Paging Tradeoffs in Distributed-
Shared-Memory Multiprocessors

Douglas C. Burger
Rahmat S. Hyder
Barton P. Miller

David A. Wood
Technical Report #1244

September 1994

Appears in: “Supercomputing ’94,” Nov. 1994.

Reprinted by permission of IEEE.

Paging Tradeoffs in Distributed-Shared-Memory Multiprocessors®

Douglas C. Burger, Rahmat S. Hyder, Barton P. Miller, David A. Wood

Computer Sciences Department

University of Wisconsin-Madison
1210 W. Dayton Street
Madison, WI 53706 USA

wwt@cs.wisc.edu

Abstract

Massively parallel processors have begun using com-
modity operating systems that support demand-paged
virtual memory. To evaluate the utility of virtual
memory, we measured the behavior of seven shared-
memory parallel application programs on a simulated
distributed-shared-memory machine. Our results (i)
confirm the importance of gang CPU scheduling, (i1)
show that a page-faulting processor should spin rather
than invoke a parallel context switch, (ii) show that
our parallel programs frequently touch most of their
data, and (i) indicate that memory, not just CPUs,
must be “gang scheduled”. Quverall, our ezperiments
demonstrate that demand paging has limited value
on current parallel machines because of the applica-
tions’ synchronization and memory reference patterns
and the machines’ high page-fault and parallel-context-
switch overheads.

1 Introduction

Demand-paged virtual memory is a ubiquitous fea-
ture of high-performance workstations but has been

*This work is supported in part by NSF Presidential
Young Investigator Award CCR-9157366, NSF Grants MIP-
9225097, CCR-9100968, and CDA-9024618, Office of Naval
Research Grant N00014-89-J-1222, Department of Energy
Grant DE-FG02-93ER25176, and donations from Thinking Ma-
chines Corporation, Xerox Corporation, and Digital Equipment
Corporation.

© ISSN 1063-9535. Copyright(c) 1994 IEEE. All rights re-
served.

Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE. For infor-
mation on obtaining permission, send a blank email message to
info.pub.permissions@ieee.org.

By choosing to view this document, you agree to all provisions
of the copyright laws protecting it.

rarely supported on massively parallel supercomput-
ers. Traditional paging systems “automatically” man-
age both main memory and CPU utilization by (i) al-
Jowing a program to execute with only part of its code
and data in main memory, and (ii) executing other
programs when the first must fetch missing code or
data from disk. Conversely, parallel supercomputers—
e.g., the Thinking Machines CM-5 and Intel Touch-
stone Delta—have generally required that programs fit
in physical memory. By eliminating the uncertain over-
head of demand paging, these systems maximize pro-
cessor utilization but require programmers to explicitly
manage memory.

Recently, however, massively parallel supercomput-
ers have begun running modified workstation operat-
ing systems: the Intel Paragon and Convex SPP-1 run
modified versions of Mach OSF/1 AD and the Meiko
(!S-2 runs a modified version of Solaris. Furthermore,
clusters of workstations are emerging as increasingly
popular alternatives to dedicated parallel supercom-
puters [3, 18, 7]. Parallel applications on these systems
must co-exist with the operating system’s demand-
paged virtual memory.

In this paper we examine the performance of seven
shared-memory scientific applications and argue that
demand paging has limited value on distributed-
shared-memory parallel computers. Running multiple
programs that compete for memory on the same set
of processor nodes is likely to cause unsatisfactory per-
formance degradation. Furthermore, even when run by
themselves, most of our applications show dismal per-
formance unless nearly their entire data set resides in
physical memory. The traditional benefits that paging
provides on uniprocessors are diminished by the in-
teractions between (i) the CPU scheduling discipline,
(ii) the synchronization patterns within the application
programs, (iii) the overheads of context switching and
paging, and (iv) the page reference patterns of these
applications.

Our results have implications for both CPU and

memory scheduling policies. Specifically:

e Our results confirm the importance of gang CPU
scheduling for parallel programs. Without gang
scheduling, the performance of five of seven appli-
cations degrades badly.

e A page fault should not cause a parallel context
switch (i.e., a gang-scheduling operation). The
high parallel context switch overhead on current
MPP machines {e.g, the CM-5) is greater than
the cycles lost by spinning. This is especially true
when paging to a memory server [9] or fast paging
device rather than a traditional disk.

e The parallel programs we studied frequently ac-
cess most of their data. All seven applications
slow down by at least a factor of two—three of
them slow down by more than a factor of eight—
when we constrain the available physical memory
to 90% of the data set size.

e Parallel computers require gang memory schedul-
ing, not just gang CPU scheduling. Even a sin-
gle memory-constrained node can degrade perfor-
mance by over a factor of two.

The frequency of (blocking or spinning) synchro-
nization is key to determining the appropriate CPU
and memory scheduling policies. Coarse-grain par-
allel applications—those with little synchronization—
can be scheduled exactly as sequential tasks [11}. As
synchronization grows more frequent, however, the im-
pact of delaying any one node increases dramatically.
A page fault on one node can cause cascading delays
on other nodes. Qur results suggest that operating sys-
tems for massively parallel machines can provide vir-
tual memory, but should determinedly attempt to pre-
vent fine-grain parallel applications from making use
of it.

The next section describes our simulation testbed,
target system, and benchmarks, and Section 3 analyzes
the performance of three CPU scheduling disciplines.
Section 4 evaluates the performance of demand pag-
ing as we constrain the available physical memory and
examines the applications’ page reference patterns to
explain their poor performance. Section 5 discusses the
implications of these results and Section 6 summarizes
our results and conclusions.

2 Methodology

The performance studies in this paper are based
on a hypothetical distributed-shared-memory (DSM)

system running seven shared-memory programs. The
benchmark programs are scientific applications drawn
from a variety of sources, including the Stanford
SPLASH benchmarks [15], the NAS benchmarks [4],
and the Schlumberger Corp. We simulated the ex-
ecution of these programs on our hypothetical DSM
system using the Wisconsin Wind Tunnel [13].

2.1 A DSM Machine Model

Our target hardware system contains 32 processing
nodes, each with 33 Mhz SPARC CPU, 256-KB cache
(4-way associative, 32-byte blocks, random replace-
ment), and the local portion of the distributed shared
memory. The nodes are connected by a point-to-point
network (100 cycle constant latency) and coherence is
maintained through a full-map directory protocol (i.e.,
dir, NB [1]). The address space is globally shared,
with 4KB shared pages assigned to nodes round-robin.

On a page fault, the target operating system selects
a victim page using the Clock [5] algorithm. To main-
tain inclusion, the system invalidates all cached blocks
from the victim page. The page-fault service time in-
cludes a fixed 1 ms overhead on the page’s home node
to model kernel overhead, the time to flush the vic-
tim’s cache blocks, and the time to fetch the referenced
page from the paging device. The home node resumes
execution after initiating the page transfer and only
processors that actually need the missing data stall or
context switch.

2.2 Benchmarks

Our experiments used a suite of seven bench-
mark applications, summarized in Table 1. Of the
seven, Barnes, Locus, Mp3d, and Ocean are from the
SPLASH benchmark suite [15]. Appbt is a locally-
parallelized version of one of the NAS Parallel Bench-
marks [4]. Laplace was developed at Wisconsin [17],
and Wave is a proprietary code from the Schlumberger
Corporation. The last column in Table 1 contains the
total number of data pages touched by the applica-
tions. All applications use a locally-modified version of
the PARMACS macro package and assume a process-
per-processor computation model (i.e., processes are
always scheduled on the same processing node).

2.3 Simulation Environment

The Wisconsin Wind Tunnel (WWT) [13] is a paral-
lel, discrete-event simulator for cache-coherent, shared-
memory multiprocessors that runs on a Thinking Ma-
chines CM-5. By exploiting similarities between the

Application Description Data

Name | (Input Data Set) Pages

Appbt Computational fluid dynamics 5861
(32 x 32 x 32, 3 iterations)

Barnes | Hierarchical Barnes-IHut N-body 477
(8192 bodies, 10 iterations)

Laplace | Boundary integral N-body problem 1735
(256 bodies, 20 elem./body, 10 iter.)

Locus VLSI standard cell router 671
(Primaryl.grin)

Mp3d Monte Carlo rarefied fluid flow 522
(32000 molecules, 50 iterations)

Ocean Column-blocked 2D hydrodynamics 7613
(384 x 384, 1 day)

Wave 3D acoustic finite difference 2711
(48 x 48 x 48, 20 iterations)

Table 1: Benchmark Programs

hypothetical target system and the CM-5 host, WWT
permits simulation of large applications.

To simulate a paging device, we partition the CM-
5’s physical memory into two components: Logical
Main Memory (LMM) and Logical Disk (LD). On a
page fault, the requested page is moved from LD to
LMM and the victim page is moved from LMM to LD.

3 Scheduling

The goal of this study is to evaluate the utility
of demand-paged virtual memory for parallel proces-
sors. In uniprocessors, the two primary benefits are
improved physical memory utilization and improved
CPU utilization. Paging improves memory utiliza-
tion by allowing processes to run with only a subset
of their code and data resident in main memory. It
improves CPU utilization by permitting a higher de-
gree of multiprogramming, achieved by switching to
another process when one process incurs a page fault.
In this section, we evaluate the feasibility of the sec-
ond “benefit”—context switching on page faults—for
distributed-shared-memory multiprocessors.

3.1 CPU Scheduling Policy

The CPU scheduling policy is central to this eval-
uation. Synchronization between the individual pro-
cesses that make up a parallel job can result in one
processor’s delay (e.g., a page fault) causing cascading
delays on other processors. Scheduling processors in-
dependently can magnify these delays by descheduling
a process involved in the synchronization.

To address this problem, some previous studies have
argued that parallel machines should employ gang
scheduling, where all processing nodes simultaneously

10 =

Ratio of execution time (Tspin/Tno spin)

appbt barnes laptace locus mp3d ocean wave

Benchmark

Figure 1: Effects of serial task interference on parallel
execution time

switch to the same parallel job [12, 10}. Others have
argued for space-sharing (8], where processing nodes
are dedicated to a parallel program until it completes.
Space sharing can also be thought of as the limiting
case of gang scheduling, with the scheduling quantum
set to infinity. QOur view is that future parallel systems
must support time-sharing, albeit with large (e.g., 1
second) scheduling quanta.

To evaluate the need for gang scheduling in our en-
vironment, we used the WWT testbed to simulate the
effect of sharing the CPU with some other process. In
this experiment, each CPU spent half of its time ex-
ecuting and half its time spinning (to approximate a
sequential process’s execution). Each node alternates
periods of execution (randomly generated, exponen-
tially distributed with a mean of 100 ms) with peri-
ods of spinning (100 ms fixed delay). These results
are optimistic, since we ignore both context switching
overhead and cache pollution.

Figure 1 shows the normalized completion times of
the seven applications for this experiment. In the ab-
sence of synchronization, each program should take
roughly twice as long to complete, as each node spins
half the time (on average). Our results show that for
most applications, performance degrades significantly:
five of seven applications slow down by over a factor
of four, and three slow down by over a factor of eight.
Running these application programs on a system with-
out gang scheduling should be even worse because of
context switch overhead and cache pollution.

3.2 Page Fault Scheduling Policy

The synchronous behavior that motivates gang
scheduling also has ramifications for demand paging.
When a page fault occurs, the operating system must
determine whether to schedule another process, or to
simply spin waiting for the page transfer to complete.
In this section, we consider three policies that deter-
mine which action to take in the event of a fault:

SPIN: the faulting node spins until the page transfer
completes,

LUG: the faulting node switches to a non-parallel
process, and

PCS: all nodes synchronously switch to another par-
allel program.

Under the SPIN policy, the faulting node incurs the
full latency of the page transfer. Remote nodes may
also be delayed if they attempt to synchronize with
the faulting process. Nonetheless, this policy is best
if our objective is to minimize the parallel job’s to-
tal execution time (i.e., its latency). The node’s cache
state is unperturbed, and the faulting process resumes
immediately after the page transfer completes. How-
ever, because the faulting node’s CPU is unutilized for
the entire page-fault service time, this policy seems un-
likely to provide the highest system throughput.

The LUG (local-under-gang) policy attempts to im-
prove system throughput by having only the faulting
node context switch to a local sequential job. LUG
scheduling enables the faulting node to overlap useful
computation with the page transfer. A local context
switch on current microprocessors takes from 100 us
to 1 ms, leaving most of the service time free for com-
putation. Although the LUG policy improves system
throughput, it tends to increase the execution latency
of the parallel job. The “local” process causes cache
pollution by displacing entries from the node’s cache
and TLB. This results in a cold-start transient and de-
graded performance when the parallel process resumes.

The PCS (parallel-context-switch) policy attempts
to improve system throughput by having all processing
nodes synchronously switch to a new parallel program
when one node incurs a page fault. The scheduler does
not attempt to resume any process in the parallel pro-
gram until after the page transfer completes. The PCS
policy is closest to the traditional uniprocessor policy,
and eliminates the synchronization delays that both
the SPIN and LUG policies potentially incur. However,
it has the drawback of incurring the high overhead of
a parallel context switch on every page fault.

P Number of processors in the system
Tpes Time required for a parallel context switch,
including cache and TLB reload time
Toy Total latency required to service a page fault
Nps Global number of page faults incurred
Fyr Fraction of page fault service latency that
contributes to total (parallel) execution time
Teps Latency contributed by a page fault
to the execution time of a parallel process
Tnopaging | Execution time of a benchmark without paging
T]f;f]iflyg Execution time of a benchmark with paging
when using scheduling policy policy

Table 2: Summary of Notation

The remainder of this section focuses on evaluating
the tradeoffs between the SPIN and PCS policies. The
efficacy of the LUG policy depends highly on i) hav-
ing a mix of parallel and sequential jobs and ii) the
cache and TLB “footprint” [16] of the scheduled lo-
cal process. While we believe such hybrid workloads
may become common, characterizing their overheads
is outside the scope of this paper.

The relative throughputs of the PCS and SPIN poli-
cies hinge on two factors: (i) the average overhead of
a parallel context switch (Tpes) and (i) the average ef-
fective overhead of a page fault (T¢ps) under the SPIN
policy. The total execution time under the PCS policy

(T]ﬁ(gjzig) is simply:
Tszgzig = Thopaging + Nps * Tpes (1)

where Thopaging 15 the computation time in the absence
of page faults. We assume that T.s includes the over-
head of reloading the cache and TLB state after each
parallel context switch and that page faults do not si-
multaneously occur on multiple nodes.

Under the SPIN policy, the total execution time
(TEIN) is

Pl
Tpsayir{\; = Thopaging + Npf - Teps (2)

In a uniprocessor, the effective page fault overhead is
simply the time to service a local page fault (Tpy); the
entire page fault service time adds to the total exe-
cution time. But on a parallel processor, the effec-
tive overhead depends upon the frequency of synchro-
nization. In a completely synchronous system, e.g.,
the MasPar MP-2, each page fault would delay every
node for the full page fault service time (Teps = Tpf).
Conversely, if there were no synchronization and page
faults were evenly distributed over all the processing
nodes, then each page fault would increase execution
time by roughly Teps = Tps/P, where P is the num-
ber of processing nodes. Real programs on our target
distributed-shared-memory system will fall somewhere
in between these two extremes.

104

0.9

08~

07

0.6~

0.5~

04

Mean value of Fpf

appbt barnes laplace Jocus mp3d ocean wave

Benchmark

Figure 2: Mean values of Fy; under SPIN policy

We characterize the effective page fault overhead by
F,;, the (average) fraction of page fault service time
that is added to a parallel program’s execution time.

Fpp = Teps [Ty (3)

Because Fp,; depends upon the frequency and type of
synchronization present in an application, we deter-
mine it experimentally using the WWT testbed. In
this experiment, each simulated processing node peri-
odically invalidates a virtual memory page, t0 approx-
imate the effect of having that page frame assigned
to another process. Pages are selected for invalida-
tion using the Clock [5] algorithm; pages that have not
been referenced recently (as calculated by Clock), are
candidates for invalidation. Pages are invalidated at
random times (exponential interarrival time distribu-
tion with mean 512 ms). We timed the execution of
each program in two ways. First, we simulated the pro-
gram without causing any page invalidations to mea-
sure Thopaging- Lhen we simulated the program with
page invalidations (as above) using the SPIN policy to
measure T 7. We calculate Fpf as:

Fop = (T;i?f,% - Tnoparamg)/(pr "Tpf) (4)

where N is the number of page faults that occur dur-
ing an execution.

Figure 2 graphs the values of F; for the seven ap-
plications. F,s ranges from as low as 0.12 for Appbt
and Ocean to 0.55 and 0.57 for Barnes and Mp3d, re-
spectively. Fys averages 0.30 over all applications, in-
dicating that a page fault adds roughly one-third its
service time to the total execution time, on average.

This estimate of F,f helps us analyze the rela-
tive benefits of the SPIN and PCS policies. For the

PCS policy to provide significant improvement over the
SPIN policy, the round-trip overhead of the parallel
context switch must be significantly less than Tepy:

Tpcs < Fpl ‘Tpf (5)

Assuming average disk service times of 16 ms and us-
ing the mean measured F,y (just under one-third), the
parallel context switch time must be less than approxi-
mately 5 ms. Unfortunately, current massively parallel
processors incur substantial overhead for a full parallel
context switch. For example, the Thinking Machines
CM-5 incurs a minimum overhead of 4 ms, with typical
times closer to 10 ms [14]. Under these assumptions,
the SPIN policy is clearly superior—for both through-
put and latency—to the PCS policy.

4 Performance of Virtual Memory

On a uniprocessor, demand-paged virtual memory
“automatically” manages physical memory and allows
processes to execute with only a subset of their code
and data pages resident in memory. Paging both im-
proves memory utilization and facilitates execution of
programs whose data sets are larger than the available
physical memory. However, in this section we show
that this latter “benefit” does not apply to distributed-
shared-memory multiprocessors. Specifically, the per-
formance of our parallel applications degrades rapidly
when physical memory is constrained. The poor per-
formance results from two factors: (i) the high over-
head of page faults caused by synchronization delays,
and (ii) the pernicious reference patterns of these par-
allel applications.

The first factor follows directly from our results in
Section 3. The synchronization inherent in these par-
allel applications makes page faults ten times more ex-
pensive than on a uniprocessor. This is because, on
average, each page fault effectively stalls all 32 pro-
cessing nodes for one-third of its service time.

In the remainder of this section, we examine the sec-
ond factor. First, we quantify the performance of these
applications when we constrain the available physical
memory. Then we analyze the working set behavior
and memory access patterns of these applications to
understand why paging performs so poorly.

4.1 Simulated Application Performance

To evaluate the performance impact of demand
paging, we simulated our benchmark applications on
WWT using the Logical Main Memory (LMM) and

T 48 /V Barnes
=5
‘" - L Mp3d
2 32 / Whue
=4
s}
£
= 16—
=
9
2
: " / / Locus
=]
&
o & s

S > Laplace
i—-? 4 / Ap%bl
P Ocean
B
] 2 -
k<]
3
2
7]

1 I i
1.00 0.90 080 075

Fraction of Data Set (c)

Figure 3: Constrained-memory performance

Logical Disk (LD) extensions. These experiments as-
sume the SPIN scheduling policy discussed above, and
vary the LMM size as a fraction, denoted c, of the total
data set size. The data set size, denoted N, is simply
the number of unique 4KB data pages referenced by an
application (summarized in Table 1). We assume phys-
ical memory is uniformly distributed across processing
nodes, so the per-node LMM size is simply ¢ x N/P,
where P is the number of processing nodes. The met-
ric of interest is slowdown, the execution time with
constrained memory normalized by the execution time
with unconstrained memory (¢ = o0).

Figure 3 shows the slowdown as ¢ decreases from
1.0 to 0.75 for a page transfer time of 16 ms (note
that the y-axis uses a logarithmic scale). Our first ob-
servation is that programs running with ¢ = 1.0 are
noticeably slower than programs running with uncon-
strained physical memory. This occurs because while
shared pages are distributed round-robin, private pages
are allocated locally. Nodes with more private data will
have more pages than physical frames, and thus may
incur numerous page faults.

To quantify the memory imbalance, we measured
the application performance for values of ¢ > 1.0. Lo-
cal memory partitions of up to 2.5 times as large are
needed to eliminate the imbalance effect. Mp3d and
Wave showed little slowdown at ¢ = 1.25, Laplace at
¢ = 1.5, Locus at ¢ = 2, and Barnes at ¢ = 2.5.

These results show that performance degrades
rapidly when a parallel application lacks “sufficient”
physical memory; that is, when ¢ drops below an
application-specific critical value. All seven applica~
tions slow down by at least a factor of two when physi-
cal memory is constrained to 90% of their data set size
(c = 0.9). Further decreasing ¢ to 0.75 has only mod-

6}y

Allnodes ate= 75

501

Onenode ate = 75

40—

304

20~

104

Slowdown (T-constrained/T-unconstrained)

Appbt Barnes Laplace Locus Mp3d Oceun Wave

Benchmark

Figure 4: Performance with single constrained node

erate effect on 5 applications, but Barnes and Wave
increase their slowdowns to 52 and 32, respectively.

We also performed a second experiment where mem-
ory was constrained on only a single node, chosen at
random. The remaining 31 processing nodes had essen-
tially infinite physical memory. Figure 4 shows that
even a single memory-constrained node significantly
degrades performance. Four of the applications slow-
down by at least a factor of two.

4.2 Application Working Set Behavior

In the next two sections, we examine the memory
reference patterns of the applications to identify why
demand paging performs poorly. We first analyze the
applications using the Working Set model of program
behavior [6], which describes memory access patterns
in terms of localities. A program’s working set at time ¢
with parameter 7 is defined as the set of pages touched
by the program during the last 7 time units (¢ — 7,1).
When applied to demand paging, the basic philosophy
of Working Set is that “the past is a good predictor of
the future”. In other words, pages that have been re-
cently referenced (i.e., are in the working set) are likely
to be referenced in the near future and should therefore
be kept resident. Page replacement algorithms based
on this philosophy model have been effective on work-
stations and small multiprocessors.

To measure the working set behavior of our bench-
mark applications, we used WWT to collect page ref-
erence information. Each processing node tracks the
set of pages referenced within the last 7. At each mul-
tiple of 7, we take the union of these sets (eliminating
duplicates) to compute the global working set. Fig-
ure 5 shows how the global working set size varies
over the programs’ executions for three values of 7

(r = {32,128,512} ms). 7 is usually a small multi-
ple of the page fault service time; in these experiments
7 spans a much greater range. Figure 5 also plots the
number of pages referenced since the program began
execution (infinite 7) and the total number of pages
that will be referenced (dashed line).

The graphs in Figure 5 show two important results:
(i) that the working set size of most applications grows
rapidly as a function of 7, and (ii) many of the applica-
tions touch a large fraction of their total data set even
for relatively small values of 7. If the rate of adding
new pages to a program’s working set is low, indicating
high locality in its reference stream, we would expect
the working size to grow to some reasonable value and
then level off as 7 increases. The lack of temporal local-
ity in our application programs causes the global work-
ing set size to steadily grow as the parameter 7 grows.
Even when 7 is large (512 ms, which is small relative
to the execution time of the program), the working set
sizes have either reached the data set sizes or are still
rapidly increasing. In most cases, working set sizes
for large values of 7 follow the cumulative page curve
closely.

These results indicate that demand paging will not
be effective for our parallel benchmarks. Our appli-
cations exhibit little locality, and tend to frequently
access large portions, if not all, of their data. The
Working Set model indicates that nearly all of the ap-
plication’s data must be kept resident in memory.

4.3 Application Reference Behavior

To further understand the poor paging behavior,
we examined the memory reference patterns of these
applications. Barnes, Wave, and Mp3d exhibit the
worst performance under constrained memory. Fig-
ure 5 shows that Barnes touches 70% of its data set
every 32 ms and its entire data set every 2 seconds.
The latter corresponds to the iteration time for this
input. In each iteration, Barnes inserts “bodies” into
an oct-tree that maintains their positions in three-
space, then uses a hierarchical algorithm to compute
the forces between the bodies. Thus each iteration ref-
erences all bodies and all cells used to represent the
oct-tree. Wave touches its entire data set even more
frequently than Barnes: over 90% of its data pages are
touched every 128 ms. This follows since Wave is essen-
tially a 3D stencil computation and touches its entire
data set in each phase of every iteration. Mp3d iter-
ates over its molecules, calculating their new positions
and moving them to new space cells as needed. This
results in it touching nearly half its data pages every
32 ms and over 90% with a 7 of 128 ms. Further-

more, all three applications frequently use barriers to
synchronize their internal phases. This frequent syn-
chronization explains the high values of F,; observed
in Section 3.

Laplace and Locus have relatively long initializa-
tion phases which exhibit good locality, followed by
less well-behaved compute phases. Laplace’s working
set remains less than 20% during the initialization of
the primary matrix A (which dominates Laplace’s data
set). During the computation phase, the algorithm it-
eratively solves the equation X = A - X + B, touching
most of the primary matrix in each iteration. Laplace
also exhibits the most severe slowdown when there are
just enough page frames to hold the data set (c = 1.0},
This is caused by a highly unequal distribution of pri-
vate data across the nodes, which cause some nodes to
fault.

Locus exhibits similar two-phase behavior, but
touches more of its data set in the second (compute)
phase. Locus searches a VLSI standard cell, trying to
find the lowest cost route for each wire. It touches
roughly half its pages every 32 ms, and 75% every
128 ms. Furthermore, Locus has more synchroniza-
tion than Laplace, resulting in a higher value of Fp:
Locus has an Fy; value of 0.31 versus 0.19 for Laplace.

Appbt and Ocean behave similar to one another.
Matrices are the major data structures in both appli-
cations: five three-dimensional matrices in Appbt and
25 two-dimensional matrices in Ocean. Both appli-
cations touch essentially their entire data set in each
iteration, yet exhibit reasonable short-term locality.
Appbt touches less than 15% every 32 ms during the
first phase of each iteration, during which it computes
the block tridiagonal matrix. The second phase, Gaus-
sian elimination, is less well behaved, yet still touches
only half the pages every 128 ms. Ocean achieves its
locality by referencing its matrices sequentially: each
phase produces a matrix that is used as input to the
next phase. This locality is one reason Appbt and
Qcean exhibit relatively little slowdown due to con-
strained physical memory, despite touching their entire
data sets each iteration. A second reason is minimal
synchronization. Synchronization in these programs is
dominated by barriers between phases within an it-
eration. When all processors have equally constrained
memory, page faults on different nodes tend to overlap.
The relatively low values of F; in Figure 2 corroborate
this observation.

5 Discussion

The results of our experiments show that de-
mand paging offers little benefit for distributed-shared-
memory machines. The performance of our parallel
shared-memory application programs degrades rapidly
at the onset of paging; synchronization dependencies
cause a page fault on one processing node to delay com-
putation on other nodes. The obvious way to prevent
propagation of these page fault delays is to perform
a parallel context switch on each fault. However, the
overhead of this operation is so high on current paral-
lel machines that it is actually more efficient to simply
spin. Coupled with these applications’ large working
set requirements and the high overhead of servicing
page faults, our results suggest that demand paging
should be avoided for parallel applications.

These results have important implications for the
operating systems of parallel machines. Specifically,
rather than managing each processor node as an in-
dependent workstation, the operating system should
manage physical memory as a global resource. Fur-
thermore, simple schemes that allocate fixed memory
partitions on each node are unlikely to be effective,
since many applications have unequal requirements for
private pages. While there have been numerous pro-
posals to manage processors globally [2], we believe
these are the first results indicating the importance of
doing so for physical memory.

Demand paging would become more attractive for
parallel applications if we can decrease either the page
fault service time (T},) or parallel context switch over-
head (Tpes)- A lower page fault service time would re-
duce the magnitude of any synchronization delays, as
well as decrease the probability that these delays even
occur. Ty could be reduced using standard techniques
such as faster disks or dedicated paging memory (e.g.,
“golid-state disks”). Alternatively, Iftode, et al., have
proposed dedicating some processing nodes as “mem-
ory servers” [9], which use their physical memories as
fast paging stores. Such an approach might make use
of the memory of idle or underutilized workstations in
a network or cluster of workstations.

Faster parallel context switches would allow useful
work to be overlapped with the page fault service time.
This would increase system throughput, at the expense
of delaying the completion of the parallel job. De-
creasing the overhead of parallel context switches re-
quires hardware support to i) allow the faulting node
to quickly interrupt all other processors and ii) virtual-
ize the network. However, even the CM-5—which has
support for both—is quite inefficient.

Interestingly, these two improvements have opposite

implications for the appropriate action to take on a
page fault: lower service latencies support the SPIN
(or LUG) policy, while lower parallel context switch
overheads support use of the PCS policy.

While this work studies shared-memory appli-
cations, the concepts are applicable to fine-grain
message-passing systems as well. Message-passing ver-
sions of these parallel scientific applications will have
similar synchronization and communication character-
istics. Thus we believe our results apply, at least qual-
itatively, to these other systems.

6 Conclusions

Demand-paged virtual memory attempts to opti-
mize both CPU and physical memory utilization. The
tradeoffs, which are well known for uniprocessors, are
not nearly so clear for the next-generation of paral-
lel processors, which will be built of workstation-like
nodes and run commodity operating systems.

In this paper, we evaluated the feasibility of demand
paging for such systems. We first enumerated and eval-
uated several CPU scheduling policies. As expected,
we found that the fine-grain synchronization in our
parallel applications makes gang scheduling necessary.
Furthermore, the obvious solution of context switching
all nodes to a new parallel job is ineffective because of
the high overhead of parallel context switches on cur-
rent machines. Instead, we found it more efficient to
simply spin until the page fault completes. We also
considered, but did not evaluate, a third policy (LUG)
that executes a sequential job on the faulting node.
This policy has significant potential if the workload
consists of a mix of parallel and sequential jobs.

Second, we analyzed the efficacy of demand paging
for our applications as the available physical memory
is constrained. All seven applications slow down by at
least a factor of two—three of them by more than a
factor of eight—when the available physical memory is
reduced to 90% of the data set size. We show that this
behavior results from the large working sets of these
applications, which frequently touch their entire data
sets, and fine-grain synchronization.

We conclude from these results that operating
systems for massively parallel machines can provide
demand-paged virtual memory, but should schedule
processors and memory to minimize paging. In par-
ticular, operating systems should use gang scheduling
policies for both processors and memory.

Acknowledgements

We would like to thank Steve Reinhards, Babak Fal-
safl and Alain Kagi for helping extend the Wisconsin
Wind Tunnel for this study, Mark Hill for his helpful
comments on a draft of this paper, and other members
of the Wisconsin Wind Tunnel project for providing
the infrastructure that made this study possible.

References

(1]

(9]

[10]

[11]

(12]

(14]

[18]

Anant Agarwal, Richard Simoni, Mark Horowitz, and John
Hennessy. An evaluation of directory schemes for cache coher-
ence. In Proceedings of the 15th Annual International Sym-
posium on Computer Architecture, pages 280-289, 1988.

Tom Anderson. NOW: Distributed supercomputing on a net-
work of workstations, September 1993. Presentation at 1993
Fall ARPA HPC Software PI’s meeting.

Tom Anderson, David Culler, and David Patterson. A case for
networks of workstations: NOW. Technical report, Computer
Science Division (EECS), University of California at Berkeley,
July 1994.

David Bailey, John Barton, Thomas Lasinski, and Horst Simon.
The NAS parallel benchmarks. Technical Report RNR-91-002
Revision 2, Ames Research Center, August 1991.

F. J. Corbato. A paging experiment with the Multics system.
Technical Report MAC-M-384, MIT, May 1968.

P. J. Denning. The working set model of program behavior.
Communications of the ACM, 11(5):323~333, May 1968.

J. Dongarra, G. A. Geist, R. Manchek, and V. 8. Sunderam.
Integrated PVM framework supports heterogeneous network
computing. Computers in Physics, 7(2):166-174, March-April
1993.

Derek L. Bager, John Zahorjan, and Edward D. Lazowska.
Speedup versus efficiency in parallel systems. IEEE Trans-
actions on Computers, 38(3):408-423, March 1989.

Liviu Iftode, Kai Li, and Karin Petersen. Memory servers for
multicomputers. In Proceedings of 1993 Spring CompCon,
pages 538-547, February 1993.

Scott T, Leutenegger. Issues in Multiprogrammed Muliiproces-
sor Scheduling. PhD thesis, University of Wisconsin—~Madison,
August 1990,

Scott T. Leutenegger and Xian-He Sun. Distributed computing
feasibility in a non-dedicated homogenous distributed system.
In Proceedings of ACM Supercomputing 93, 1993.

John K. Qusterhout, Donald A. Scelza, and Pradeep S. Sindhu.
Medusa: An experiment in distributed operating system struc-
ture. Communications of the ACM, 23(2):92-105, February
1980.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R.
Lebeck, James C. Lewis, and David A. Wood. The Wiscon-
sin Wind Tunnel: Virtual prototyping of parallel computers.
In Proceedings of the 1993 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 48—
60, May 1993

Eric Sharakan. Personal communication., April 1994.
Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta.

Splash: Stanford parallel applications for shared memory Com-
puter Architecture News, 20{1):5-44, March 1992.

[16]

(7]

[18]

D. Thiebaut and H.S. Stone. Footprints in the cache. ACM
Transactions on Computer Systems, 5(4):305-329, November
1987.

F. Traenkle. Parallel programming models and boundary inte-
gral equation methods for microstructure electrostatics. Mas-
ter’s thesis, University of Wisconsin-Madison, 1993.

Songnian Zhou, Jingwen Wang, Xiaohu Zheng, and Pierre
Delisle. Utopia: A load sharing system for large, heteroge-
neous distributed computer systems. Technical report, Com-
puter Systems Research Institute, University of Toronto, April
1992, CSRI Technical Report #257.

Global Working Set Size (pages) Global Working Set Size (pages)

Global Working Set Size (pages)

5 6 7 8

Time (Seconds)

__...0_-____0..._
g 12]

Total References
Tan = Infinite
Tau = 512ms
Tau = 128ms
Tau = 32ms

Barnes

7700 —
7000 -
6300 —
5600~
4900
4200
3500
2800
2100

14001,

\ — - — SILIEITITETIITIICTIT

2800
2600
2400
2200
2000
1800
1600
1400
1200

1000

800
600
400
200

(| P

RENRRARYOARRDUNALY

RQP G ?Dé;\ -..c

789\? (!%? o'sl é? J U.g.
LU
.~ |

Time {Seconds)

Figure 5: Global Working Sets

10

