com-
plexity can be characterized by the number of symbolic
comparisons performed. These comparisons occur explic-
itly in the functions RTEST1 and RTEST2X and implic-
itly in the monotonicity tests of MIN and M AX. Since the
range test may call RTEST1 and RTEST2 as many as
O(n?) times, where n is the loop nest depth, and RTEST1
and RTEST?2 call MIN and M AX, which performs at most
O(n) symbolic comparisons to determine monotonicity for
each index, the range test performs at most O(ng’) sym-
bolic comparisons for one pair of array accesses (A(f(7))
and A(g(7"))). In practice, only a few permutations are
examined and at most a constant number of symbolic com-
parisons are done by the monotonicity tests of MIN and
MAX. So, the average number of symbolic comparisons
done by the the range test is near O(n).

Unfortunately, determining the costs of symbolic ex-
pression comparison is much more difficult. The worst
case performance of symbolic comparisons is exponential
on the size of the expressions compared and upon the num-
ber of variables in the program. However, the average case
performance is much better.

4 Symbolic range propagation

To provide a facility for comparing symbolic expres-
sions, we have developed a technique called range propa-
gation. Due to space constraints, we will only give a brief
sketch of this technique.

Range propagation consists of two parts: the range
propagation algorithm and an expression comparison facil-
ity. The range propagation algorithm collects and propa-
gates variable constraints through a program. The expres-
sion comparison facility uses these variable constraints to
determine arithmetic relationships between two symbolic
expressions.

The range propagation algorithm centers on the collec-
tion and propagation of symbolic lower and upper bounds
on variables; called ranges, through a program unit. Ab-
stract interpretation [8] is used to compute the ranges for
variables at each point of a program unit. That is, the
algorithm “executes” the program by following the control
flow paths of the program, updating the current ranges to
reflect the side effects of the statements encountered along
these paths, until a fixed point is reached.

Each FORTRAN statement modifies the set of ranges
entering it in the following way. An assignment state-
ment sets the range for the left-hand side variable to the
range computed from the right-hand side expression. A
conditional statement constrains the entering ranges by
the conditional’s test. That is, the new ranges are calcu-
lated by determining the smallest upper bound and largest
lower bound of the old ranges and the test. Similarly, at
merge points of control flow, such as ENDIF statements, the
ranges of these paths are merged. These merged ranges are
computed by taking the largest upper bound and smallest
lower bound of the ranges belonging to each of the enter-
ing control flow paths. To guarantee that the algorithm
eventually reaches a fixed point and halts, a widening op-
erator [8] is also applied to merge points that are loop
headers. This widening operator sets a range to a conser-
vative value if the range has changed too often during the
course of computation.

Now, we will describe how the information collected
by the range propagation algorithm can be used to com-
pare symbolic expressions. We compare two expressions by
calculating the integer range spanned by their difference,
then determining whether this range is always positive or
always negative. This integer range is calculated by re-
peatedly substituting ranges for variables in the difference
expression then simplifying the expression down, until all
variables are eliminated. Often, the simplification of ex-
pressions containing ranges needs to determine inequality
relationships of its subexpressions, typically the subexpres-
sion’s sign.

For example, suppose we wish to compare = xy + 1
with y, where z = [y : 10], (meaning y < ¢ < 10), and
y = [1 : oo]. First, we calculate the difference, which is
z+xy—y—+1. Then, we substitute [y : 10] for z in z*xy—y+1,
getting [y : 10]xy—y+1. Simplifying this expression down,

DO j1 =0, i2k - 1
exj = -
DO jj =0, x(j1)
DO mm = 0, 128
js = 258%i2k*jj + 129%j1 + mm + 1
js2 = js + 129%i2k
h = data(js) - data(js2)
data(js) = data(js) + data(js2)
data(js2) = h * exj
ENDDO
ENDDO
ENDDO

Figure T7: Simplified version of loop nest

FTRVMT/109 from OCEAN

we get the range [y*(y—1)+1 : 9xy+1]. Since the simplified
range still contains variables, we substitute [1 : co] for y,
getting [[1:00] % ([1:00] —1)+1:9%[1:00] +1]. After
simplification, this becomes [1 : co]. From this range, we
can now see that zxy + 1 > y.

5 Examples

In this section, we will provide examples of important
loop mnests, taken from the Perfect Benchmarks [4], that
the range test can determine to be parallel but which con-
ventional data dependence tests cannot.

One example is a loop nest taken from subroutine
FTRVMT from the code OCEAN. This loop nest accounts
for 44% of the code’s sequential execution time on an Al-
liant FX/80. A simplified version of this loop is shown
in Figure 7. Conventional data dependence tests cannot
prove that these loops do not carry any dependences be-
cause of the 2568 % i2k * jj term in the subscripts for array
data. The range test, on the other hand, can do so.

Table 1 shows a trace of the range test for proving
that there are no loop-carried dependences for array access
functions f(j1, jj,mm) = 2568%i2k*jj+129*jl4+mm+1and
9(31,35,mm) = 258 % i2k* jj+ 129 % j1 +mm+ 129+ 12k + 1.
The final column of this table shows the symbolic expres-
sions compared at the given statement of the range test al-
gorithm (.S;) and the RTEST functions (R;). The results
of these comparisons were calculated from the variable con-
straints determined by the range propagation algorithm,
which are 12k > 1, 0 < jj < x(j1),0 < jl < i2k—1, and
0 < mm < 128. Since the upper bound x(j1) of loop jj is
not monotonic, the test used +o0o as an approximation of
this bound. For this pair of access functions, the range test
had to use Theorems 1, 2, and 3 and permute the j1 loop
inside the jj loop to prove that there are no loop-carried
dependences.

Another important loop nest, which needs a dependence
test for symbolic, nonlinear expressions, can be found in

subroutine OLDA from the code TRFD. A simplified ver-

|L,‘ | P; | Stmt | Test |

Comparison results |

mm Sl Rl

268 % 12k * jj + 129x j1 4 129

33 [mm | 51 | R
jj | mm | S1 | Re
jj | mm | S1 | Rs
jj | mm | Si | Ry

268 % 12k * jj + 129x j1 4 129
258 % i2k % jj + 129 j1 + 129 x i2k + 129

1 | 3j 51 Ry
1 | 3j 51 R
1 | 3j 51 Rs
1 | 3j S2 Rs
1 | 3j S2 Ry
jl mm Sl Rl

258 % 12k x jj + 129 * i2k
258 % 12k x jj + 258 x i2k
258 x i2k x jj + 129 x i2k

258 i2kx jj+ 387+ i2k+ 1
258 i2kx jj+ 258+ i2k+ 1
258 i2kx jj+129xi2k 41

< 258%i2Kk% jj+129% jl+ 129 i2k + 1
+oo < 129« j1 4 129 xi2k 41
+o0 £ 129%jl41
< 258%i2k% jj+129% j1 4387+ i2k + 1
< 258%i2kx jj+129% j14 258+ i2k +1
+oo < 129 % i2k+ 1
400 < 1
+oo < 129« j1 4 129 x i2k 4 130
<
<
<

Table 1: Trace of range test for loop nest FTRVMT/109 shown in Figure 7

nrsijo = 0
DO mrs = 0, (num*num+num)/2 - 1
nrsij=mrsijo
DO mi = 0, num - 1
DOmj =0, mi -1

St mrgij = mrsij + 1
Sa : xrsij(mrsij) = xij(mj)
ENDDO
ENDDO
nreijo=mrsijo+(numknum+num) /2
ENDDO

Figure 8: Simplified version of loop nest OLDA /100
from TRFD

sion of this loop nest is shown in Figure 8. This loop nest
accounts for 69% of the code’s sequential execution time
on an Alliant FX/80.

To parallelize this loop nest, induction variable substi-
tution must be used to replace the induction variable mrsij
at statement S; with the statement:

mrsij = (mi*+2 —mi—+ mrs* (num+**2 +num))/2+nj+ 1.

After this substitution, conventional data dependence tests
cannot prove that there are no self-dependences for xrsij
at Sz because of the nonlinear array subscript (after
forward-substituting the value of mrsij). The range test,
on the other hand, would have no difficulties in proving
that this array has no self-dependences.

6 Related work

The range test was developed, independent of other de-
pendence tests, to handle the symbolic array subscripts
we encountered in actual programs. Early ideas of such a
test were described in [12, 18, 6]. The most distinguished
feature of the test may be the fact that it is now avail-
able in an actual compiler, which has proven to parallelize
important programs to an unprecedented degree.

The following discussion compares our test to one of the

most effective state-of-the-art tests and points out related
ideas of other projects.

Mathematically, the range test can be thought of as
an extension of a symbolic version of the Triangular
Banerjee’s Inequalities test with dependence direction vec-
tors [1, 23], although our implementation differs. The only
drawback of our test, compared to the Triangular Baner-
jee’s test with directions, is that it cannot test arbitrary
direction vectors, particularly those containing more than
one ‘<’ or ‘>’ (e.g., (<,<)). The permutation of loop
indices partially overcomes this drawback. (These permu-
tations can be thought of as permutations of the depen-
dence direction vectors tested.) We have found that this
limited set of direction vectors, along with the permuta-
tion of loop indices, was sufficient to parallelize all of the
relevant loop nests in our test suite. One advantage of the
range test is that the worst case of the number of direction
vectors tested is better than Banerjee’s Inequalities with
directions, since we test at most O(n?) direction vectors
while Banerjee’s Inequalities with directions may test as
many as O(3") direction vectors.

Haghighat and Polychronopoulos, presented a depen-
dence test to handle nonlinear, symbolic expressions [15].
Their algorithm is essentially a symbolic version of Baner-
jee’s Inequalities test. However, their test did not include
the extensions to Banerjee’s Inequalities to test depen-
dence direction vectors and to handle triangular loops, nor
does it include our extension to handle nonlinear expres-
sions containing ¢ terms, as in Figure 8 after induction
variable substitution, where ¢ is a loop index and ¢ is an
integer constant greater than 1. We have seen several ex-
amples in the Perfect Benchmarks that need all these ex-
tensions to be identified as parallel. The same authors
presented ideas to calculate the set of variable constraints
holding for each statement of the program unit, then to use
these constraints to prove or disprove symbolic inequalities
for dependence testing. We also determine variable con-
straints and perform symbolic inequality tests, although
we use different techniques. We will compare these two
methods later in this section.

In a separate paper, Haghighat and Polychronopou-
los [16] describe a technique to prove that a symbolic ex-
pression is strictly increasing or decreasing. By using this

technique, self-dependences for an array reference can be
eliminated. Their example can prove that all the loops
in Figure 8, after induction variable substitution, are par-
allel. However, as described, the test only handles self-
dependences. The subroutine OLDA in TRFD has other
important loop nests that has multiple array accesses with
nonlinear subscript expressions similar to the subscripts
from Figure 8.

Maslov [19] presents an alternate way to handle sym-
bolic, non-linear expressions. Instead of testing these ex-
pressions directly, his algorithm partitions the expression
into several independent subexpressions, then tests these
partitions using conventional data dependence tests. Es-
sentially, it delinearizes array references. For example, it
converts an array reference A(n 1+ j), where 1 < j < n,
into a two-dimensional array A(j,¢). The greatest strength
of this technique is that it can convert non-linear expres-
sions into linear ones, allowing exact data tests like the
Omega Test [21] to be applied. Because of this, there are
situations where Maslov’s algorithm whereas we cannot,
such as the array references A(n*i+ j) and A(i 4 n *j),
where 1 < 1 < 3 < n. However, the delinearization algo-
rithm cannot handle expressions containing terms of the
form i, as in Figure 8 after induction variable substitu-
tion. Furthermore, the algorithm requires some additional
symbolic capabilities; the compiler must be able to calcu-
late symbolic gcd’s and modulos, and the compiler must be
able to sort the set of symbolic coeflicients (¢;’s). Perform-
ing this symbolic sort can be particularly difficult, since
one may be unable to determine that some of the coeffi-
cients are less than others (i.e., the ¢;’s may not have a
total ordering).

There has been some work in the determination of vari-
able constraints. Much work has been done in determining
the possible range, or interval, of values that variables can
take, for the purpose of array bounds checking or program
verification [17, 7]. These algorithms, however, only prop-
agate integer ranges. Cousot and Halbwachs [9] offer a
powerful algorithm for determining symbolic linear con-
straints between variables. (Their algorithm is used by
Haghighat’s symbolic dependence test to determine vari-
able constraints.) Their algorithm is based upon the calcu-
lation, intersection, and merging of convex polyhedrons in
the n-space of variable values. Although their algorithm is
more accurate at calculating linear constraints than ours,
their algorithm cannot handle nonlinear constraints such
as & < bxc. Although not too common, we have seen cases
where nonlinear bounds must be propagated or expressions
with nonlinear differences must be compared.

7 Conclusions

We have developed a symbolic data dependence test,
called the range test, that can identify parallel loops in the
presence of nonlinear array subscripts and loop bounds.
We have shown that the range test can prove that two

very important loop nests in the Perfect Benchmarks are
parallel, whereas conventional data dependence tests can-
not. In our experiments, we have found that the range
test can prove independence for many of the other paral-
lel loops that contain symbolic non-linear array subscript
expressions.

We have implemented the range test together with a
symbolic range propagation algorithm in Polaris, a par-
allelizing compiler being developed at the University of
Tlinois [13, 5]. Currently, the range test is the only data
dependence test implemented in Polaris. To determine its
effectiveness, we have run it through an initial compiler
test suite, which consists of half of the codes of the Perfect
Benchmarks plus other applications gathered from users
of high performance machines at the University of Illinois.
We have found that in all cases, Polaris is able to paral-
lelize these codes nearly as well as the hand-parallelized
versions. For two of the codes, TRFD and OCEAN, cur-
rent commercial parallelizing compilers can only achieve a
speedup of at most 2 on Cedar, a parallel machine with 32
vector processors, due to false dependences seen for non-
linear array accesses. However, with the range test, along
with other advanced techniques mentioned in [5], we are
able to optimize the codes close to the hand parallelized
versions, which reached a speedup of 43 for TRFD and 16
for OCEAN.

With the aid of memoization [20], or the caching of
already tested array subscript pairs, we have found the
execution time of the range test to be acceptable, even
when applied as the only test. In future versions of Po-
laris, we will only invoke this test when other dependence
tests fail due to nonlinear expressions. In these versions,
the range test should not significantly increase the com-
piler’s execution time. The range propagation algorithm
can be somewhat costly, although not prohibitively so. Be-
cause of this, we will look into several techniques to im-
prove its efficiency, such as using Static Single Assignment
form [10], propagating ranges derived only from control
flow, or propagating ranges only on demand [22].

References

[1] Utpal Banerjee. Dependence Analysis for Supercom-
puting. Kluwer. Boston, MA., 1988.

[2] Utpal Banerjee. A Theory of Loop Permutations. In
A. Nicolau D. Gelernter and D. Padua, editors, Lan-
guages and Compilers for Parallel Processing, pages
54-74. MIT Press, 1990.

[3] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nico-
lau, and David Padua. Automatic Program Paral-
lelization. Proceedings of the IEEE, 81(2), February
1993.

[4] M. Berry, D. Chen, P. Koss, D. Kuck, L. Pointer,
S. Lo, Y. Pang, R. Roloff, A. Sameh, E. Clementi,
S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker,

[10]

[11]

[12]

[13]

C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag,
F. Seidl, O. Johnson, G. Swanson, R. Goodrum, and
J. Martin. The Perfect Club Benchmarks: Effec-
tive Performance Evalution of Supercomputers. Int’l.
Journal of Supercomputer Applications, Fall 1989,
3(3):5-40, Fall 1989.

Bill Blume, Rudolf Eigenmann, Keith Faigin, John
Grout, Jay Hoeflinger, David Padua, Paul Petersen,
Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and
Stephen Weatherford. Polaris: The Next Generation
in Parallelizing Compilers. Proceedings of the Sev-
enth Annual Languages and Compilers for Parallelism
Workshop, Portland, Oregon, August 1994.

William Blume and Rudolf Eigenmann. An Overview
of Symbolic Analysis Techniques Needed for the Effec-
Pro-

tive Parallelization of the Perfect Benchmarks.

ceedings of ICPP’94, St. Charles, 1L, 1994.

Francqis Bourdoncle. Abstract Debugging of Higher-
Order Imperative Languages. Proceedings of the ACM
SIGPLAN 98 Conference on Programming Language
Design and Implementation, pages 46-55, June 1993.

Partrick Cousot and Radhia Cousot. Abstract Inter-
pretation: A unified Lattice Model for Static Analy-
sis of Programs by Construction or Approximation
of Fixpoints. Proceedings of the 4th Annual ACM
Symposium on Principles of Programming Languages,
pages 238-252, January 1977.

Partrick Cousot and Nicolas Halbwachs.
Discovery of Linear Restraints Among Variables of a
Program. Proceedings of the 5th Annual ACM Sympo-

stum on Principles of Programming Languages, pages
84-97, 1978.

Automatic

Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Transactions on
Programming Languages and Systems, 13(4):451-490,
October 1991.

Rudolf Eigenmann, Jay Hoeflinger, G. Jaxon, and
David Padua. The Cedar Fortran Project. Technical
Report 1262, Univ. of [llinois at Urbana-Champaign,
Cntr. for Supercomputing Res; & Dev., April 1992.

Rudolf Figenmann, Jay Hoeflinger, Zhiyuan Li, and
David Padua. Experience in the Automatic Paral-
lelization of Four Perfect-Benchmark Programs. Lec-
ture Notes in Computer Science 589. Proceedings of
the Fourth Workshop on Languages and Compilers for
Parallel Computing, Santa Clara, CA, pages 65-83,
August 1991.

Keith A. Faigin, Jay P. Hoeflinger, David A. Padua,
Paul M. Petersen, and Stephen A. Weatherford. The
Polaris Internal Representation. Technical Report
1317, Univ. of Illinois at Urbana-Champaign, Cntr.
for Supercomputing Res. and Dev., October 1993.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Gina Goff, Ken Kennedy, and Chau-Wen Tseng.
Practical Dependence Testing. In Proceedings of the
ACM SIGPLAN 91 Conference on Programming Lan-
guage Design and Implementation, pages 15-29, June
1991.

Mohammad Haghighat
Constantine Polychronopoulos. Symbolic Dependence
Analysis for High-Performance Parallelizing Compil-
ers. Parallel and Distributed Computing: Advances
in Languages and Compilers for Parallel Processing,
MIT Press, Cambridge, MA, pages 310-330, 1991.

Mohammad Haghighat
tine Polychronopoulos. Symbolic Analysis: A Basis
for Paralleliziation, Optimization, and Scheduling of
Programs. Proceedings of the Sixth Annual Languages
and Compilers for Parallelism Workshop, Portland,
Oregon, August 1993.

and

and Constan-

William H. Harrison. Compiler Analysis of the Value
Ranges for Variables. IEEFE Transactions on Software
Engineering, SE-3(3):243-250, May 1977.

Jay Hoeflinger. Run-Time Dependence Testing by
Integer Sequence Analysis. Technical Report 1194,
Univ. of Illinois at Urbana-Champaign, Center for Su-
percomputing Res. & Dev., January 1992.

Vadim Maslov. An Efficient Way
to Break Multiloop Dependence Equations. Proceed-
ings of the SIGPLAN ‘92 Conference on Programming
Language Design and Implementation, pages 152-161,
June 1992.

D. Maydan, J. Hennessy, and M. Lam. Efficient and
Exact Data Dependence Analysis. In Proceedings of
the ACM SIGPLAN 91 Conference on Programming
Language Design and Implementation, pages 1-14,
June 1991.

William Pugh. A Practical Algorithm for Exact Array
Dependence Analysis. Communications of the ACM,
35(8):102-114, August 1992.

Delinearization:

Peng Tu and David Padua. Demand-Driven Symbolic
Analysis. Technical Report 1336, Univ. of Illinois at
Urbana-Champaign, Cntr. for Supercomputing Res.
& Dev., Febraury 1994.

Michael Wolfe. Triangular Banerjee’s Inequalities
with Directions. Technical report, Oregon Graduate
Institute of Science and Technology, June 1992. CS/E
92-013.

Michael Wolfe and Utpal Banerjee. Data Dependence
and its Application to Parallel Processing. Interna-
tional Journal of Parallel Programming, 16(2):137-
178, 1987.

