Syracuse University

SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1994

Interpreting the Performance of HPF/Fortran 90D

Manish Parashar
Syracuse University, Northeast Parallel Architectures Center, parashar@npac.syr.edu

Salim Hariri
Syracuse University

Tomasz Haupt
Syracuse University, haupt@npac.syr.edu

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: https://surface.syr.edu/npac

6‘ Part of the Computer Sciences Commons

Recommended Citation

Parashar, Manish; Hariri, Salim; Haupt, Tomasz; and Fox, Geoffrey C., "Interpreting the Performance of
HPF/Fortran 90D" (1994). Northeast Parallel Architecture Center. 2.

https://surface.syr.edu/npac/2

This Working Paper is brought to you for free and open access by the College of Engineering and Computer
Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/2?utm_source=surface.syr.edu%2Fnpac%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Interpreting the Performance of HPF /Fortran 90D

Manish Parashar, Salim Hariri, Tomasz Haupt, and Geoffrey C. Fox
Northeast Parallel Architectures Center
Syracuse University

Syracuse, NY 13244-4100
{parashar,hariri,haupt,gcf}@npac.syr.edu

To be presented at

Supercomputing ‘94, Washington DC

Abstract

In this paper we present a novel interpretive ap-
proach for accurate and cost-effective performance pre-
diction wm a high performance computing environ-
ment, and describe the design of a source-driven
HPF/Fortran 90D performance prediction framework
based on this approach. The performance predic-
tion framework has been implemented as part of a
HPF/Fortran 90D applicalion development environ-
ment. A set of benchmarking kernels and application
codes are used to validate the accuracy, utility, usabil-
ity, and cost-cffectiveness of the performance predic-
tion framework. The use of the framework for select-
g appropriate compiler directives and for application
performance debugging is demonstrated.

Keywords: Performance prediction, HPF/Fortran
90D application development, System & Application
characterization.

1 Introduction

Although currently available High Performance
Computing (HPC) systems possess large computing
capabilities, few existing applications are able to fully
exploit this potential. The fact remains that the devel-
opment of efficient application software capable of ex-
ploiting available computing potentials 1s non-trivial
and 1s largely governed by the availability of suffi-
ciently high-level languages, tools, and application de-
velopment environments.

A key factor contributing to the complexity of par-
allel /distributed software development is the increased
degrees of freedom that have to be resolved and tuned
in such an environment. Typically, during the course
of parallel/distributed software development, the de-
veloper is required to select between available algo-
rithms for the particular application; between possible

hardware configuration and amongst possible decom-
positions of the problem onto the selected hardware
configuration; between different communication and
synchronization strategies; and so on. The set of rea-
sonable alternatives that have to be evaluated is very
large and selecting the best alternative among these
is a formidable task. Consequently, evaluation tools
form a critical part of any software development envi-
ronment.

In this paper we present a novel interpretive ap-
proach for accurate and cost-effective performance
prediction in a high performance computing envi-
ronment, and describe the design of a source-driven
HPF!/Fortran 90D performance prediction framework
based on this approach. The interpretive approach
defines a comprehensive characterization methodology
which abstracts system and application components of
the HPC environment. Interpretation techniques are
then used to interpret performance of the abstracted
application in terms of parameters exported by the ab-
stracted system. System abstraction is performed off-
line through a hierarchical decomposition of the com-
puting system. Application abstraction is achieved
automatically at compile time. The performance pre-
diction framework has been implemented as a part of
the HPF/Fortran 90D application development envi-
ronment [1] developed at the Northeast Parallel Ar-
chitectures Center (NPAC), Syracuse University. The
environment integrates a HPF/Fortran 90D compiler,
a functional interpreter and the source based perfor-
mance prediction tool; and is supported by a graphi-
cal user interface. The current implementation of the
environment framework is targeted to the iPSC/860
hypercube multicomputer system.

A set of benchmarking kernels and application

1High Performance Fortran

3.1 Systems Module

The systems module abstracts a HPC system by
hierarchically decomposing it to form a rooted tree
structure called the System Abstraction Graph (SAG).
Each node of the SAG is a System Abstraction Unit
(SAU) which abstracts a part of the HPC system
into a set of parameters representing its performance.
A SAU is composed of 4 components: (1) Process-
ing Component (P), (2) Memory Component (M), (3)
Communication/Synchronization Component (C/S),
and (4) Input/Output Component (I/O); each com-
ponent parameterizing relevant characteristics of the
associated system unit.

3.2 Application Module

Application abstraction is performed in two step:
Machine independent application abstraction is per-
formed by recursively characterizing the applica-
tion description into Application Abstraction Units
(AAU’s). Each AAU represents a standard program-
ming construct (such as iterative, conditional, sequen-
tial) or a communication/synchronization operation,
and parameterizes its behavior. AAU’s are combined
to abstract the control structure of the application,
forming the Application Abstraction Graph (AAG).
The communication/synchronization structure of the
application is superimposed onto the AAG by aug-
menting the graph with a set of edges correspond-
ing to the communications or synchronization between
AAU’s. The resulting structure is the Synchronized
Application Abstraction Graph (SAAG). The second
step consists of machine specific augmentation and is
performed by the machine specific filter. This step in-
corporates machine specific information (such as intro-
duced compiler transformations/optimizations) into
the SAAG based on a mapping defined by the user.

3.3 Interpretation Engine

The interpretation engine consists of two compo-
nents; an interpretation function that interprets the
performance of an individual AAU, and an interpreta-
tion algorithm that recursively applies the interpreta-
tion function to the SAAG to predict the performance
of the corresponding application. An interpretation
function is defined for each AAU type to compute its
performance in terms of parameters exported by the
associated SAU. Models and heuristics are defined to
handle accesses to the memory hierarchy, overlap be-
tween computation and communication, and user ex-
perimentation with system and run-time parameters.
Details of these models and the complete set of inter-
pretation functions can be found in [4].

3.4 Output Module

The output module provides an interactive inter-
face through which the user can access estimated per-
formance statistics. The user has the option of select-
ing the type of information, and the level at which
the information is to be displayed. Available informa-
tion includes cumulative execution times, the commu-
nication time/computation time breakup and existing
overheads and wait times. This information can be
obtained for an individual AAU, cumulatively for a
branch of the AAG (i.e. sub-AAQG), or for the entire
AAG.

4 Design of the HPF /Fortran 90D Per-
formance Prediction Framework

The HPF/Fortran 90D performance prediction
framework is based on the HPF source-to-source com-
piler technology [5] which translates HPF into loosely
synchronous, SPMD? Fortran 77 4+ Message-Passing
codes. It uses this technology in conjunction with the
performance interpretation model to provide perfor-
mance estimates for HPF/Fortran 90D applications
on a distributed memory MIMD multicomputer. Per-
formance prediction is performed in two phases as de-
scribed below:

4.1 Phase 1 - Compilation

The compilation phase is based on the HPF/-
Fortran 90D compiler. Given a syntactically correct
HPF /Fortran 90D program, this phase performs the
following steps:

1. The first step parses the program to generate
a parse tree. Array assignment statement and
where statement are transformed into equivalent
forall statements with no loss of information.

2. The partitioning step processes the compiler di-
rectives and using these directives, it partitions
the data and computation among the processors.

3. The sequentialization step is responsible for con-
verting parallel constructs in the node program
into loops or nested loops.

4. The communication detection step detects com-
munication requirements and inserts appropriate
communication calls.

5. In the final step, a loosely synchronous SPMD
program structure is generated consisting of al-
ternating phases of local computation and global
communication.

3Single Program, Multiple Data

4.2 Phase 2 - Interpretation

Phase 2 1s implemented as a sequence of parses:
(1) The abstraction parse generates the application
abstraction graph (AAG) and synchronized applica-
tion abstraction graph (SAAG). (2) The interpreta-
tion parse performs the actual interpretation using the
interpretation algorithm. (3) The output parse gener-
ates the required performance metrics.

Abstraction Parse: The abstraction parse inter-
cepts the SPMD program structure produced in phase
1 and abstracts its execution and communication
structures to generate the corresponding AAG and
SAAG (as defined in Section 3). A communication
table is generated to store the specifications and sta-
tus of each communication/synchronization.

The abstraction parse also identifies all critical vari-
ables in the application description; a critical vari-
able being defined as a variable whose value effects
the flow of execution, e.g. a loop limit. The criti-
cal variables are then resolved either by tracing their
definition paths or by allowing the user to explicitly
specify their values.

Interpretation Parse: The interpretation parse
performs the actual performance interpretation us-
ing the interpretation algorithm. For each AAU in
the SAAG, the corresponding interpretation function
is used to generate the performance measure associ-
ated with 1t. Performance metrics maintained at each
AAU are its computation, communication and over-
heads times,; and the value of the global clock. In ad-
dition, cumulative metrics are also maintained for the
entire SAAG.The interpretation parse has provisions
to take into consideration a set of compiler optimiza-
tions (for the generated Fortran 77 + MP code) such
as loop re-ordering, etc. These can be turned on/off
by the user.

Output Parse The final parse communicates esti-
mated performance metrics to the user. The output
interface provides three types of outputs. The first
type is a generic performance profile of the entire ap-
plication broken up into its communication, computa-
tion and overhead components. Similar measures for
each individual AAU and for sub-graphs of the AAG
are also available. The second form of output allows
the user to query the system for the metrics associated
with a particular line (or a set of lines) of the appli-
cation description. Finally, the system can generate
an interpretation trace which can be used as input to
the ParaGraph [6] visualization package. The user can

then use the capabilities provided by the package to
analyze the performance of the application.

4.3 Abstraction & Interpretation HPF/-
Fortran 90D Parallel Constructs

The abstraction/interpretation of the HPF /Fortran
90D parallel constructs 1.e. forall, array assignments,
and where is described below:

forall Statement: The forall statement generalizes
array assignments to handle new shapes of arrays by
specifying them in terms of array elements or sections.
The element array may be masked with a scalar log-
ical expression. Its semantics are an assignment to
each element or section (for which the mask expres-
sion evaluates true) with all the right-hand sides be-
ing evaluated before any left-hand sides are assigned.
The order of iteration over the elements is not fixed.
Examples of its use are:

Forall (I=1:N,J=1:N)P(I,J) = Q(I—1,7—1)

Forall (I=1:N,Q(I).NE.0.0) P(I) = 1.0/Q(I)

Phase 1 translates the forall statement into a three
level structure consisting of a collective communica-
tion level, a local computation level and another col-
lective communication level, to be executed by each
processor. The processor that is assigned an itera-
tion of the forall loop is responsible for computing
the right-hand-side expression of the assignment state-
ment, while the processors that owns an array ele-
ment used in the left-hand side or right-hand side of
the assignment statement must communicate that el-
ement to the processor performing the computation.
Consequently, the first communication level fetches
off-processor data required by the computation level.
Once this data has been gathered, computations are
local. The final communication level writes calculated
values to off-processors.

Phase 2 then generates a corresponding sub-AAG
using the application abstraction model. The commu-
nication level translates into a sequential (Seq(AAU
corresponding to index translations and message pack-
ing performed, and a communication (Comm) AAU.
The computation level generates an iterative (IterD)
AAU which may contain a conditional (CondtD) AAU
(depending on whether a mask is specified). The ab-
straction of the forall statement is shown in Figure 2.
In this example, the final communication phase is not
required as no off-processor data needs to be written.

Array Assignment Statements: HPF/Fortran
90D array assignment statements allow entire ar-
rays (or array sections) to be manipulated atomically,

ADJUST_BOUNDS()
PACK_PARAMETERS))

forall (K=2:N-LV (K) .GT. 0)

—

X (K+1) = X (K) + X(K-1) Phase 1

GATHER_DATA (G)

DO K = LocalLB,LocalUB
IF (V (K) .GT. 0) THEN

X (K+1) =X (K) + G (K)
END IF

END DO

—

Phase 2

Figure 2: Abstraction of the forall Statement

thereby enhancing the clarity and conciseness of the
program and making parallelism explicit. Array as-
signments are special cases of the forall statement and
are abstracted by first translating them into equiva-
lent forall statements. The resultant forall statement
is then interpreted as described above.

where Statement: Like the array assignment
statement, the HPF/Fortran 90D where statement is
also a special case of the forall statement and is han-
dled in a similar way.

4.4 Abstraction of the iPSC/860 System

Abstraction of the iPSC/860 hypercube system
to generate the corresponding SAG was performed
off-line using a combination of assembly instruction
counts, measured timings, and system specifications.
The processing and memory components were gener-
ated using system specification provided by the ven-
dor, while iterative and conditional overheads were
computed using instruction counts. The communica-
tion component was parameterized using benchmark-
ing runs. These parameters abstracted both low-level
primitives as well as the high-level collective commu-
nication library used by the compiler. Benchmarking
runs were also used to parameterize the HPF paral-
lel intrinsic library. The intrinsics included circular
shift (eshift), shift to temporary (tshift), global sum
operation (sum), global product operation (product),
and the mazloc operation which returns the location of
the maximum in a distribute array. Characterization
of the SRM (host) and the communication channel
connecting the SRM to 1860 cube was performed in a
similar manner.

5 Validation/Evaluation of the Inter-
pretation Framework

In this section we present numerical results ob-
tained using the current implementation of the
HPF /Fortran 90D performance prediction framework.
In addition to validating the viability of the interpre-
tive approach, this section has the following objec-
tives:

1. To validate the accuracy of the performance pre-
diction framework for applications on a high per-
formance computing system. The aim is to show
that the predicted performance metrics are accu-
rate enough to provide realistic information about
the application performance and to be used as a
basis for design tuning.

2. To demonstrate the utility of the framework and
the metrics generated for efficient HPC applica-
tion development. The results presented illus-
trate the framework’s utility for: (1) Application
design and directive selection; and (2) Applica-
tion performance debugging.

3. To demonstrate the usability (ease of use) of
the performance interpretation framework and its
cost-effectiveness.

The high performance computing system used is
an iPSC/860 hypercube connected to a 80386 based
host processor. The particular configuration of the
iPSC/860 consists of 8 1860 nodes. Each node has a
4 KByte instruction cache, 8 KByte data cache and
8 MBytes of main memory. The node operates at a
clock speed of 40 MHz and has a theoretical peak per-
formance of 80 MFlop/s for single precision and 40
MFlop/s for double precision. The validation applica-
tion set was selected from the NPAC HPF/Fortran

H Name ‘ Description H

Livermore Fortran Kernels (LFK)

LFK 1 Hydro Fragment

LFK 2 ICCG Excerpt (Incomplete Cholesky; Conj. Grad.)
LFK 3 Inner Product

LFK 9 Integrate Predictors

LFK 14 | 1-D PIC (Particle In Cell)

LFK 22 | Planckian Distribution

Purdue Benchmarking Set (PBS)

PBS 1 Trapezoidal rule estimate of an integral of f(x)

PBS 2 Compute e* = Zn: ﬁ (1 + m)
i=15=1

=
3

PBS 3 Compute S = a;y
i=15=1
PBS 4 Compute R = Z ZL
=1
PI Approximation of # by calculating the area

under the curve using the n-point quadrature rule

N-Body Newtonlan gravitational n-body simulation
Finance | Parallel stock option pricing model
Laplace Laplace solver based on Jacobi iterations

Table 1: Validation Application Set

90D Benchmark Suite [7]. The suite consists of a
set of benchmarking kernels and “real-life” applica-
tions and is designed to evaluate the efficiency of
the HPF /Fortran 90D compiler and specifically, auto-
matic partitioning schemes. The selected application
set includes kernels from standard benchmark sets like
the Livermore Fortran Kernels and the Purdue Bench-
mark Set, as well as real computational problems. The
applications are listed in Table 1.

5.1 Validating Accuracy of the Frame-
work

Accuracy of the performance prediction framework
is validated by comparing estimated execution times
with actual measured times. For each application, the
experiment consisted of varying the problem size and
number of processing elements used. Measured tim-
ings represent an average of 1000 runs. The results
are summarized in Table 2. Error values listed are
percentages of the measured time and represent max-
imum/minimum absolute errors over all problem sizes
and system sizes. For example, the N-Body compu-
tation was performed for 16 to 4094 bodies on 1, 2,
4, and 8 nodes of the iPSC/860. The minimum ab-
solute error between estimated and measured times
was 0.09% of the measured time while the maximum
absolute error was 5.9%.

The obtained results show that in the worst case,
the interpreted performance is within 20% of the mea-
sured value, the best case error being less than 0.001%.

The larger errors are produced by the benchmark ker-
nels which have been specifically coded to task the
compiler. Further, it was found that the interpreted
performance typically lies within the variance of the
measured times over the 1000 iterations. This indi-
cates that the main contributors to the error are the
tolerance of the timing routines and fluctuations in the
system load. Predicted metrics typically serve either
as the first-cut performance estimate of an applica-
tion or as a relative performance measure to be used
as a basis for design tuning. In either case, the inter-
preted performance is accurate enough to provide the
required information.

5.2 Validating Utility of the Framework

The utility of the performance prediction frame-
work is validated through the following experiments;
(1) selecting the appropriate HPF /Fortran 90D direc-
tives based on the predicted performance, and (2) us-
ing the tool to analyze different components of the
execution time and their distributions with respect to
the application. These experiments are described be-
low:

5.2.1 Appropriate Directive Selection

To demonstrate the utility of the interpretive frame-
work in selecting HPF compiler directives we compare
the performance of the Laplace solver for 3 different
distributions (DISTRIBUTE directive) of the tem-
plate, namely (BLOCK,BLOCK), (BLOCK,X) and
(X,BLOCK), and corresponding alignments (ALIGN
directive) of the data elements to the template. These
three distributions (on 4 processors) are shown in Fig-
ure 3. Figures 4 & 5 compare the performance of
each of the three cases for different system sizes us-
ing both, measured times and estimated times. These
graphs can be used to select the best directives for a
particular problem size and system configuration. For
the Laplace solver, the (Block,X) distribution is the
appropriate choice. Further, since the maximum ab-
solute error between estimated and measured times
is less than 1%, directive selection can be accurately
performed using the interpretive framework. Using
the interpretive framework is also significantly more
cost-effective as will be demonstrated in Section 5.3.
In the above experiment, performance interpreta-
tion was source driven and can be automated. This
exposes the utility of the framework as a basis for an
intelligent compiler capable of selecting appropriate
directives and data decompositions. Similarly, it can
also enable such a compiler to select code optimiza-
tions such as the granularity of the computation phase

Name Problem Sizes System Size Min Abs Error Max Abs Error
H (data elements) (# procs) (%) (%) ‘
LFK 1 128~ 4096 1-8 1.3% 10.2%
LFK 2 128~ 4096 1-8 25% 18.6%
LFK 3 128 - 4096 1-8 0.7% 7.2%
LFK 9 128~ 4096 1-8 0.3% 13.7%
LFK 14 128~ 4096 1-8 0.3% 13.8%
LFK 22 128~ 4096 1-8 1.4% 3.9%
PBS 1 128 - 4096 1-8 0.05% 7.9%
PBS 2 256 - 65536 1-8 0.6% 6.7%
PBS 3 256 - 65536 1-8 0.8% 95%
PBS 4 128~ 4096 1-8 0.2% 3.9%
PI 128~ 4096 1-8 0.00% 5.9%
N-Body 16 - 4096 1-8 0.09% 5.9%
Financial 32- 512 1-8 1.1% 1.6%
Laplace (Blk-Blk) 16 - 256 1-8 0.2% 4.4%
Laplace (BIk-X) 16 - 256 1-8 0.6% 4.9%
Laplace (X-BIk) 16 - 256 1-8 0.1% 2.8%

Table 2: Accuracy of the Performance Prediction Framework

per communication phase in the loosely synchronous
computation model.

P1
P1 P3
P2
P3
P2 P4
P4
(Block,Block) (Block,*)

P1|P2 |P3|P4

(*,Block)
Figure 3: Laplace Solver - Data Distributions

5.2.2 Application Performance Debugging

The performance metrics generated by the framework
can be used to analyze the performance contribution
of different parts of the application description and
to 1dentify bottlenecks. A performance profile for the
phases (Figure 6) of the parallel stock option pricing
application is shown in Figure 7. Phase 1 creates the
(distributed) option price lattice while Phase 2, which
requires no communication, computes the call prices
of stock options.

Application performance debugging using conven-

tional means involves instrumentation, execution and
data collection, and post-processing this data. Fur-
ther, this process requires a running application and
has to be repeated to evaluate each design modifica-
tion. Using the interpretive framework, this informa-
tion (at all levels required) is available during appli-
cation development (without requiring a running ap-
plication).

5.3 Validating Usability of the Frame-
work

The interpreted performance estimates for the ex-
periments described above were obtained using the
interpretive framework running on a Sparcstation
14+. The framework provides a friendly menu-driven,
graphical user interface to work with and requires no
special hardware other than a conventional worksta-
tion and a windowing environment. Application char-
acterization is performed automatically (unlike most
approaches) while system abstraction is performed off-
line and only once. Application parameters and direc-
tives were varied from within the interface itself. Typ-
ical experimentation on the iPSC/860 (to obtained
measured execution times) consisted of editing code,
compiling and linking using a cross compiler (compil-
ing on the front end is not allowed to reduce its load),
transferring the executable to the iPSC/860 front end,
loading it onto the 1860 node and then finally run-
ning it. The process had to be repeated for each
instance of each experiment. Relative experimenta-
tion times for different implementation of the Laplace
Solver (Section 5.2.1) using measurements and the
performance interpreter are shown in Figure 8. Exper-
imentation using the interpretive approach required

Laplace Solver

A~——a Estimated (Blk,BIk) - 2x2 Proc Grid
4 - —-a Measured (Blk,BIk) - 2x2 Proc Grid
=——=a Estimated (BIk,*) - 4 Procs
= - —-m Measured (BIk,*) - 4 Procs
e —e Estimated (*,BIk) - 4 Procs
0.3 - | @ -—® Measured (*,BIk) - 4 Procs

0.2 b

Execution Time (sec)

0.0

L L L
o} 64 128 192 256

Problem Size
Figure 4: Laplace Solver (4 Procs) - Esti-

mated/Measured Times

approximately 10 minutes for each of the three im-
plementation. Experimentation using measurements
however took a minimum 27 minutes (for the (Blk,*)
implementation) and required almost 1 hour for the
(*,Blk) case. Clearly, the measurements approach is
not feasible, specially when a large number of options
have to be evaluated. Further, the iPSC/860, being an
expensive resource, is shared by various development
groups in the organization. Consequently, its usage
can be restrictive and the required configuration may
not be immediately available. The comparison above
validates the convenience and cost-effectiveness of the
framework for experimentation during application de-
velopment.

6 Related Work

Existing performance prediction approaches and
models for multicomputer systems can be broadly clas-
sified as analytic, simulation, monitoring or hybrid
(which make use of a combination of the above tech-
niques along with possible heuristics and approxima-
tions)

Analytic techniques use mathematical models to
abstract the system and application, and solve these
models to obtain performance metrics. A general ap-
proach for analytic performance prediction for shared
memory systems has been proposed by Siewiorek et
al. in [8] while probabilistic models for parallel pro-
grams based on queueing theory have been presented
in [9]. The above approaches require users to explic-
itly model the application along with the HPC system.

Laplace Solver

A~——a Estimated (Blk,BIk) - 2x4 Proc Grid
4 - —-a Measured (Blk,BIk) - 2x4 Proc Grid
=——=a Estimated (BIk,*) - 8 Procs
= - —-m Measured (BIk,*) - 8 Procs
e —e Estimated (*,BIk) - 8 Procs
0.3 - | @ -—® Measured (*,BIk) - 8 Procs

Execution Time (sec)
o
N

0.1
0.0 . L L
o] 64 128 192 256
Problem Size
Figure 5: Laplace Solver (8 Procs) - Esti-

mated/Measured Times

Laplace Solver
60

I:l Interpreter

[iPrscrseo

40 B

20 - —

Experimentation Time (min)

(BIk,BIk) (BIk,*) (*,BIK)
Implementation

Figure 8: Experimentation Time - Laplace Solver

A source based analytic performance prediction model
for Dataparallel C has been developed by Clement et
al [10]. The approach uses the a set of assumptions
and specific characteristics of the language to develop
a speedup equation for applications in terms of system
costs.

Simulation techniques simulate the hardware and
the actual execution of a program on that hardware.
These techniques are typically expensive in terms of
the time and computing resource required. A sim-
ulation based approach is used in the SiGLe system
(Simulator at Global Level) [11] which provides spe-

Phase 1

Create Stock
Price Lattice

(shift)

Phase 2

Compute Call

Price

Figure 6: Financial Model - Application Phases

cial description languages to describe the architecture,
application and the mapping of the application onto
the architecture.

The PPPT system [12] uses monitoring techniques
to profile the execution of the application program
on a single processor. Obtained information is then
used by the static parameter based performance pre-
diction tool to estimate performance information for
the parallelized (SPMD) application program on a
distributed memory system. A similar evaluation
approach based on instrumentation, data collection
and post-processing has been proposed by Darema et
al. [13]. Balasundaram et al. [14] use ‘training rou-
tines” to benchmark the performance of the architec-
ture and then use this information to evaluate different
data decompositions.

A hybrid approach is presented in [15] where the
runtime of each node of a stochastic graph represent-
ing the application is modeled as a random variable.
The distributions of these random variables are then
obtained using hardware monitoring.

The layered approach presented in [16] uses a
methodology based on application and system charac-
terization. The developer 1s required to characterize
the application as an execution graph and define its
resource requirements in this system.

7 Conclusions and Future Work

Evaluation tools form a critical part of any software
development environment as they enable the devel-
oper to evaluate the different design choices available

Stock Option Pricing
Procs = 4; Size = 256

:| Comp Time
15000 - \:l Comm Time 4

[ovhd Time

10000 - B

Time (usec)

5000 b

Phase 1 Phase 2
Application Phases

Figure 7: Financial Model - Interpreted Performance

Profile

at various stages of application development, and to
make the most appropriate selection.

In this paper, we described a novel interpretive
approach for accurate and cost-effective performance
prediction on high performance computing systems. A
comprehensive characterization methodology is used
to abstract the system and application components of
the HPC environment into a set of well defined pa-
rameters. An interpreter engine then interprets the
performance of the abstracted application in terms of
the parameters exported by the abstracted system. A
source-driven HPF /Fortran 90D performance predic-
tion framework based on the interpretive approach has
been implemented as part of the HPF/Fortran 90D
integrated application development environment. The
current implementation of the environment framework
is targeted to the iPSC/860 hypercube system.

Numerical results using benchmarking kernels and
application codes from the NPAC HPF/Fortran 90D
Benchmark Suite, were presented to validate the ac-
curacy, utility, and usability of the performance pre-
diction framework. The use of the framework for se-
lecting appropriate compiler directives, and for appli-
cation performance debugging was demonstrated.

We are currently working on developing an intelli-
gent HPF /Fortran 90D compiler based on the source
based interpretation model. This tool will enable
the compiler to automatically evaluate directives and
transformation choices and optimize the application at
compile time. Future development of the framework
will involve moving it to high performance distributed
computing systems and exploiting its potential as a

system design evaluation tool.

Acknowledgment

The presented research has been jointly sponsored
by DARPA under contract #DABT63-91-k-0005 and
by Rome Labs under contract #F30602-92-C-0150.

The content of the information does not necessary re-

flect the position or the policy of the sponsors and no
official endorsement should be inferred.

References

(1]

Manish Parashar, Salim Hariri, Tomasz Haupt, and
Geoffrey C. Fox, “Design of An Interpretive Toolkit
for HPF/Fortran 90D Application Development”,
Technical report, Northeast Parallel Architectures
Center, Syracuse University, Syracuse NY 13244-
4100, Apr. 1994.

High Performance Fortran Forum, High Performance
Fortran Language Specifications, Version 1.0, Jan.
1993, Also available as Technical Report CRPC-
TR92225 from Center for Research on Parallel Com-
puting, Rice University, Houston, TX 77251-1892.

Geoffrey C. Fox, Seema Hiranandani, Ken Kennedy,
Charles Koebel, Uli Kremer, Chau-Wen Tseng, and
Min-You Wu, “Fortran D Language Specifications”,
Technical Report SCCS 42c¢, Northeast Parallel Ar-
chitectures Center, Syracuse University, Syracuse NY
13244-4100, Dec. 1990.

Manish Parashar, Salim Hariri, Tomasz Haupt, and
Geoffrey C. Fox, “An Interpretive Framework for Ap-
plication Performance Prediction”, Technical Report
SCCS-479, Northeast Parallel Architectures Center,
Syracuse University, Syracuse NY 13244-4100, Apr.
1993.

Zeki Bozkus, Alok Choudhary, Geoffrey Fox, Tomasz
Haupt, and Sanjay Ranka, “Compiling HPF for Dis-
tributed Memory MIMD Computers”, in David Lilja
and Peter Bird, editors, Impact of Compilation Tech-
nology on Computer Architecture. Kluwer Academic
Publishers, 1993.

J. A. Etheridge M. Heath, “Paragraph”, Technical
report, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, Oct 1991.

A. Gaber Mohamed, Geoffrey C. Fox, Gregor von
Laszewski, Manish Parashar, Tomasz Haupt, Kim
Mills, Ying-Hua Lu, Neng-Tan Lin, and Nang kang
Yeh, “Application Benchmark Set for Fortran-D
and High Performance Fortran”, Technical Report
SCCS-327, Northeast Parallel Architectures Center,
Syracuse University, Syracuse, NY 13244-4100., June
1992.

Dalibor F. Vrsalovic, Daniel P. Siewiorek, Zary Z.
Segall, and Edward F. Gehringer,

“Performance

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Prediction and Calibration for a Class of Multi-
processors”, IEEE Transactions on Computers,
37(11):135371365, Nov. 1988.

A. Kapelnikov, R. R. Muntz, and M. D. Ercegovac,
“A Methodology for Performance Analysis of Paral-
lel Computations with Looping Constructs”, Journal
of Parallel and Distributed Computing, 14:105-120,
1992.

Mark J. Clement and Micheal J. Quinn, “Analytic
Performance Prediction on Multicomputers”, Techni-
cal report, Department of Computer Science, Oregon
State University, Mar. 1993.

F. Andre and A. Joubert, “SiGLe:
Tool for Distributed Systems”, Proceedings of the

International Conference on Distributed Computing
Systems, pp. 466-472, 1987.

An Evaluation

Thomas Fahringer and Hans P. Zima, “A Static Pa-
rameter based Performance Prediction Tool for Par-
allel Programs”, Proceedings of the T ACM Inter-
national Conference on Supercomputing, Japan, July
1993.

Frederica Darema, “Parallel Applications Perfor-
mance Methodology”, in Margaret Simmons, Rebecca
Koskela, and Ingrid Bucher, editors, Instrumentation
for Future Parallel Computing Systems, chapter 3, pp.
49-57. Addison-Wesley Publishing Company, 1988.

Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy,
and Ulrich Kremer, “A Static Performance Estimator
in the Fortran D Programming System”, in Joel Saltz
and Piyush Mehrotra, editors, Languages, Compilers
and Run-Time Environments for Distributed Memory
Machines, pp. 119-138. Elsevier Science Publishers
B.V., 1992.

Franz Sotz, “A Method for Performance Prediction
of Parallel Programs”, in H. Burkhart, editor, Joint
International Conference on Vector and Parallel Pro-
cessing, Proceedings, Zurich, Switzerland, pp. 98-107.
Springer, Berlin, LNCS 457, Sep. 1990.

E. Papaefstathiou, D. J. Kerbyson, and G. R. Nudd,
“A Layered Approach to Parallel Software Perfor-
mance Prediction: A Case Study”, Massively Par-
allel Processing Applications and Development, Delft,
1994.

	Interpreting the Performance of HPF/Fortran 90D
	Recommended Citation

	tmp.1285252205.pdf._ypaw

