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Abstract

Multiprocessors have permitted astounding increases

in computational performance, but many cannot meet

the intense I/O requirements of some scientific applica-

tions. An important component of any solution to this

I/O bottleneck is a parallel file system that can provide

• "high-bandwidth access to tremendous amounts of data

in p_rMle! .to hitndreds-or thousahds of"2r@essors. ""
Most succe'ssful s.ystems are based on a solid un-

derstanding of the expected workload, but thus far

there have been no comprehensive workload charac-

terizations of multiproeessor file systems. This paper

presents the results of a three week tracing study in

which all file-related activity on a massively parallel

computer was recorded. Our instrumentation differs

from previous efforts in that it collects information

about every I/O request and about the mix of jobs

running in a production environment. We also present

the results of a trace-driven caching simulation and

recommendations for designers of multiprocessor file
systems.

1 Introduction

Many scientific applications have intense computa-

tional and I/O requirements. Although multiproces-

sots have permitted astounding increases in computa-

tional performance, the formidable I/O needs of these

applications cannot be met by current multiprocessors

and their I/O subsystems. To prevent I/O subsystems

from forever bottlenecking multiprocessors and limit-

ing the range of feasible applications, new I/0 subsys-

tems must be designed.

The successful design of computer systems (both
hardware and software) depends on a thorough un-

This research was supported in part by the NASA Ames
Research Center under Agreement Number NCC 2-849.

derstanding of their intended usage. A system's de-

signer optimizes the policies and mechanisms for the
cases expected to be most common in the user's work-

load. In the case of multiprocessor file systems,_how-

ever, designers have been forced to build file sys-

tems based only on speculation about how they would

be used, extrapolating from file-system characteriza-

tions of generM-pu, rpose workloads on uniproc.essor _nd
di?tributed systems or'scien.tific workloads on .vec{or

supercomputers." To fill this gap, the CHARISMA

project began in June 1993 to CHARacterize I/O in

Scientific Multiprocessor Applications from a variety
of production parallel computing platforms and sites.

The CHARISMA project is unique in recording indi-

vidual read and write requests in live, multiprogram-
ruing, parallel workloads (rather than from selected

or non-parallel applications). This paper presents the
first results from the project: a characterization of the

file-system workload on an iPSC/860 multiprocessor

running production, parallel scientific applications at

NASA's Ames Research Center. We use the resulting

information to address the following questions:

- What does the job mix look like: how many jobs

run concurrently? how many processors did each
use? how many files did each use?

• How many files were read and written? What were

their sizes? Which were temporary files?

• What were typical read and write request sizes,
and how were they spaced in the file? Were the

accesses sequential, and in what way?

• What forms of locality were there? How might
caching be useful?

• What are the implications for file-system design?

In the next section we describe previous studies of

file-system workload, multiprocessor file systems, and
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file-system caching. In Section 3 we outline our re-

search methods, and in Section 4 present our results.
Section 5 draws the overall conclusions.

2 Related work

As background, we describe many of the previous
studies of file-system workload as well as some current

Inultiprocessor file systems and caching studies•

2.1 Workload

There has never been an extensive study of a pro-

duction scientific workload on a multiprocessor file sys-
tem. 1Lelated file-system workload studies can be clas-

sifted as characterizing general-purpose workstations

(or workstation networks), scientific vector applica-
tions, or scientific parallel applications•

General-purpose workstations. Uniprocessor file

access patterns have been measured many times. Floyd

and Ellis [12, 13] and Ousterhout el al. [28] measured
isolated Unix workstations, and Baker et al. measured

a distributed Unix (Sprite) system [1]. All of these

studies cover general-purpose (engineering and office)
'.workloads with hniprocessor appliea'tions." .

.. ... .

•Scientific vector appli(_atlons. Some studies

specifically examined scientific workloads. Del Rosario

and Choudhary provide an informal characterization

of grand-challenge applications [10]. Powell measured

file sizes on a Cray-1 file system [31]. Miller and Katz

traced specific I/O-intensive Cray applications to de-

termine the per-file access patterns [25], focusing pri-

marily on access rates. Pasquale and Polyzos studied
I/O-intensive Cray applications, focusing on patterns

in the I/O rate [29]. All of these studies are limited to

uniprocess applications on vector supercomputers.

Scientific parallel applications. Crockett [7] and

Kotz [20] hypothesize about the character of a parallel

scientific file-system workload. Cormen and Kotz [6]

discuss the needs of parallel-I/O algorithms. Reddy
el al. chose five sequential scientific applications from

the PERFECT benchmarks and parallelized them for

an eight-processor Alliant, finding only sequential file-

access patterns [32]. This study is interesting, but far
from what we need: the sample size is small; the pro-

grams are parallelized sequential programs, not paral-
lel programs per se; and the I/O itself was not par-

allelized. Cypher et al. [81 studied individual parallel

scientific applications, measuring temporal patterns in

I/O rates. Galbreath et al. [16] present a useful high-
level characterization based on anecdotal evidence.

2.2 Existing file systems

To increase parallelism, all large multiprocessor file

systems decluster blocks of a file across many disks,

which are accessed in parallel. Most extend a tra-

ditional file abstraction (a growable, addressable se-
quence of bytes) with some parallel file-access meth-

ods. The most common provide I/O "modes" that
specify whether and how parallel processes share a file

pointer [7, 30, 33, 2, 17]. Some are based on a memory-
mapped interface [23, 22]. Some provide a way for the

user to specify per-process logical views of the file [5, 9].
Some provide SIMD-style transfers [34, 24, 16]. PIFS
(Bridge) [11] allows the file system to control which

processor handles which parts of the file, to encourage
memory locality. Clearly, the industrial and research

communities have not yet settled on a single new model

for file access. Some aspects of the workload, therefore,

are dependent on the particular file-access model pro-
vided to the user. The implications of this fact for our
study are discussed in Section 5.

2.3 Multiprocessor file system • (::aching

Caching and prefetching are successful in multipro-

eessor file systems [19, 20]. Pratt and French found

that the caching and prefetching supplied with In-

-- tel:sC.o.pc'ur.re.nt E-ile:System (QFS) does improve per-

formance [15]. .Recetlt stiadies have found that CFS.

caching and prefetching work v,,ell in limited situations,
but that the throughput of CFS can be disappoint-

ing relative to the capabilities of the hardware [27, 3].

Miller and Katz drove a cache simulation using traces
from a Cray supercomputer and found that access lo-

cality was not high enough for significant benefits to

be realized from a file system cache [25].

2.4 Intel iPSC/860 and CFS

The iPSC/860 is a distributed-memory, message-
passing, MIMD machine. The compute nodes are

based on the Intel i860 processor and are connected by

a hypercube network. I/O is handled by dedicated I/O
nodes, which are each connected to a single compute

node rather than directly to the hypercube intercon-

nect. The I/O nodes are based on the Intel i386 pro-
cessor and each has a port for SCSI disk drives. There

may also be one or more service nodes that handle as

Ethernet connections or interactive shells [26].

Intel's Concurrent File System (CFS) [30, 15, 27]
provides a Unix-like interface to the user with the ad-

dition of four [/0 modes to help the programmer co-

ordinate parallel access to files. Mode 0 gives each

process its own file pointer; mode 1 shares a single file

pointer among all processes; mode 2 is like mode 1,

but enforces a round-robin ordering of accesses across
all nodes; and mode 3 is like mode 2 but restricts the

access sizes to be identical. CFS stripes each file across

all disks in 4 KB blocks. Compute nodes send requests

directly to the appropriate I/O node. Only the I/O
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nodes have a buffer cache.

3 Methods

To be useful to a system designer, a workload char-
acterization must be based on a realistic workload sim-

ilar to that which is expected to be used in the fu-
ture. For our purposes, this meant that we had to

trace a multiprocessor file system that was in use for

production scientific computing. The Intet iPSC/860
at NASA Ames's Numerical Aerodynamics Simulation

(NAS) facility met this criterion (their three newer

multiprocessors, an Intel Paragon, a Thinking Ma-
chines CM-5, and an IBM SP-2 do not yet have a

mature production workload). Their iPSC has 128

compute nodes, each with 8 MB of memory, and 10

I/O nodes, each with 4 MB of memory and a single

760 MB disk drive [26]. There is also a single service
node that handles a 10-Mbit Ethernet connection to

the host computer. The total I/O capacity is 7.6 GB

and the total bandwidth is less than 10 MB/s.
Ideally,. a workload characterization is an

architecture-independent representation" .of the

work generated by a group of: users in _t particu.!ar
•type .of computiflg envi'ronm, eat. " However, since the""

architectures of different parallel I/O subsystems ate

so diverse, any observed workload will be tied to.a_ -

particular machine. While we try to factor'out •these

effects as much as possible, we must note that some"

care should be taken in generalizing tile results.

3.1 Data collection

For our study, one trace file was collected for the en-

tire file system. We traced only the I/O that involved

the Concurrent File System. This means that any I/O
which was done through standard input and output or

to the host file system (all limited to sequential, Eth-
ernet speeds) was not recorded. We collected data for

about 156 hours over a period of 3 weeks. While we

did not trace continuously for the whole 3 weeks, we

tried to get a realistic picture of the whole workload by

• tracing at all different times of the day and of the week,

including nights and weekends. The period covered by
a single trace file ranges from 30 minutes to 22 hours.

The longest continuously traced period was about 62.5

hours. Tracing was usually initiated when tile machine

was idle. For those few cases in which a job was run-
ning when we began tracing, the job was not traced.

Tracing was stopped in one of two ways: manually or

by a system crash. The machine was usually idle when
a trace was manually stopped.

The trace files begin with a header record containing

enough information to make the file self-descriptive,

and continue with a series of event records, one per
event. These events include individual read and write

requests as well as operations like file extensions and

deletions. Since one of the goals of the CHARISMA

project is to organize and facilitate a multi-platform

file system tracing effort, we have defined a large set
of event records suitable for both SIMD and MIMD
systems [21].

On the iPSC/860, high-level CFS calls are imple-

mented in a library that is linked with the user's pro-

gram. We instrumented the library calls to generate
an event record each time they were called. The event

records were buffered at each compute node and peri-

odically sent to a data collector running on the service
node. Tile collector then wrote tile data to the central

trace file (itself on CFS). The collector's use of CFS
was not recorded in the trace.

Since our instrumentation was ahnost entirely
within a user-level library, there were some jobs whose

file accesses were not traced• These included mpst sys-

tem programs (e.g., ls, cp, and ftp) as well as user

programs that were not relinked during the period we

were tracing. We did, however, record all job starts and
ends through a separate mechanism. While we were

.tracing, 3016J0bs _eere run-on the compute nodes, of

which 2237 were only run.on _ single node. We "actually

traced at least 429 of the 779 multi-node jobs and at
least 41 of the Single-'node jobs. As a tremendous num-

ber of the single-node jobs were system programs it is

not surprising nor necessarily undesirable that so many

were untraced. In particul-ar, there was one single-node
job which was run periodically, and which accounted

for over 800 of the single-node jobs, simply to check

the status of the machine. There was no way to dis-

tinguish between a job which was untraced from a job
which simply did no CFS I/O, so the numbers of traced
jobs are a lower bound.

One of our primary concerns was to minimize the

degree that our measurement perturbed the workload.

We identified three ways that our instrumentation

might affect the workload.

Our first concern was network contention. We ex-

pected users' jobs to generate a great many event

records. Had we chosen to send a message to the data

collector for each event record, we would certainly have
created unreasonable congestion near the collector or

perhaps in the overall machine. Since large messages
on the iPSC are broken into 4 KB blocks, we chose to
create a buffer of that size on each ,lode to hold lo-

cal event records. This buffer allowed us to reduce the

number of messages sent by over 90% without stealing
much memory from user jobs.

The second concern was local CFS overhead. Since

we were tracing every I/O operation in a production
environment, it was imperative that the per-call over-

!
!
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head be kept to a minimum to avoid inconveniencing

the users. By buffering records on the compute nodes

we were able to avoid the cost of message passing on
every call to CFS.

Our final concern was that we might increase con-

tention for the I/O subsystem. We tried to minimize

this by creating a large buffer for the data collector and

writing the data to CFS in large sequential blocks. Al-

though we collected about 700 MB of data, our traces

accounted for less than 1% of tile total traffic.

Simple benchmarking of the instrumented library

revealed that the overhead added by our instrumen-

tation was virtually undetectable in many cases. The

worst case we found was a 7% increase in execution

time on one run of the NAS NtIT-1 Application-[/O

Benchmark [4]. After the instrumented library was put

into production use, anecdotal evidence suggests that

there was no noticeable performance loss.

a.2 Analysis

The raw trace files required some simple postpro-

cessing before they could be easily analyzed. This.

:post.processing included data .realignment_ clock: s_n-

chronization, and chronological sorting.

Since each node buffered 4 KB of data before send-

ing it to the central data collector, the raw trace file

contained only a partially ordered list of event records.

Ordering the records was complicated by the lack of

synchronized clocks on the iPSC/860. Each node

maintains its own clock; the clocks are synchronized

at system startup but each drifts significantly and dif-

ferently after that [14]. We partially compensated for

the asynchrony by timestamping each block of records

when it left the node and again when it was received

at the data collector. From tlle difference between the

two we could approximately adjust the event order to

compensate for each node's clock drift relative to the

collector's clock. This technique allowed us to get a

closer approximation of the event order. Nonetheless,

it is still an approximation, so much of our analysis is

based on spatial, rather than temporal, information.

4 Results

We characterize the workload from the top down,

beginning with tile number of jobs in the machine and

the number and use of files by all jobs. We then exam-

ine individual I/O requests by looking for sequentiality,

regularity, and sharing in tile access pattern. Finally,

we evaluate the effect on caching through trace-driven

simulation. More detail may be found in [21].

4.1 Jobs

Figure 1 shows the amount of time the machine

spent running a given number of jobs. For more than

_5
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30.
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10-

0

0 1 2 3 4 5 6 7 8

Number of jobs

Figure 1: Amount of time the machine spent with the

given number of jobs running. This data includes all

jobs, even if their file access could not be traced.

100

80.

"6 60-
E
8 40-

2O

0

1 2 4 8 16 32 64- 128"

Number of compute nodes

-igure 2: Distribution of the number of" compute nodes /

used by jobs in our workload (even those whose file]

access could not be traced). The iPSC limits the choice J

to powers of 2. ]

a quarter of the traced period, the machine was idle

(i.e., zero jobs)• For about 35% of the time it was run-

ning more than one job, sometimes as many as eight•

Although not all jobs use the file system, a file system

clearly must provide high-performance access by many

concurrent, presumably unrelated, jobs. While unipro-

cessor file systems are tuned for this situation, most

multiprocessor file-systems research has ignored this

issue, focusing on optimizing single-job performance.

Of course, some of the jobs in Figure t were small,

single-node jobs, and some were large parallel jobs.

Figure 2 shows the distribution of the number of com-

pute nodes used by each job. One-node jobs dominated

the job population, although large parallel jobs dom-

inated node usage. This dichotomy would be larger

in new "self-hosting" parallel systems. A successful

file system must allow both small, sequential jobs and

large, highly parallel jobs access to the same files under

a variety of conditions and system loads.
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Figure 3: Cumulative distribution function (CDF) of
the number of files of each size at close. For a file size

x, CDF(x) represents the fraction of all files that had
x or fewer bytes.

4.2 Files

During the 156 hours of tracing, almost 64,000 files

were opened. Of those, 44,500 were only written to

and 14,500 were 0nly read from. The ratio of write-
"' only files- to read:only was surprising. It"appears "that" .
-the programmers of traced applications often fodnd it

easier to open a separate output file for each compute

.node, rather than coordinating writes to a common

output file, as evidenced by the substantially smaller

average number of bytes written per file (1.2 MB) than
average bytes read per file (3.3 MB). There were very

few (less than 2300) files that were read and written in
the same open. This behavior is also common in Unix

file systems [12] and may be accentuated here by the

difficulty in coordinating concurrent reads and writes

to the same file (note the CFS file-access modes are of

little help for read-write access).

Finally, there were nearly 2500 files which were.
opened but neither read nor written.

Table i: Among traced jobs, the number of files opened

by jobs was often small (1-4).

Number of Number

Files of Jobs

1 71

2 15

3 24

4 120

5+ 240

Table 1 shows that most jobs opened only a few

files over the course of their execution, although a few
opened many files (the maximum was one job that
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Figure 4: CDFofthe number of reads by request size

and of the amount of data transferred by request size.

opened 2217 files). Some of the jobs which opened a

large number of files were opening one file per nod.e. Al-
though not all files were open concurrently, file-system-

designers must optimize access to several files within

the same job. "

We foufid that only 0.61% of all opens were to "tem-

porar.y".- files (_tefineit.ias- a.fil'e deleted "by th'e same jog
th£t created it), and nearly all of those may have been

from one application. The rarity of temporary files
and of files that were both read and written indicates

that few applications chose to use files as an exten-

sion of memory for an "out of core" solution. Many

of the Ames applications are computational fluid dy-

namics (CFD) codes, for which they have found that
out-of-core methods are in general too slow.

Figure 3 shows that most of the files accessed were

large (10 KB to 1 MB). It is important to note that

each of the clusters of similarly sized files (e.g. at 25KB
and 250KB) may be due to just one or two applications,

so undue emphasis should not be placed on the specific

numbers as opposed to the general tendency towards

larger files. Although these files were larger than those

in a general-purpose file system [1], they were smaller

than we would expect to see in a scientific supercom-
puting environment [25]. We suspect that users limited

their file sizes due to the small disk capacity (7.2 GB)

and limited disk bandwidth (10 MB/s peak).

4.3 I/O request sizes

Figure 4 shows that the vast majority of reads are

small, but that most bytes are transferred through
large reads.

Indeed, 96.1% of all reads were for fewer than 4000

bytes, but those reads transferred only 2.0% of all data
read. Similarly, 89.4% of all writes were for fewer than

4000 bytes, but those writes transferred only 3% of

all data written (not shown). The number of small
requests is surprising due to their poor performance in
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CFS [27]. The small peak at 4 KB indicates that some

users have optimized for the file-system block size, but

it appears that most users prefer ease of programming
over performance.

Figure 4 shows spikes in the number of small read

requests aswell as in the data transferred by 1 MB

-requests : While the.s.p.i.kes of sma.ll requests occ.urred

thr6ughout the tracing period, one trace alone (prob-
ably one job alone) contributed tile spike at 1 MB. Al-

though the specifit position of the spikes is likely due"

to the effect of individual applications, we believe that
the preponderance of small request sizes is the natural

result of parallelization by distributing file data across

many processors, and would be found in other work-
loads using a similar file-system interface.

4.4 Sequentiality

A common characteristic of file workloads, partic-
ularly scientific workloads, is that files are accessed

sequentially [28, 1, 25]. To grasp the notion of "se-

quential" access in a parallel application, we define a

sequential request to be one that is at a higher file off-

set than the previous request from the same compute
node, and a consecutive request to be a sequential re-

quest that begins where the previous request ended:

Figures 5 and 6 show the amount of sequential and

consecutive access (on a per-node basis) to files with
more than one request in our workload.

The most notable features of these graphs are the
spikes at 0% and 100%; most flies were either en-

tirely sequential (or consecutive) or not at all. Not

surprisingly, access to read-write files was primarily

non-sequentiM. By far, most read-only and write-only

files were 100% sequential. Most (86%) write-only files
were 100% consecutive, but that was largely due to the

fact that most write-only files were written only by one

processor. Only 29% of read-only files, however, were

100% consecutive. The remainder (non-consecutive,

sequential read-only files) were the result of interleaved

access, where successive records of the fi!_eare accessed

by different nodes; from the perspective of an individ-

ual node, some bytes must be skipped between one
request and the next.

4.5. i/O-request intervals
-. .... , . "...

: W e define tlae number'of'bytes skipped' t0tse the
interval size. C6nsecutive accesses have interval size

0. The number of different intervkl sizes used in each

file, across all nodes that access that file, is shown in
Table 2. A surprising number of files were read or

written in one request per node (i.e., there were no

intervals). Over 99% of the 1-interval-size files were

consecutive accesses (i.e., the one interval size was 0).
The remainder of 1-interval-size files, along with the 2-
intervM-size files, represent 5% of all files, and indicate

another form of highly regular access pattern. Only

1.2% of all files had 3 or more different interval sizes,

and their regularity (if any) was more complex.

Table 2: The number of different interval sizes used in

each file across all participating nodes. Zero represents

those cases where only one access was made to a file, per
node.

Number of

different intervals

0

1

2

3

4+

Number Percent of

of files total files

23291 36.5

37148 58.2

2561 4.0

105 0.2

674 1.0
1

To get a better feel for this regularity, we also
counted the number of different request sizes used in

each file, as shown in Table 3. Over 90% of the files
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were accessed with only one or two request sizes. Com-

bining the regularity of request sizes with the regularity

of interval sizes, many applications clearly used reg-
ular, structured access patterns, presumably because
much of the data was in matrix form.

Table 3: The number of different request sizes used in

each file across all compute nodes. Files with zero differ-

ent sizes were opened and closed without being accessed.

Number of

different sizes

0

1
2

3

4+

Number

of files

2480

25523

32779

2510

487

Percent of

total fles

3.9

40.O

51.4

3.9

0.8

4.6 Synchronization

Given the regular request sizes and inl;erval sizes

shown in Tables 2 and 3, Intel's ':I/O modes" (see Sec- .

"tion. 2.4)" wduld seem to he"helpful. Our traces, show,'
however, that over 99%'of the files used mode 0; that

is, less than 1% used modes 1, 2, or 3. Tables 2 and 3

give 6ne._int as to why: although there were few dif-

ferent request sizes and interval sizes, there were often

more than one, something not easily supported by the

automatic file modes. It may also be that these modes

were slower than mode 0, so that programmers chose
not to use them.

4.7 Sharing

A file is shared if more than one job or process opens

it. It is concurrently shared if the opens overlap in

time. It is write-shared if one of the opens involves

writing tile file. In uniprocessor and distributed-system
workloads, concurrent sharing is known to be uncom-

mon, and concurrent write sharing rare [1]. In a paral-

lel file system, of course, concurrent file sharing among

processes within a job is presumably tile norm, while

concurrent file sharing between jobs is likely to be rare.

Indeed, in our traces we saw a great deal of file sharing

within jobs, and no concurrent file sharing between
jobs. The interesting question is how the individual

bytes and blocks of the files were shared. Figure 7

shows the percentage of files (which were concurrently

opened by multiple nodes) with varying amounts of

byte- and block-sharing. There was more sharing for
read-only files than for write-only or read-write files,

which is not surprising given the complexity of coor-

dinating write sharing. Indeed, 70% of read-only files

had 100% of their bytes shared, while 90% of write-
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0.2-

..........7" ..................................Wai_/;_ ......................

i Wr_e_ocks j

__ Read/Bytes

• Read/Blocks =_

0 20 40 60 80 100

Percent shared

Figure 7: CDF of file sharing between nodes in Read-

Only and Write-Only files at byte and block granularity

only files had no bytes shared at all. While a half of all

read-write files were 100% byte-shared, 93% of them

were 100% block-shared, which would stre_ a cache

consistency protocol, if present. Overall, the amount

of block sharing implies strong inlerprocess spktial lo-

cality, and suggests that caching may be "successful.

4.8 Cachin'g. . ...

Buffering and caching are common.in traditional file

systems, and with the right policies can be successful in

multiprocessor file systems. One advantage of buffers is

to combine several small requests (which were common
in this workload) into a few larger requests that can be

more efficiently served by disk hardware. Indeed, with

RAID disk arrays commonly seen on today's multipro-

cessors (such as the Intel Paragon and the KSI_-2) it is

even more important to avoid small requests at the disk

level. Fortunately, the small requests seen in Figure 4,
when coupled with small interval size, lead to spatial

locality. Other potential benefits may come from tem-

poral or interprocess locality in the access pattern.

In a distributed-memory machine, it is possible to

place a buffer cache at the compute nodes, at the
I/O nodes, or both. We evaluated all three with trace-
driven simulation.

Compute-node caching: The amount of block

sharing in write-only and read-write files show that

any attempt to maintain write-buffers at tile compute

nodes would necessitate a cache consistency protocol,

so we restricted our effort to read-only files. Tile results

of a simple trace-driven simulation of a compute-node

cache of 4 KB (one block), read-only buffers with LIeU

replacement are shown in Figure 8. We consider a hit

to be any request that was fidly satisfied from the local

buffer (i.e., with no request sent to an I/O node).

Caching success, as indicated by a high hit rate, was

limited to a subset of the jobs: 40% of the jobs had a
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Figure 8: Results of compute-node caching simulation.

Hit rates differed from job to job, with three distinct

clumps, indicating that the cache either helped or did
not. One buffer was as good as many buffers.
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I Figure g: Results of I/O-node caching simulation. Eachi

line represents a complete run of the simulation with a

fixed number of I/O nodes ranging from I to 20.

greater than 75% hit rate, but 30% of the jobs had a
0% hit rate. Further, for those jobs where a cache was

beneficial, a single one-block buffer per compute node
was usually sufficient. A single buffer could maintain

a high hit rate in patterns with a small request size

(which was common; see Figure 4) and a short (per-

haps zero) interval size. Clearly there was spatial lo-

cality in our workload, and not much temporal locality,

or multiple buffers would have helped more (multiple
buffers were useful in a very few jobs, apparently those

which were interspersing reads from more than one file.

In those cases a single buffer per file would have been

appropriate). In short, it appears that a one-block

buffer per compute node, per fie, may be useful for

read-only files, but a careful performance analysis is
still necessary•

I/O-node caching: Given the apparent interprocess
locality, I/O-node caching should be successful. To

find out, we ran a trace-driven simulation of I/O-node

caches, with 4-KB buffers managed by either a LRU

or FIFO replacement policy. These I/O-node caches

served all compute nodes, all files, and all jobs, ac-

cording to our best guess of the event ordering within
our traces as described in Section 3. We assumed the

file was striped in a round-robin fashion at a one-block

granularity. No compute-node cache was used. Fig-
ure 9 shows the results of the simulation. With LP_U

replacement, a small cache (4000 4-KB buffers over all
I/O nodes) was sufficient to reach a 90% hit rate. With

FIFO replacement, nearly 20000 buffers were needed

to obtain a 90% hit rate, because FIFO does not give
preference to blocks with high locality. It made little

difference whether the buffers were focused on a few

I/O nodes or spread over many I/O nodes (that is,
the hit rates were similar; performance is another is-

sue). The success of such a small cache, coupled with

the apparent lack of intraprocess locality in m-any jobs

(Figure 8), reconfirms the presence of interprocess spa-
tial locality.

As a final test, we .simulated the combination of a
single buffer.per compute node and a cactm at each of.

10 I/O nodes." Tile resui't was a'only a 3% reductiofi

in the I/O node hit rate when each I/O node had a

small cache of 50 buffers. This further suggests that •
most of the hits in the I/O node cache were indeed

a result of interprocess locality- because, as Figure 8
shows, the limited intraprocess locality was filtered out
by the compute-node cache.

Note the contrast with Miller and Katz's tracing

study [25], which found little benefit from caching.
(They did notice a benefit from prefetching and write-

behind.) Both their workload and ours involve sequen-
tial access patterns; the difference is that the small

requests in our access pattern lead to inl, raprocess spa-

tial locality, and the distribution of a sequential pat-

tern across parallel compute nodes leads to interpro-
cess spatial locality, both of which could be successfully
captured by caching.

5 Conclusions and recommendations

Although this workload had many characteristics in

common with those in previous studies of scientific ap-

plications and file systetns (large file sizes, sequential

access, little inter-job concurrent sharing), parallelism
had a significant effecl, on some workload characteris-

tics (smallei request sizes, and lots of intra-job con-
current file sharing) and added some new character-

istics (non-consecutive seqt, etltial access and interpro-
cess spatial locality)• A multiprocessor used for scien-

tific applications will not be well served by a file system
ported from a distributed system, which was tuned for

a different set of workloa_t characteristics. In partic-
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ular, parallelism leads to new, interleaved access pat-

terns with no temporal locality, and high interprocess

spatial locality at the I/O node.

Compute-node caches are probably best imple-

mented as a single buffer per file (but only if care-

fully managed for consistency). I/O-node caches can

effectively combine small requests from many compute

nodes, avoiding extraneous disk I/O and raising the po-

tential for large disk I/Os, a significant benefit when

the I/O nodes serve RAIDs (which favor large trans-

fers) rather than individual disks. Replacement poli-

cies other than LRU or FIFO should be developed (e.g.,

[19]), to optimize for interprocess locality rather than

traditional spatial and temporal locality.

Ultimately, we believe that the file-system interface

must change. The current interface forces the program-

mer to break down large parallel I/0 activities into

small, non-contiguous requests. While compute-node

and I/O-node caching can help, it would be better to

support strided I/O requests from the programmer's

"interface to the compute "node, and from the compute

node to thei!/O node.'A stfidffd iequest can express a

regular requhsi; and'intervalsize (Wt;ich were common •

in our workload), effectively increasing the request size,

lowering overhead, and perhaps eliminating the need

for compute-node buffers. Strided requests are avail-

able in some file-system interfaces [5, 9, 17]. For some

applications, collective I/O requests can lead to even

better performance [18].

Dependence on Intel CFS. We caution that some

of our results may be specific to workloads on Intel CFS

file systems, or to NASA Ames's workload (computa-

tional fluid dynamics). Although the exact numbers

are workload-specific, we believe that the conclusions

above are applicable to scientific workloads running on

loosely-coupled MIMD multiprocessors with a CFS-like

interface, that is, an interface which encourages inter-

leaved access and an independent file pointer for each

node. This category includes many current multipro-

cessors.
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