Theory and Practice of Bloom Filters for
Distributed Systems

Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspet

Abstract— Many network solutions and overlay networks uti- Bloom in 1970. Bloom first described a compact probabilistic
lize probabilistic techniques to reduce information processing data structure that was used to represent words in a dicjiona
and networking costs. This survey article presents a number of Tpara \as little interest in using Bloom filters for netwari

frequently used and useful probabilistic techniques. Bloom filters -
and their variants are of prime importance, and they are heavily until 1995, after which this area has gained widespreadaste

used in various distributed systems. This has been reflected in both in academia and in the industry. This survey provides
recent research and many new algorithms have been proposed for an up-to-date view to this emerging area of research and
distributed systems that are either directly or indirectly based on development that was first surveyed in the work of Broder
Bloom filters. In this survey, we give an overview of the basic and and Mitzenmacher [1].

advanced techniques, reviewing over 20 variants and discussing
their application in distributed systems, in particular for caching, Section Il introduces the functionality and parameterdief t

peer-to-peer systems, routing and forwarding, and measurenmg Bloom filter as a hash-based, prObabiliStiC data strucfline.

data summarization. theoretical analysis is complemented with practical exasp
Index Terms—Bloom filters, probabilistic structures, dis- @nd common practices in the underpinning hashing techsique
tributed systems Section Il surveys as many as twenty-three Bloom filter
variants discussing their key features and their difféaéte-
|. INTRODUCTION haviour. Section IV covers a number of recent applications i

Many network solutions and overlay networks utilize probdistributed systems, such as caches, database serveessrou
abilistic techniques to reduce information processing meid S€CUrity, and packet forwarding relying on packet heades si
working costs. This survey presents a number of frequenfﬁpom filters. Finally, Segtlon Vv con.cludes thg survey with a
used and useful probabilistic techniques. Bloom filters)(BfMef summary on the rationale behind the widespread use of
and their variants are of prime importance, and they areilyeatn® Polymorphic Bloom filter data structure.
used in various distributed systems. This has been reflétted
recent research and many new algorithms have been proposed Il. BLOOM FILTERS
for distributed systems that are either directly or indisec The Bloom filter is a space-efficient probabilistic data stru
based on Bloom filters. ture that supports set membership queries. The data stuctu

Fast matching of arbitrary identifiers to values is a basigss conceived by Burton H. Bloom in 1970 [2]. The structure
requirement for a large number of applications. Data objeffers a compact probabilistic way to represent a set that ca
are typically referenced using locally or globally uniquenti- resyit in false positives (claiming an element to be part of
fiers. Recently, many distributed systems have been des@loghe set when it was not inserted), but never in false negative
using probabilistic globally unique random bit strings @l@ (reporting an inserted element to be absent from the sei. Th
identifiers. For example, a node tracks a large number ospeg{akes Bloom filters useful for many different kinds of tasks
that advertise files or parts of files. Fast mapping from hogfat involve lists and sets. The basic operations involiragl
identifiers to object identifiers and vice versa are needed. Tolements to the set and querying for element membership in
number of these identifiers in memory may be great, whighe probabilistic set representation.
motivates the development of fast and compact matchingrhe pasic Bloom filter does not support the removal of ele-
algorithms. . . ments; however, a number of extensions have been developed

Given that there are millions or even billions of datgnat also support removals. The accuracy of a Bloom filter
elements, developing efficient solutions for storing, UPR gepends on the size of the filter, the number of hash functions
and querying them becomes increasingly important. The Kg¥eq in the filter, and the number of elements added to the set.
idea behind the data structures discussed in this sUrvéais tthe more elements are added to a Bloom filter, the higher the

by allowing the representation of the set of elements to |0§?obability that the query operation reports false postiv
some information, in other words to become lossy, the serag groder and Mitzenmacher have coined tB&oom filter

requirements can be significantly reduced. principle [1]:
The data structures presented in this survey for prob#bilis

representation of sets are based on the seminal work bymBurto Whenever a list or set is used, and space is at a

premium, consider using a Bloom filter if the effect
S. Tarkoma and E. Lagerspetz are with University of HelsiBidpartment of false positives can be mitigated.

of Computer Science A Bl fil . fn bits f .
C. E. Rothenberg is with the University of Campinas (Unicanipgpart- oom filter Is an array o Its for representing a set

ment of Computer Engineering and Industrial Automation S ={x1,x2,...,2,} 0f n elements. Initially all the bits in the

filter are set to zero. The key idea is to uséash functions, | =
hi(z),1 < i < k to map itemsz € S to random numbers
uniform in the rangd, . . . m. The hash functions are assumeqo|1|o|o|o|o|1|o|o|o|o|1|o|o|1|o|o.o|o|o|o|1|o|o|o|o|1|0|o|o|o]
to be uniform. The MD5 hash algorithm is a popular choice® " # ® ¢ m 222324 25 26 27 28 29 30 31
for the hash functions.
An elementx € S is inserted into the filter by setting therig. 1. Overview of a Bloom filter

bits h;(x) to one forl < i < k. Converselyy is assumed a
member ofS if the bits h;(y) are set, and guaranteed not to

Add:

.) h2 h3(a) = 101
be a member if any bvlzi_(y) is not set. Algorithm 1 presents h1§;; I h2$; I h3EZ; -1 11
the pseudocode for the insertion operation. Algorithm 2giv ———— Position 8
the pseudocode for the membership test of a given elemen®Bloom Filter: 1 11 1010 has a collision.
in the filter. The weak point of Bloom filters is the possilyilit ni(y) | h2(y) | 3(y) = 001001)
for a false positive. False positives are elements that ate nnl(il’) h2(1) | h3(1) = 1 Lo
part of S but are reported being in the set by the filter. ——— Positions 8 and 3
Data: = is the object key to insert into the Bloom filter] ~ Bloom Filter: 1110011110101010 have collisions.
Function: insert(r) ouery: q is not present.
for j:1...k do = Z s reported
J _ hl(q) | h2(q) | h3(q) 1 1 1 Dresent, though
I+ Loop all hash functions k */ hl(z) | h2(z) | h3(z) = 100001001 never added.
if B, == 0 then Fig. 2. Addition and query example using a Bloom filter
/[Bloomfilter had zero bit at
osition i */ __ _ . "
%_ -1 Bloom filter is a bitstring of lengthi6. The bit positions are
end ' numbered0 to 15, from right to left. Three hash functions
end are used:hy, hy, and hz, being MD5, SHA1 and CRC32,

respectively. The elements added are text strings containi
only a single letter. The Bloom filter starts out empty, with
Data: « is the object key for which membership is tested.all bits unset, or zero. When adding an element, the values

Algorithm 1: Pseudocode for Bloom filter insertion

Function: ismember() returns true or false to the of hy throughhs (modulo16) are calculated for the element,
membership test and corresponding bit positions are set to one. After adding
m < 1, a andb, the Bloom filter has position$5, 9, 8, 3 and1 set.
J< L In this casea andb have one common bit positio8) We
while m == 1 andj < k do further add elementg and!. After this, positionsl5, 14, 13,
i+ hj(z); 10,9, 8, 7, 5, 3 and1 are set. When we query fgrandz, the
if B; == 0 then same hash functions are used. Bit positions that correspond
om0 to ¢ and z are examined. If the three bits for an element
?”d) are set, that element is assumed to be present. In the case
endj —J+1L of ¢, position0 is not set, and thereforgis guaranteed not to

be present in the Bloom filter. Howevet,is assumed to be
present, since the corresponding bits have been set. We know
that z is afalse positiveit is reported present though it is not

Figure 1 presents an overview of a Bloom filter. The Blooractually contained in the set of added elements. The bits tha
filter consists of a bitstring of length 32. Three elementgehacorrespond to: (positions15, 10 and7) were set through the
been inserted, namely, y, andz. Each of the elements haveaddition of element$, y and!.
been hashed using = 3 hash functions to bit positions in For optimal performance, each of the hash functions
the bitstring. The corresponding bits have been set to 1.,Nashould be a member of the class of universal hash functions,
when an element not in the set, is looked up, it will be which means that the hash functions map each item in the
hashed using the same three hash functions into bit pasitiooniverse to a random number uniform over the range. The
In this case, one of the positions is zero and hence the Bloa@velopment of uniform hashing techniques has been an
filter reports correctly that the element is not in the semdty active area of research. An almost ideal solution for unifor
happen that all the bit positions of an element report that thashing is presented in [3]. In practice, hash functionkliig
corresponding bits have been set. When this occurs, the Blosuofficiently uniformly distributed outputs, such as MD5 or
filter will erroneously report that the element is a member @RC32, are useful for most probabilistic filter purposes: Fo
the set. These erroneous reports are called false posithes candidate implementations, see the empirical evaluatid@bo
observe that for the inserted elements, the hashed pasitibash functions by Henke et al. [4]. Later in Section II-C we
correctly report that the bit is set in the bitstring. discuss relevant hashing techniques further.

Figure 2 illustrates a practical example of a Bloom filter A Bloom filter constructed based dhrequires spac®(n)
through adding and querying elements. In this example, thad can answer membership querie®ifl) time. Givenz €

returnm;
Algorithm 2: Pseudocode for Bloom member test

TABLE |
KEY BLOOM FILTER PARAMETERS

Parameters H Increase
Number of hash functionstf More computation, lower false positive rate las— kopt
Size of filter ¢n) More space is needed, lower false positive rate
Number of elements in the set) Higher false positive rate
S, the BIOOm fl|tel’ W|” aIWayS I’epOI't that be|0ngS IOS, but False positive rate of Bloom filters
giveny ¢ S the Bloom filter may report thag € S. k s
Table | examines the behaviour of three key parameters 04 o

when their value is either decreased or increased. Incrgasi 001

or decreasing the number of hash functions towargls can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportiooahte 00001
number of hash functions. The size of the filter can be used tog 1¢%% /
tune the space requirements and the false positive fate.(16-006

A larger filter will result in fewer false positives. Finallthe 16007 /

0.001

False positive probability (p)

size of the set that is inserted into the filter determines the / [] mmr:gzg —
false positive rate. We note that although no false negative / [’ m=2048 -
(fn) occur with regular BFs, some variants will be presented ', 10 100 1000 10000 100000

later in the article that may result in false negatives. Number of inseried elements (n)

A. False Positive Probability Fig. 3. False positive probability rate for Bloom filters.
We now derive the false positive probability rate of a Bloom

filter and the optimal number of hash functions for a given We note that—*"/™ is a very close approximation ¢f —
false positive probability rate. We start with the assumpti -)*" [1]. The false positive probability decreases as the size
that a hash function selects each array position with equdl the Bloom filter, m, increases. The probability increases
probability. Letm denote the number of bits in the Bloomwith n as more elements are added. Now, we want to minimize
filter. When inserting an element into the filter, the prokigbil the probability of false positives, by minimizir@—e—*"/m)*

that a certain bit is not set to one by a hash function is with respect td:. This is accomplished by taking the derivative

1 and equaling to zero, which gives the optimal value:of
1- p 1) m 9m
. - kopt = —In2 ~ —. (6)
Now, there are: hash functions, and the probability of any n 13n
of them not having set a specific bit to one is given by This results in the false positive probability of
k k
1
(1 - 1) . 2) () ~ 0.6185™/". 7
m 2
After insertingn elements to the filter, the probability that Using the optimal number of hashgs,:, the false positive
a given bit is still zero is probability can be rewritten and bounded
kn m 1
1 s -
(1 - m> . ©)) n ~ In2 (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
1\ with the number of elements inserted in the filter. The number
L- (1 - m) (4 of bits m for the desired number of elements and false
positive ratep, is given by

And consequently the probability that the bit is one is

For an element membership test, if all of the array
positions in the filter computed by the hash functions are set m= e)
to one, the Bloom filter claims that the element belongs to the (In2)?

set. The probability of this happening when the element ts no Figure 3 presents the false positive probability ratas a
part of the set is given by function of the number of elementsin the filter and the filter

sizem. An optimal number of hash functioris= (m/n)In 2

kn k
(1 _ <1 _ 1)) ~ (1 _ efkn/m)k. (5) has been assumed.

m There is a factor ofog, ¢ ~ 1.44 between the amount of

space used by a Bloom filter and the optimal amount of spagersa. In a bloomjoinS; is represented using a Bloom filter
that can be used. There are other data structures that use spad sent fromA to B. B can then compute the intersection
closer to the lower bound, but they are more complicated (efind send back this set. Hodtcan then check false positives
[5], 6], [7]). with B in a final round.

Recently, Bose et al. [8] have shown that the false positive
analysis originally givep py .Bloom and repeated in many sg%—_ Hashing techniques
sequent articles is optimistic and only a good approxinmatio
for large Bloom filters. The revisited analysis proves that t Hash functions are the key building block of probabilistic
commonly used estimate (Eq. 5) is actually a lower bound afiiers. There is a large literature on hash functions spanni
the real false positive rate is larger than expected by theoffom randomness analysis to security evaluation over many
especially for small values ofs. networking and computing applications. We focus on the best
practices and recent developments in hashing techniquies wh
are relevant to the performance and practicality of Blootafrfil
constructs. For further details, deeper theoretical fatiods

Standard Bloom filters do not support the removal aind system-specific applications we refer to related wargh s
elements. Removal of an element can be implemented &y [4], [11], [12], [13].
using a second Bloom filter that contains elements that haveOne noteworthy property of Bloom filters is that the false
been removed. The problem of this approach is that the fajsesitive performance depends only on the bit-per-elenatit r
positives of the second filter result in false negatives @ th{m/n) and not on the form or size of the hashed elements.
composite filter, which is undesirable. Therefore a numifer As long as the size of the elements can be bounded, hashing
dedicated structures have been proposed that suppoiibdslet time can be assumed to be a constant factor. Considering the
These are examined later in this survey. trend in computational power versus memory access time, the

A number of operations involving Bloom filters can bepractical bottleneck is the amount of (slow) memory accesse
implemented easily, for example thmion and halving of a rather than the hash computation time. Nevertheless, whene
Bloom filter. The bit-vector nature of the Bloom filter allowsa filter application needs to run at line speed, hardware-
the union of two or more Bloom filters simply by performingamenable per-packet operations are critical [13].
bitwise OR on the bit-vectors. Given two sefs and Ss, a In the following subsections, we briefly present hashing
Bloom filter B that represents the uniofi = S; U S2 can techniques that are the basis for good Bloom filter implemen-
be created by taking the OR of the original Bloom filtergations. We start with perfect hashing, which is an altéveat
B = B; V By assuming thatn and the hash functions are theo Bloom filters when the set is known beforehand and it is
same. The merged filteB will report any element belonging static. Double hashing allows reducing the number of trighha
to S; or Sy as belonging to sef. The following theorem computations. Partitioned hashing and multiple hashirgj de
gives a lower bound for the false positive rate of the union @fith how bits are allocated in a Bloom filter. Finally, the use
Bloom filters [9]: of simple hash functions is considered.

Theorem 1:The false positive probability oBF (AU B) is 1) Perfect Hashing SchemeA simple technique called
not less than that oBF(A) and BF(B). At the same time, perfect hashingor explicit hashing) can be used to store a
the false positive probability oBF(A) U BF(B) is also not static setS of values in an optimal manner using a perfect hash
less than that oBF(A) and BF(B). function. A perfect hash function is a computable bijection

If the BF sizem is divisible by 2,halving can be easily from S to an array of|S| = n hash buckets. The n-size
done by bitwise ORing the first and second halves togetharray can be used to store the information associated with
Now, the range of the hash functions needs to be accordinglgch element € S [5].
constrained, for instance, by applying theod(m/2) to the Bloom filter like functionality can be obtained by, given
hash outputs. a set of elements, first finding a perfect hash functio®

Bloom filters can be used to approximate seersection and then storing at each location gn= 1/¢ bit fingerprint,
however, this is more complicated than the union operatiotomputed using some (pseudo-)random hash funcfibn
One straightforward approach is to assume the samend Figure 4 illustrates this perfect hashing scheme.
hash functions and to take the logical AND operation betweenLookup of x simply consists of computing(z) and check-
the two bit-vectors. The following theorem gives the probang whether the stored hash function value match&s:).
bility for this to hold [9]: Whenz € S, the correct value is always returned, and when

Theorem 2:If BF(AN B), BF(A), and BF(B) use the z ¢ S afalse positive (claiming the element beingdpoccurs
samem and hash functions, theBF(A N B) = BF(A) N with probability at mosk. This follows from the definition of
BF(B) with probability (1 — 1/m)’|A=ANB|[B-ANB| 2-universal hashing by Carter and Wengman [14], that any

The inner product of the bit-vectors is an indicator oélementy not in S has probability at most of having the
the size of the intersection [1]. The idea of khoomjoin same hash function valugy) as the element it$ that maps
was presented by Mackert and Lohman in 1986 [10]. Inta the same entry of the array.
bloomjoin, two hosts, A and B, compute the intersection of While space efficient, this approach is disconsidered for
two setsS; andSs2, whenA has the first set an® the second. dynamic environments, because the perfect hash function
It is not feasible to send all the elements frahto B, and vice needs to be recomputed when the Sethanges.

B. Operations

placed in one of a constant = 2 randomly chosen bins,

Element1 Element2 ~ Element3 Element4 Element5 then, after all balls are inserted, the maximal load in a bjn i
e with high probability, (In In n)/in d + O(1). Vocking et al.
== [18] elaborate on this observation and propose the always-g

Fingerprint(4) | Fingerprint(5) | Fingerprint(2) | Fingerprint(1) | Fingerprint(3) left algorithm (ord-left hashing scheme) to break ties when
inserting (chained) elements to the least loaded one antng t
d partitioned candidates.

As a result this hashing technique provides an almost
optimal (up to an additive constant) load-balancing scheme
In addition to the balancing improvement, partitioning the

Another technique for minimal perfect hashing was introhaSh buckets (i.e._, bins) intlo groups makedeft hashing
ore hardware friendly as it allows the parallelized look-

duced by Antichi et al. [15]. It relies on Bloom filters and" . e .
Blooming Trees to turn the imperfect hashing of a BloorE‘IO of thed hash locations. Thus, hash partitioning and tie-

Fig. 4. Example of explicit hashing

filter into a perfect hashing. The technique gives space a Eeaklng have elevatadeft hashing as an optimal technique

time savings. This technique also requires a staticSsdiut or building high performance (negligible overflow probabi

ities) data structures such as the multiple level hash gable
can handle a huge number of elements. ! . .

2) Double Hasghing:The improvement of thelouble hash- (MHT) [:.Lg] or counting Bloom filters [20]. A brgakthrough
ing technique over basic hashing is being able to generagga?gqslgermﬂﬁ?'?enC\;]vc?isceri;esr;‘ﬂ{agreoEgzzg_ﬁnﬁa:hr}nc}pen_
k hash values based on only two universal hash function n 9

as base generators (or “seed” hashes). As a practical Corgsﬁement fingerprints (a smaller representation like thé fas

guence, Bloom filters can be built with less hashing openatio S of the element hash) and dynamic bit reassignment [21].

without sacrificing performance. Kirsch and Mitzenmachél_>fter all optimizations, the authors show that the perfonoe

have shown [16] that it requires only two independent ha% comparable to plain Bloom filter constructs, outperforms

. . ; Ltraditional counting Bloom filter constructs (see d-left [EB
functions, by () and ho(z), to generate additional “pseudo”. . . .
;) in Sec. llI-B), and easily extensible to support practical
hashes defined as:

networking applications (e.g., flow tracking in Sec. IV-D).
hi(x) = hi(z) + f(i) * ha(x) (10) The power of (two) choices has been exploited by Lumetta
.) , . and Mitzenmacher to improve the false positive performance

where: is the hf;‘sh value index;(i) can be any arbitrary o gjoom filters [22]. The key idea consists of considering no
function ofi (e.g.,i"), andz is the element being hashed. Fopne 1yt two groups of hash functions. On element insertion,
Bloom filter operations, the dOl_JbIe hashing scheme rgdtlmaes the selection criteria is based on the grougk dfash functions
number of true hash computations fréndown to two without 5+ sets fewer bits to 1. The caveat is that when checking for
any increase in the asymptotic false positive probabill§]{ gjements, both groups @fhash functions need to be checked
3) Partitioned Hashing:In this hashing technique, the gjnce there is no information on which group was initiallgds
hash functions are allocated disjoint rangesnfk consec- nq false positives can potentially be claimed for eitheugr
utive bits instead of the fulln-bit array space. Following ajthough it may appear counter-intuitive, under some sgti
the same false positive probability analysis of Sec. [1#€ t (high 1, /1, ratios), setting fewer ones in the filter actually pays
probability of a specific bit being 0 in a partitioned Bloomys the double checking operations.
filter can be approximated to: Fundamentally similar in exploiting the power of choices
(1—k/m)"* ~ e *n/m (11) in producing less dense (improved) Bloom filters, the method
proposed by Hao et al. [23] is based on a partitioned hashing
While the asymptotic performance remains the same, t#@chnique which results in a choice of hash functions that se
practice, partitioned Bloom filters exhibit a poorer falsesip fewer bits. Experimental results show that this improvemen
tive performance as they tend to have larger fill factors énogan be as much as a ten-fold increase in performance over
1s) due to then/k bit range restriction. This can be explaine&tandard constructs. However, the choice of hash functions
by the observation that: cannot be done on an element basis as in [22], and its
_ kxn _ n applicability is constrained to non-dynamic environments
(1=1/m)™" > (1 = k/m) (12) 5) Simple hash functionsA common assumption is to
4) Multiple Hashing: Multiple hashing is a popular tech-consider output hash values as truly random, that is, each
nigue that exploits the notion of having multiple hash cheic hashed element is independently mapped to a uniform latatio
and having the power to choose the most convenient candiddthile this is a great aid to theoretical analyses, hash fancti
When applied for hash table constructions, multiple hashifmgplementations are known to behave far worse than truly ran
provides a probabilistic method to limit the effects of @iins dom ones. On the other hand, empirical works using standard
by allocating elements more-or-less evenly distributede T universal hashing have been reporting negligible diffeesnin
original idea was proposed by Azar et al. in his seminal wogkractical performance compared to predictions assumiegl id
on balanced allocations [17]. Formulating hashing as asballashing (see [24] for the case of Bloom filters).
into bins problem, the authors show thatifballs are placed Mitzenmacher and Vadhany [25] provide the seeds to for-
sequentially intom for mm = O(n) with each ball being mally explaining this gap between the theory and practice

1

of hashing. In a nutshell, the foundation of why simple
hash functions work can be explained naturally from the 001
combination of the randomness of choosing the hash function
and the randomness in the data. Hence, only a small amount
of randomness in the data is enough to mimic truly random te00s
hash function in practice. These results apply for any hash-E
based technique, and as a practical consequence, theyssugge
that simple (nhon-cryptographic) “commodity” hash funaso 1010
(e.g., CRC32) are well suited for high performance Bloom ...
filter applications.

0.0001

1e-008

1e-014

1e-016

IIl. BLOOM FILTER VARIANTS

5 10 15 20 25 30

A number of Bloom filter variants have been proposed Elemens
that address some of the limitations of the original stretu
including counting, deletion, multisets, and space-eficy.
We start our examination with the basic counting Bloom filter
construction, and then proceed to more elaborate strigcturepata: « is the item to be inserted.

Fig. 5. Upper bound probability that any counter has at lgasements

including Bloomier and Spectral filters. Function: insert(r)
for j:1...k do
/* Loop all hash functions k& */
A. Counting Bloom Filters i« hy(x);
/* Increnent counter C; */

As mentioned with the treatment on standard Bloom filters, | C; «+ C; +1;
they do not support element deletions. A Bloom filter can | if Bi ==0 then o _
easily be extended to support deletions by adding a counter [« Bit is zero at position s */
for each element of the data structure. Probabilistic dognt end
structures have been investigated in the context of dagabasend
systems [26]. A counting Bloom filter has counters along ~Algorithm 3: Pseudocode for counting Bloom filter inser-
with the m bits. Fan et al. [27] first introduced the idea of ation
counting Bloom filter in conjunction with Web caches.
The structure works in a similar manner as a regular Bloom

filter; however, it is able to keep track of insertions and g already mentioned the optimum value fofover reals)

deletions. In a counting Bloom filter, each entry in the Bloory 1, 9m/n so assuming that the number of hash functions is
filter is a small counter associated with a basic Bloom filtgtsg tharin 2m/n we can further bound

bit. When an item is inserted, the corresponding counters
are incremented; when an item is deleted, the corresponding
counters are decremented. To avoid counter overflow, we need
choose suffic?ently large counters. _ Hence takingj — 16 we obtain that
The analysis from [27] reveals that 4 bits per counter should

suffice for most applications [1], [28]. To determine a good Pr(max(c) > 16) < 1.37 x 107'% x m. (16)
counter size, we can consider a counting Bloom filter for a
with n elementsk hash functions, anth counters. Let @) be
the count associated with thith counter. The probability that
the ith counter is incrementeg times is a binomial random
variable:

Pr(max(c) > j) <m <61;12>j . (15)

Sl%t other words if we allow 4 bits per count, the probability of
overflow for practical values of: during the initial insertion
in the filter is extremely small. Figure 5 illustrates ovenflo
probability as a function of counter size.
Algorithm 3 presents the pseudocode for the insert operatio
) , nk\ 1 . 1o for elementz with counting. The operation increments the
Pe(i) = j) = (->()](1 - (13) counter of each bit to which: is hashed. The counting

J m .
Th bability th . leasis bounded ab structure supports the removal of elements using the delete
e probability that any counter Is at legsis bounded above operation presented in Algorithm 4. The delete decreméets t

by mP(c(i) = j), which can be calculated using the above nter of each bit to which is hashed. The corresponding
formula. _ . bitis reset to zero when the counter becomes zero.

The counter counts the _nu_r_nber of times that the_t_nt IS SEztA counting Bloom filter also has the ability to keep approx-
to one. AII_the counts are initially zero. The probabilityath imate counts of items. For example, inserting elemetiiree
any count is greater or equal jo times results in thé bit positions being set, and the associated

' counters incremented by one for each insert. Thereforej; the
nk) 1 “m (enk)j counters associated with elementare incremented at least

Pr(max(c) 2 j) < m(j (14) three times, some of them more if there are overlaps withrothe

mi im

Data: z is the item to be removed. counters in the standard CBF due to the fewer collisions
Function: delete) resulting from the fingerprint-based d-left construction.
for J/*lLook dgl | hash functions & y The problem of knowing which candidate element finger-
i hj(:f); print to delete — in case of fmgerprln_t collisions — can be
/|« Decrenment counter Cj y neatly solved by breaking the problem into two parts, namely
Ci+C;— 1, the creation of the fingerprint, and finding tddocations by
if C; <0 then making additional (pseudo)-random permutations.
/+ Reset bit at position i */
B; + 0
end C. Compressed Bloom Filter
end Compressing a Bloom filter improves performance when
ﬁcl)?]orlthm 4 Pseudocode for counting Bloom filter dele- 5 gjoom filter is passed in a message between distributed

nodes. This structure is particularly useful when inforiomat
must be transmitted repeatedly, and the bandwidth is aitignit

. . . factor [7].

inserted elements. The count estimate can be determined bl:ompressed Bloom filters are used only for optimizing

finding the minimum of the counts in all locations where ag,q transmission (over the network) size of the filters. This
item is hashed to. _ is motivated by applications such as Web caches and P2P
In [29], Ficara et al. refine the upper bound presentegdc,mation sharing, which frequently use Bloom filters to
above. They obtain an order of magmuljge lower upper boungstinute routing tables. If the optimal value of the numbe
producingPr(max(c) > 15) < 1.51x107°°. The upperbound ¢ hash functionsk in order to minimize the false positive
is given by the formula below. probability is used then the probability that a bit is setlie t
Pr(max(c) > j) < Pr(max(c) = j — 1) (17) Dbitstring representing the filter is/2. Given the assumption
of independent random hash functions, this means that the
Ficara et al. also propose a data structure called MultiLay@itstring is random, and thus it does not compress well.
Compressed Counting Bloom Filter (ML-CCBF). The struc- The key idea in compressed Bloom filters is that by
ture expands upon the idea of the CBF by adding a hierarcflyanging the way bits are distributed in the filter, it can be
of hash-based filters on top of the CBF. These are usedcd@npressed for transmission purposes. This is achieved by
add space to counters that would otherwise overflow. Thﬂoosing the number of hash functiohsn such a way that
authors also employ Huffman coding to compress countgfe entries in then vector have a smaller probability thar2
values, obtaining space savings. The ML-CCBF eliminatgs peing set. After transmission, the filter is decompredsed
possibility of counter overflow, and retains the quick lopku yse. The size of selected for compression is not optimal for
of the standard BF. The cost of insert and delete Operatiqﬂ% uncompressed Bloom ﬁ|ter, but may result in a smaller
is increased, however. For a detailed performance congariscompressed filter. Compression can result in a smaller false

see [29]. positive rate as a function of the compressed size compared t
a Bloom filter that does not use compression. The compressed
B. d-left Counting Bloom Filter Bloom filter requires that some additional compression algo

Bonomi et al. [20] presented a data structure based-on rithm is used for the d.ata tha_lt is transmitted over the ndtyor
for example, Arithmetic Coding [7].

left hashingand fingerprints that is functionally equivalent to
a counting Bloom filter, but saves approximately a factor of
two or more space. D. Deletable Bloom filter
The d-left hashing scheme divides a hash table iato The Deletable Bloom filter (DIBF) [30] addresses the issue
subtables that are of equal size. Each subtable:pédduckets, of enabling element deletions at a minimal cost in memory —
where n is the total number of buckets. Each bucket hasompared to previous variants like the CBFs — and without
capacity forc cells, each cell being of some fixed bit sizéntroducing false negatives. The DIBF is based on a simple ye
to store a fingerprint of the element along with a countguowerful idea, namely keeping record of the bit regions wher
When an element is placed into the table, following the dollisions happen and exploiting the notion that elemeats c
left hashing techniqued candidate buckets are obtained bye effectively removed if at least one of its bits is resete Th
computingd independent hash values of the element. A hasbiBF divides the bit array of sizen into r regions. The
based fingerprintf, = H(x) is stored in the bucket thatcompact representation of the collisions information ésies
contains more empty cells (i.e., least inserted elements ¢ a bitmap of size- that codes with) a collision-free region
bucket). In case of a tie, the element is placed in the bucKee., bit deletions are allowed) and with otherwise (see
of the leftmost subtable with the smallest number of eleserfig. 6).
examined. Hence, element removal is only probabilistic and depends
Element lookups use parallel search of thesubtables to on the sizer of the bitmap (see Fig. 7). Depending on how
find the fingerprint and obtain the value of the counter. Imuch memory space one is willing to invest, different rates o
case of a deletion the counter is decremented by one. Itelement deletability and false positives rates (before aftet
noteworthy that these counters can be much smaller thelement deletions) can be achieved. The DIBF is a simple

=

Z
£os
S
o
206
X y z =
s
§0.4
g m/r=20 ——
= 4] £02F mir=10
[o[1]o]1]o[1]o]o]0]0[1]0]0]0]0]1]0]1[0[0[0[1[0][0[0[0O[O[1][0O]O]O]1] g Mir=4 s
o 1 2 3!4 5 6 7 8 9 10'11 12 13 14 15 16 17/18 19 20 21 22 23 24125 26 27 28 29 30 31 0 |m/r_2| IIIIIIIIIIIII
,/_-_/ e , 32 16 10 8 6
/ {m=32} 7 Bits per element (m/n)

Fig. 6. Example of a DIBF withn = 32, k = 3 andr = 4, representing® = {z,y, z}. The Fig. 7. Deletability estimate as function of the filter depsit
1s in the firstr bits indicate collisions in the corresponding regions aitsl therein cannot be m/n for different collision bitmap sizes.
deleted. All elements are deletable as each has at least bimeatollision-free zone.

extension that can be easily plugged to existing BFs vaiant) . .
y plugg g Hierarchical Bloom filter

to enable probabilistic element deletions.

E. Hierarchical Bloom Filters

$45,S,5; | 0

Shanmugasundaram et al. [31] presented a data structu ! :
called Hierarchical Bloom Filterto support substring match- i i
ing. This structure supports the checking of a part of string ! SOS1 | 0 8283 | 1 !

for containment in the filter with low false positive rates.
The filter works by splitting an input string into a number
of fixed-size blocks. These blocks are then inserted into ¢
standard Bloom filter. By using the Bloom filter, it is possibl
to check for substrings with a block-size granularity. This
substring matching may result in combinations of strings th
are incorrectly reported as being in the set (false positiveor

example, a concatenation of two blocks from different gisin . ! !
would be incorrectly recognized as an inserted substring SO : S1 : 82 : 83
Figure 8 illustrates the hierarchical nature of this canston. | | |

The hierarchical Bloom filter construction improves match- fsets 0 ! 1 ! 2 ! 3

ing accuracy by inserting the concatenation of blocks into
the filter in addition to inserting them separately. This nwea b o o _ _ _
that two subsequent single block matches can be verified B?/‘ 8. Example of inserting a string into a hierarchical BtoGlter
looking up their concatenation. This approach generatizes

sequence of blocks; however, storage space requIrements gi, 4o ot the first level and then continues upwards in the

as m_ore_block sequences are added to the structure._ . hierarchy to verify whether the substrings occurred togeth
This filter was used to implement a payload attributiof, he same or different packets

system that associates excerpts of packet payloads to their
source and destination hosts. The filter was used to create _
compact digests of payloads. The system works by dividieg th- Spectral Bloom Filters
payload of each packet into a set of blocks of a certain fixedSpectral Bloom filters generalize Bloom filters to storing
size. Each block is appended with its offset in the payloadn approximate multiset and support frequency queries [32]
(content|offset) The blocks are then hashed and inserted inthe membership query is generalized to a query on the
a Bloom filter. A hierarchical Bloom filter is a collection of multiplicity of an element. The answer to any multiplicity
the standard Bloom filters for increasing block sizes. query is never smaller than the true multiplicity, and geeat
When a string is inserted, it is first broken into block®nly with probability e. In this sensespectralrefers to the
which are inserted into the filter hierarchy starting frone thrange within which multiplicity answers are given. The spac
lowest level. For the second level, two subsequent blocks arsage is similar to that of a Bloom filter for a set of the same
concatenated and inserted into the second level. This bloskze (including the counters to store the frequency values)
based concatenation continues for the remaining leveleeof fThe time needed to determine a multiplicity fofis O(log k).
hierarchy. The resulting structure can then be used toyerifhe query time is9(log(1)). The answer estimate is given
whether or not a given string occurs in the payload. The seatay returning the minimum value of the counters determined

by the hash functions. Element additions using the minimubh Decaying Bloom Filters
increase (MI) method consist of increasing only the smalles
counter value(s). This helps in reducing the error rate, (i.
fraction of answer values larger than the true multiplicit
at the cost of disabling deletions. A further improvement

the error rate can be achieved using the recurring minim
(RM) method, which consists of storing elements with a €ng
minimum (among thek counters) in a secondary Spectr
Bloom filter with a smaller error probability.

Duplicate element detection is an important problem, es-
ecially pertaining to data stream processing [36]. In the
eneral case, duplicate detection in an unbounded datastre

not practical in many cases due to memory and processing

nstraints. This motivates approximate detection ofidaf#s
mong newly arrived data elements of a data stream. This can
e accomplished within a fixed time window. Techniques for
space-efficient approximate counts over sliding windowseha
been proposed in [37].
The Decaying Bloom Filter (DBF)structure has been pro-
posed for this application scenario. DBF is an extension of

Bloom filters have been generalizedBtoomierfilters [33] the counting Bloom filter and it supports the removal of stale
that compactly store function values. The Bloomier filten caelements from the structure as new elements are inserteld. DB
encode functions instead of sets and allows the associatiorimay produce false positive errors, but not false negatiges a
values with a subset of the domain elements. Bloomier filteigs the case with the basic Bloom filter. For a given spate
are implemented using a cascade of Bloom filters. bits and sliding window siz&V, DBF has an amortized time

A Bloomier filter encodes a functiofi(z) by associating an complexity of O(,/G/W) [38]. A variant of DBF has been
arbitrary value with each member € S. For each member applied for hint-based routing in wireless sensor netw{k
z € S, it always returns the correct value (no false negatives)me Decaying Bloom filters [40] have been proposed to take
For a non-member, it returns as a symbol for amndefined fime into account by decrementing counter values.
value not in the range of (x), with high probability (—).
False positives occur with probabilityand result in a query |
for x ¢ S returning a value within the range ¢f(z). ’

The query time of a Bloomier filter is constant and space The Stable Bloom Filter or SBF [41] is another solution
requirement is linear. The basic construction of a Bloomiép duplicate element detection. The SBF guarantees that the
filter requiresO(nlogn) time to create()(n) space to store expected fraction of zeros in the SBF stays constant. This
andO(1) time to evaluate. Although a Bloomier filter can beénakes the SBF suitable for duplicate detection in a stream
made mutable, the set is immutable. This means that in aof data. The authors show measurements that verify the SBF
mutable Bloomier filter, function values can be changed bperforms well in the scenario and outperforms e.g. standard
set membership (it%) cannot change. buffering and standard Bloom filters. The SBF introduce$ bot

The Bloomier filter can be implemented as a pipeline d@lse positives and false negatives, but with rates imptove
parallel Bloom filters. Each parallel filter is associatedhwi from standard Bloom filters or standard buffering.
one of the values off (z). The filter pipeline is checked in Each cell in the SBF is a counter dfbits, and thus has
pairs. Each pair of filters in the sequence are programm@dnaximum valueMaz = 2? — 1. The adding function for a
with the false positives of the previous stage. For exanipte, SBF differs from the counting Bloom filter. When adding an
filters F(Ao) and F(B,) represent subsets & that map to element,P counters chosen at random are first decremented
valuestrue and false, respectively. To obtain the value for (by one). Then thé: counters that correspond to the element
we check the value af'(A4,)(z) and F(By)(z). If = receives 10 be added are set tt/az. The parametef” can be chosen
a non-L value for one filter only, its value is that value.4f based on the other parameters for a Bloom filter, and a user-
receives a defined value for both filters of the pair, we mov®ecified accepted false positive raficfor examplef = 0.01.
on to the pairF(A;)(x) and F(B;)(z), which contain the The authors suggest choosing P using the following formula:
true positives ofF'(Ay) that are false positives iff(By) and 1
the true positives of'(By) that are false positives i’ (A4y), P= (I “1)(1/k — 1/m) (18)
respectively. For multiple values, the filters(4;), i > 1 (1= fr/myi/itas
contain the pairwise false positives with the filtef§.J,_,) Please see the full paper [41] for details on setting all the
for all J\ A. parameters.

Charles and Chellapilla [34] propose alternate constoucti
methods of Bloomier filters that yield faster alternatives i
O(n) vs. O(nlogn), and more practical and space-efficien?' Space Code Bloom Filter
constructs at the cost of increased creation time. Simgjlarl Per-flow traffic measurement is crucial for usage accounting
Dietzfelbinger and Pagh [35] propose a retrieval data sirac traffic engineering, and anomaly detection. Previous ntetho
applicable to the approximate membership problem in almadbgies are either based on random sampling (e.g., Cisco’s
optimal space and with linear construction time. Similautess NetFlow), which is inaccurate, or only account for the "ele-
are attainable with the approach by Porat [6] as an alterngieants”. A data structure calle8pace Code Bloom Filter
method to hold a succint, one-sided error dictionary da(8CBF)can be used to measure per-flow traffic approximately
structure in the spirit of Bloom filters. at high speeds.

G. Bloomier Filters

Stable Bloom Filter

10

A SCBF is an approximate representation of a multiseds well resulting in false negatives. Partial signhatures loa
Each element in this multiset is a traffic flow and its mulused to alleviate this problem of false negatives. Aginghef t
tiplicity is the number of packets in the flow. SCBF employéilter can be achieved by resetting the Bloom filter bits in a
a Maximum Likelihood Estimation (MLEjpethod to measure round-robin fashion.
the multiplicity of an element in the multiset. Through para A related technique for handling time-varying sets, called
eter tuning, SCBF allows for graceful tradeoff between medeuble buffering uses two bitmaps, active and inactive, to
surement accuracy and computational and storage complexstupport time-dependent Bloom filters. When the active bitmap
SCBF also contributes to the foundation of data streaming sy half full, new signatures are stored in both bitmaps and
introducing a new paradigm called blind streaming [42]. only the active one is queried. When the inactive bitmap gets

half full, it becomes active and the previously active bitma
K. Adaptive Bloom filters becomes inactive and is reset. This cycle is then repeatdd [4

The Adaptive Bloom Filter (ABF) [43] is an alternative]
construction to counting Bloom filters especially well sdit M- Filter Banks
for applications where large counters are to be supportdd wi The standard BF only answers whether or not an element
out overflows and under unpredictable collision rate dymamiis a member of the set with some probability for misclassifi-
(e.g., network traffic applications). The key idea of the ABF cation. In many cases, there is a need to find which element
to count the appearances of elements by an increasing sebmoélements of a set are related with the input element. There
hash functions. Instead of working with fixedbit counting is thus a requirement to support multiple binary predicates
cells like traditional CBFs, an ABF takes the same form as aOne straightforward technique to support multiple binary
plain m-bit BF. predicates is to use a set of standard BFs. For example, in

In order to increment the count of an element, the AB& caching solution, each BF corresponds to an interface. An
checkssequentiallyhow many independent hashe¥)(map element originating from a certain interface is recordethm
to bits set to one (in addition to the bits set on element BF corresponding to the interface. When querying for element
insertion). When theéV + k + 1th hash hits an empty cell, it is membership, each BF is then consulted and zero or more will
set to 1 to guarantee that element frequency queries retueport containment. If multiple interfaces report contaémt,
at leastN + 1, corresponding to the 1s set so far by tha number of techniques can be used to solve the issue, for
sequential hashes of the element. In membership queries, ékample by treating the case as a cache miss and reclagsifyin
additional number of hash function¥ indicates the number the element in question [46].
of appearances of each entry. False positives among the firsA similar technique involving a filter bank is used to real-
k bits work like in plain BF constructs. The main caveat ize approximate action classification [44]. This classtima
that the estimate of the multiplicity of a each key elememnswers the question, which elementSois X ? This requires
becomes less precise as the ABF gets filled, since bits set[lyg, |S|] filters. This corresponds to the selection of an action
other elements result in largey values. To its benefit, the from a set of actions for a given element. This classification
ABF requires less memory and does not require knowledgeimportant for various routing and forwarding tasks.
on the estimated multiplicity of individual key elementsge
skewed unpredictable data set in real network traffic). N. Scalable Bloom filters

))) One caveat with Bloom Filters is having to dimension the

L. Variable Length Signatures and Double Buffering maximum filter size #z) a priori. This is commonly done by

A Bloom filter with Variable-length Signatures (VBHs application designers by establishing an upper bound on the
similar to the BF; however, the construction differs wheexpectedfpr and estimating the maximum required capacity
inserting and querying elements [44]. When inserting &mn). However, it is often the case that the number of elements
element, onlyt(< k) bits of h(z) computed usingt hash to be stored is unknown, which leads to over-dimensioning
functions are set to 1. This effectively allows the settifigao the filters for the worse case, possibly by several orders
partial signature. For queries, an elemenis reported to be of magnitude. Moreover, in some applications, BFs are not
present if at leasg(< k) bits are set to 1. simply preloaded with elements and then used, but elements

The VBF construction allows to test element membershigre added and queried independently as time passes. This may
when the set is time-varying, e.g., dynamic under insestioresult in wasted storage space.
and deletions of elements. The VBF construction has beenScalable Bloom Filters (SBF) [47] refer to a BF variant
applied for network flow management. The key idea is to takkat can adapt dynamically to the number of elements stored,
advantage of differing flow sizes and increase or decreashile assuring a maximum false positive probability. The
the signature lengths of flows making them more easy proposed mechanism adapts to set growth by adding “slices”
less easy to identify in the filter. Flow lengths can also bef traditional Bloom Filters of increasing sizes and tigtegror
examined by analyzing the signature lengths. The con&ructprobabilities, added as needed. When filters get full duedo th
can adaptively reduce the false positive rate by removimgesolimit on the fill ratio (i.e. p = 0.5), a new one is added.
bits of the signature, thus effectively removing the flownfro Set membership queries require testing for element presenc
the structure. The limitation of this approach is that sudh each filter, thus the requirement on increasing sizes and
removal of bits may result in other valid flows being removetightening of error probabilities as the BF scales up. Sssige

11

BFs are created with a tighter maximum error probability oR. Split Bloom Filters

a geometric progression, allocating - a*~!bits for its i—th A Split Bloom filter (SPBF) [49] employs a constatx

BF slice, whereu is a given positive integer antl < i < s. 1, pit matrix for set representation, wheseis a pre-defined

As a result, the compounded probability over the whole serigynstant based on the estimation of maximum set cardinality

converges to the target design value, even accounting for e SPBF aims at overcoming the limitation of standard BFs

infinite series. which do not take sets of variable sizes into account. Thiebas
Parameters of the SBF in addition to the initial bit size jgea of the SPBF is to allocate more memory space to enhance

and targetfpr include the expected growth rate)(and the the capacity of the filter before its implementation and aktu

error probability tightening ratior). Careful choosing of these geployment. The false match probability increases as the se

extra 2 parameters ultimately determines the space usau® Jgardinality grows. An existing SPBF must be reconstructed

of SBF compared to standard BF constructs. using a new bit matrix if the false match probability exceeds

an upper bound.

O. Dynamic Bloom Filter

. Retouched Bloom filters
Standard BFs and its mainstream variations suffer from ine

ficiencies when the cardinality of the set under represiemtat 1he Retouched Bloom filter (RBF) [50] builds upon two
is unknown prior to design and deployment. In stand-alofgPservations. First, for many BF applications, there araeso
applications with dynamic sets (i.e., with element additiof@/S€ positives, which are more troublesome than others and
and removal operations), the inefficiency arises from t&n be identified after BF construction but prior to deplopltr_\e .
impossibility of determining the optimal BF parametens,k) Second, there are cases \{vhe're a Iow' Igvel of false negasives i
in advance. Without knowledge of the upper bound on irpeceptable. For filter apphca’_uons fulfilling these two wig-
number of elements to be represented, a target false osiff€Nts; the RBF enables trading off the most troublesome fals
probability threshold cannot be guaranteed unless the BFPESitives for some randomly introduced false negatives.
rebuilt from scratch each time the set cardinality changes.The novel idea behind the RBF is ti clearing process
These limitations are not only a challenge for stand-alofy Which false positives are removed by resetting individua

applications. In distributed applications, BF recongior is bits. Performance gains can be measured by the proportion of
cumbersome and may hinder interoperability. false positives removed compared to the proportion of false

Dynamic Bloom filters (DBF) address the requirement fdi€gatives introduced.

dynamically adjusting the size of a probabilistic filter [48 N case of arandom bit clearing process, the gains are
The DBF construction is based on a dynamicim bit matrix N€utral, i-e., the’pr decrease equals tifewr increase. A better

that consists ofs standard (or counting) Bloom filters. TheP€rformance can be achieved usingselectiveclearing ap-
filter sizem and the number of hash functioitsare system Proach, which first tests for false positives for a givenrireg

parameters. The number of BF slices is adjusted at runtimeSgh @nd then resets only the bits belonging to “troublesome
allow the DBF to grow dynamically. elements. The authors propose four algorithms for deargasi

The DBF is based on the notion of an active Bloom filtef"€ /P more than the correspondin@r increase.

Only one Bloom filter in DBF is active at a time and others are
inactive. The number of elements inserted into each coestit R. Generalized Bloom Filters
Bloom filter in a DBF is tracked. During insertion, the first The basic idea of the Generalized Bloom Filter (GBF) [51]
BF that has its element counter less than the given threshigdto employ two sets of hash functions, ong,(. ., gx,)
(system parameter) is selected as the active BF. If such fan setting bits and another(, ..., hs,) to reset bits. A
active BF cannot be found, a new BF is created and designa®8F starts out as an arbitrary bit vector set with both 1s
as the active BF. The element is then inserted into the actard Os, and information is encoded by setting chosen bits
BF. The query element membership operation iterates the seteither 0 or 1, departing thus from the notion that empty
of BFs in the DBF and returns true if any of the BFs contaihit cells represent the absence of information. As a result,
the element. Removing an element requires first finding thiee GBF is a more general binary classifier than the standard
sub-BF claiming that the element is present. In case onlyoneBloom filter. In the GBF, the false-positive probability ipper
found, the element is removed by decrementingitlveunters bounded and it does not depend on the initial condition of
by one. If multiple filters return true, the element removalym the filter. However, the generalization brought by the set of
result in, at mostk potential false negatives. In this case, thash functions resetting bits introduces false negativesse
conserve the false negative free properties, the elemecglls probability can be upper bounded and does not depend either
are not decremented. Such element deletion failures boitéri on the bit filter initial set-up.
to a gradual increase in the false positive behaviour. Element insertion works by setting to O the bits defined
The DBF has been intended for a number of distributda g;(x),. .., gk, () and setting to 1 thé; bits at positions
environments, especially those in which new data is indertg (z),. .., hg, (z). In case of a collision, the bit is set to O.
(and potentially removed) frequently. The DBF requirest th&nalogously, membership queries are done by verifyinglif al
the filter size and the number of hash functions are consistéits defined byg; (x),..., gk, (x) are set to 0 and all bits
among all nodes. The key applications include Bloomjoindetermined byh, (z), ..., hg, (z) are setto 1. The GBF returns
informed search, and index search. false if any bit is inverted, i.e. the queried element does no

12

belong to the set with a high probability. The false positive The results include a 2-approximation algorithm with
and false negative estimates can be traded off by varying tHéN¢) running time ¢ > 6 in practice) and a(2 + ¢)
numbers of hash functiong, and k;. approximation algorithm with running timé(N?/¢), ¢ > 0.
Experimental evaluation results indicate that the pojitylar
conscious Bloom filters can achieve significant false-passit
probability reduction (or reduced filter sizes when the dals
Distance-sensitive Bloom filters (DSBF) [52] were conpositive rate is kept constant) compared to standard Bloom
ceived by Kirsch and Mitzenmacher to answer approximafiters. On the other hand, the popularity-conscious filters
set membership queries in the form isfz close to an item require offline computation for estimating input distriigut
of S?, where closeness is measured under a suitable metgopularities and storage for the custom hash scheme.
More specifically, given a metric spad@/,d), a finite set
S C U, and parameter® < e < 4, the filter aims to effectively

distinguish between inputs € U such thatd(u,z) < e for o })
somez € S and inputsu € U such thatd(u, z) > d for every A memory-optimized Bloom filter was proposed in [56] that
res. uses an additional hash function to select one of the pessibl

The DSBF is implemented using locality-sensitive hash locations in a I_3I00m filter_. Thus_only a single bit i_s set
functions [53], [54] and allows false positives and falsfor each element instead éfbits leading to memory savings.

negatives. By comparison, standard Bloom filters are falsEl€ idea of using a separate hash function to make the result
negative-free corresponding to the case where0 and s is of the k hash functions more uniform has also been proposed

any positive constant. While false positives and espedalbe in [46].
negatives require special consideration at applicaticsigde
time, a DSBF can provide speed and space improvemeltsWeighted Bloom filter

for networking_ and datab.ase applications, which can avoidgck et al. [57] propose Weighted Bloom filter (WBF), a
full nearest-neighbor queries or costly comparison ofETat gjoom filter variant that exploits the a priori knowledge of

against entire sets. Moreover, _overarching D_SBFs can frequency of element requests by varying the number of
constructed on top of a collection of conventional BFS tR5qh functions #) accordingly as a function of the element
provide a quick (probabilistic) answer to questions of Wi, o6y hopularity. Hence, a WBF incorporates the information
Are there any sets in the collection very close to this quety;s 4, the query frequencies and the membership likelihoodeof th
which may assist traditional BF-based distributed appbos. o|ements into its optimal design, which fits many appliaaio
well in which popular elements are queried much more often
T. Data Popularity Conscious Bloom Filters than other_s. The rationale_ behind the WBF dt_esigq is to con-
. . . . sider the filterfpr as a weighted sum of each individual ele-
_ In many |_n_f0rmat|on processing environments, the _unde_rIYﬁent’s false positive probability, where the weight is pigsly
ing popularities of_ data items and queries are not _'dent'c%rrelated with the element's query frequency and is negjati
but rather they differ and skewed. For example in many,ejated with the element's probability of being a member
networks data popularity has been observed to be similar AQ 5 consequence, in applications where the query freenci
the Zipf distribution. The standard Bloom filter does notitéi 5, he estimated or collected and result for instance ina ste

info_rmation_ pe_rt_aining to the underlying c_iata element_rdi_st or the Zipf distribution, the WBF largely outperforms fipr
bution. An intuitive approach to take data item popularitioi _the traditional Bloom filter. Even a simple binary classifica

account is to use longer encodings and more hash functigfiS,jements between hot and cold can result in false positive
for important elements and shorter encodings and fewer h"ﬁbrovements of a few orders of magnitude
functions for less important ones. A larger number of hash

functions will result in fewer false positives for populaatd _
elements. It may result in more false positives for unpapul¥V: Secure Bloom filters
data items; however, since they are requested less frdguent The hashing nature of Bloom filters provide some basic
this is not expected to become an issue [55]. security means in the sense that the identities of the set
Thus the Bloom filter construction lends itself well to dat@lements represented by the BF are not clearly visible for an
popularity-conscious filtering as well; however, this regs observer. However, plain BFs allow some leak of information
the minimization of the false positive rate by adapting theuch as the approximate total number of elements inserted.
number of hashes used for each element to its popularitiesMiorever, BFs are vulnerable to correlation attacks wheee th
sets and membership queries. To this end, an object impartarimilarity of BFs’ contents can be deduced by comparing
metric was proposed in [55]. The problem was modeled aB& indexes for overlaps, or lack thereof. Furthermore, in
constrained nonlinear integer program and two polynomiapplications where the hash functions are known, a dictjona
time solutions were presented with bounded approximatiattack provides probabilistic arguments for the preserfce o
ratios. The aim of the optimization problem, modeled adements in a given BF.
a variant of the knapsack problem, is to find the optimal To overcome these limitations, several proposals have sug-
number of hash functions for each element. The popularitigested secured BF variants as a natural extension of the prob
of elements are used to reduce the solution search space.lem of constructing data structures with privacy guarastee

S. Distance-sensitive Bloom filters

U. Memory-optimized Bloom Filter

13

TABLE I
KEY FEATURES OF THEBLOOM FILTER VARIANTS, INCLUDING THE ADDITIONAL CAPABILITIES : COUNTING (C), DELETION (D),
POPULARITY-AWARENESS(P), FALSE-NEGATIVES (FN), AND THE OUTPUT TYPE

Filter H Key feature \ C \ D \ P \ FN \ Output ‘
Standard Bloom filter Is elementz in setS? N|N|N/| N Boolean
Adaptive Bloom filter Frequency by increasing number of hash functions Y | N | N N Boolean
Bloomier filter Frequency and function value Y | N|N N Freq., f(z)
Compressed Bloom filter Compress filter for transmission N|N|N N Boolean
Counting Bloom filter Element frequency queries and deletion Y| Y | N| M | Boolean or freq.
Decaying Bloom filter Time-window Y|Y|N N Boolean
Deletable Bloom filter Probabilistic element removal N|Y|N N Boolean
Distance-sensitive Bloom filters Is z close to an item inS? N |[N|N Y Boolean
Dynamic Bloom filter Dynamic growth of the filter Y|Y|N N Boolean
Filter Bank Mapping to elements and sets Y|Y | M N x, set, freq.
Generalized Bloom filter Two set of hash functions to codewith 1Isand0s | N | N | N Y Boolean
Hierarchical Bloom filter String matching N|N|N N Boolean
Memory-optimized Bloom filter Multiple-choice single hash function N|N|N N Boolean
Popularity conscious Bloom filtef| Popularity-awareness with off-line tuning N|NJ|Y N Boolean
Retouched Bloom filter Allow some false negatives for better false positive rathl | N | N | Y Boolean
Scalable Bloom filter Dynamic growth of the filter N|N|N N Boolean
Secure Bloom filters Privacy-preserving cryptographic filters N|N|N N Boolean
Space Code Bloom filter Frequency queries Y| N| M N Frequency
Spectral Bloom filter Element frequency queries Y|Y | N| M Frequency
Split Bloom filter Set cardinality optimized multi-BF construct N|N|N N Boolean
Stable Bloom filter Has element: been seen before? N|Y|N/|Y Boolean
Variable-length Signature filter Popularity-aware with on-line tuning Y|Y|Y Y Boolean
Weighted Bloom filter Assign more bits to popular elements N|N|Y N Boolean

The secure indexes [58] by Goh enhance the BF insert ashoim functions.

query operations by applying pseudo-random functionsetwic

first to generate element codewords using a secret key, and

second to derive thé index bits after including a set-specificX. Summary and discussion

identifier as input to the keyed hash functions. Table Il summarizes the distinguishing features of the

Finally, Goh proposes a simple technique to further obscusgoom filter variants discussed in this section. The diffeére
the BF by randomly setting additional bits increasing the b®|oom filter designs aim at addressing specific concerns
for attackers at the cost of fpr increase. regarding space and transmission efficiency, false pegitite,

Encrypted Bloom filters by Bellovin and Cheswick [59]dynamic operation in terms of increasing workload, dynamic
propose a privacy-preserving filter variant of Bloom filtergperation in terms of insertions and deletions, countind an
which introduces a semi-trusted third party to transforne orfrequencies, popularity-aware operation, and mappingde e
party’s queries to a form suitable for querying the oth@nents and sets instead of simple set membership tests. For
party’s BF, in such a way that the original query privacgach variant, table Il indicates the output type (e.g., &ao)
is preserved. Instead of undisclosing the keys of all partirequency, value) and whether counting (C), deletion (D),
and securing the BF operations with keyed hash functions @s popularity-awareness (P) are supported (Yes/No/Maybe)
per Goh [58], Bellovin and Cheswick propose a specializest false negatives (FN) are introduced. Bloom filter vasant
form of encryption function where operations can be done avith counting capabilities can also be used to probalikdity
encrypted data. More specifically, their proposal is based encode arbitrary functions by considering the cardinatify
the Pohlig-Hellman cipher, which forms an Abelian grouproveeach set element being functional value and each set element
its keys when encrypting any given element. being a variable.

Yet another refinement on privacy-preserving variants of Bloom filters come in many shapes and forms, and they
Bloom filters is the cryptographically secure Bloom filteare widely used in distributed systems due to their compact
protocol proposed by [60]. In addition to providing a reanature and configurable trade-off between size and accuracy
sonable security definition, the proposed protocol suitgédss Making this choice and optimizing the parameters for the
employing third parties by using cryptographic primitiveexpected uses cases are fundamental factors to achieve the
known as blind signature schemes and oblivious pseudoraesired performance in practice.

14

/Caching « : -) systems, such as Web proxies and caches, database servers
[Coum'”g Siaem F'“ers]] and routers. We focus on the following key usage scenarios:
[Data Popularity] . Caching for Web servers and storage servers.
. Conscious BF « Supporting processing in P2P networks, in which prob-
- - BE abilistic structures can be used for summarizing content
[pectra] and caching [28], [64].
= o « Packet routing and forwarding, in which Bloom filters
t) and variants have important roles in flow detection and
Peer '[0 Peel’ [Compressed BF] classification.
Systems : « Monitoring and measurement. Probabilistic techniques
Data Popularity
CHiSEGIS BE can be used to store and process measurement data
- | = summaries in routers and other network entities.
[Retouched BF] o Supporting security operations, such as flow admission
A 4 and intrusion detection.
(- : d 7) Figure 9 shows an overview of Bloom filter variants that
ROUtmg an [Counting Bloom Filters}] can be used in the usage scenarios that this section focuses
Forwarding on. For more detail, see Figure 15 at the end of this article.
[Regular Bloom Filters]
A. Caching
; [Decaying BF] Bloom filters have been applied extensively to caching in
< > distributed environments. To take an early example, Fan, Ca
(- _ d 2 N Almeida, and Broder proposed the Summary Cache [27], [28]
MOf‘IItOI’Ing an [cOummg Bloom Filters]] system, which uses Bloom filters for the distribution of Web
Measurement cache information. The system consists of cooperativeigsox
[Hierarchical BF] that store and exchange summary cache data structures, es-
O sentially Bloom filters. When a local cache miss happens, the
\ [Decaying BF] proxy in question will try to find out if another proxy has a
< > copy of the Web resource using the summary cache. If another

proxy has a copy, then the request is forwarded there.
In order for distributed proxy-based caching to work well,
the proxies need to have a way to compactly summarize

._availabl ntent. In th mmar h m, proxi
Since there is no Bloom filter that fits all, one key questlo% ailable content the Summary Cache system, proxies

that application desianers should ask is whether falsetivesa periodically transfer the Bloom filters that represent thehe
are toFI)SrabIe or notheIaxin this constraint can helmﬁigrasContentS (URL lists). Figure 10 illustrates the use of a Bloo
cally in reducin thé overall ?alse ositive rate (cf re:t%ed filter-based summary cache at a proxy. The summary cache
yinr 9) P > is consulted and used to find nearest servers or other proxies
Bloom filters [50]), but raises also the question whether.
with the requested content.

the Blopm filtgr Is the.r_ight data structure ChOiFe despite Dynamic content poses a challenge for caching content and
alternative designs specific to the application domain¢df]), keeping the summary indexes up to date. Within a single

approximate dictionary-inspired approaches [6], [35Khea roxy, a Bloom filter representing the local content cache

_efficient variants (blocked Bloom filter) and Golomb COdinEieeds to be recreated when the content changes. This can be
g?f%lzrrr]lfn(taatl_%r;s gfscp:i%%sﬁg EBI(' Plgge ::](56?(’) :pcicme- | seen to be inefficient and as a solution the Summary Cache
icient versions u shing [63], r P'iSes counting Bloom filters for the maintenance of theirlloca

buItEspFa]ce-o.ptlTal alterlnatwes [ts].’ [t6]-d ific t ache contents, and then based on the updates a regular Bloom
ach variant or replacement introduces a specific trad@:. i< proadcast to other proxies.

Oflf. invol;/ing ﬁXﬁcutiog tt)i.rlne.’ sgace efficiency, i:‘d sod.on. The summary cache-based technique is used in the popular
Ultimately, which probabilistic data structure is bestted Squid Web Proxy Cache Squid uses Bloom filters for so-

depends a lot on the application specifics. Indeed, the vang o cache digests. The system uses a 128-bit MD5 hash of

tions of the standard Bloom filter discussed in this Sectien ahe key, a combination of the URL and the HTTP method, and
commonly the result of specific requirements of network a lits th,e hash into four equal chunks. Each chunk moduio the

distributed system applications, a variety of which we pres digest size is used as the value for one of the Bloom filter hash

in the following survey section. functions. Squid does not support deletions from the digedt
thus the digest must be periodically rebuilt to remove stale
IV. BLOOM FILTERS IN DISTRIBUTED COMPUTING information.

. S Bloom filters have been applied extensively in distributed
We have surveyed techniques for probabilistic represeng%rage to minimize disk lookups. As an example, we consider
tion of sets and functions. The applications of these atrest '

are manyfold, and they are widely used in various networkingwww.squid-cache.org

Fig. 9. Bloom filter variants grouped by usage scenarios.

15

v

Client Proxy |e Server or proxy

Bloom filter bank is
consulted to find relevant
proxy server. Content can

then be cached by the

proxy.

Bloom filter bank

Fig. 10. Bloom filters for caching proxies

Google’s Bigtable system that is used by many massively
popular Google services, such as Google Maps and Google Ultra node layer
Earth, and Web indexing. Bigtable is a distributed storage
system for structured data that has been designed with high
scalability requirements in mind, for example capability t /Flooding\

(Bloom filters)

store and query petabytes of data across thousands of com-
modity servers [65].

A Bigtable is a sparse multidimensional sorted map. The
map is indexed by a row key, column key, and a timestamp.

Ultra node

Each value in the map is an uninterpreted array of bytes. Leaf

Bigtable uses Bloom filters to reduce the disk lookups for Lesh Leaf Leaf
non-existent rows or columns [65]. As a result the query Data transfer

performance of the database has to rely less on costly disk

operations and thus performance increases. Fig. 11. 2-tier Gnutella

Apache Hadoop [66] is a framework for running applica-
tions on clusters of commodity hardware. Hadoop implements
the map/reduce paradigm in which an application is dividethn then produce a summary of all the filters from its leaves,
into smaller fragments in order to achieve parallel efficien and then sends it to neighbouring ultra-nodes. The ultdeso
The Hadoop implementation uses various Bloom filter strugre hubs of connectivity, each being connected to more than 3

tures to optimize the reduce stage. other ultra-nodes. Figure 11 illustrates this two-tier @i
architecture.
B. P2P Networks Rhea and Kubiatowicz [69] designed a probabilistic routing

Bloom filters have been extensively applied in P2P enviroadgorithm for P2P location mechanisms in the OceanStore
ments for various tasks, such as compactly storing keywonroject. Their aim was to determine when a requested file has
based searches and indices [67], synchronizing sets obeen replicated near the requesting system. This systesn use
network, and summarizing content. a construction calledttenuated Bloom filterwhich is simply

In [68], the applications and parameters of Bloom filtergn array ofd basic Bloom filters. Theth basic filter keeps
in P2P networks are discussed. The applications identifiegtord of what files are reachable withiihops in the network.
by the authors include peer content summarization and thee attenuated Bloom filter only finds files withinhops, but
filter length, compression, and hash types used, semaiitie returned paths are likely to be the shortest paths to the
overlays using peer Bloom filter similarity, and query ragti replica. In the distributed system, a node maintains aétteul
by Bloom filter similarity. Updating of peer Bloom filters isfilters for each neighbour separately, and updates are tastd
also discussed. periodically.

The exchange of keyword lists and other metadata betweemhe OceanStore system uses a two-tiered model, in which
peers is crucial for P2P networks. Ideally, the state shbeld the attenuated filter is part of the first tier. If the probstiit
such that it allows for accurate matching of queries andstakgearch fails, the search can then fallback to a determnisti
sublinear space (or near constant space). The later versfonoverlay search using Tapestry.
the Gnutella protocol use Bloom filters [68] to represent the In [70], the authors propose to exploit two-dimensional lo-
keyword lists in an efficient manner. In Gnutella, each leaflity to improve P2P system search efficiency. They prezent
node sends its keyword Bloom filter to an ultra-node, whidiocality-aware P2P system architecture called Foreseadchy

16

explicitly exploits geographical locality and temporatédity IP Address Route Updates
by constructing a neighbor overlay and a friend overlay, !
respectively. Each peer in Foreseer maintains a small numbe
of neighbors and friends along with their content filterscuse T E
as distributed indices.

Exponentially Decaying Bloom filters probabilistically -en
code routing tables in a highly compressed way that allows fo

efficient aggregation and propagation of routing inforimatin
unstructured peer-to-peer networks [71].

‘ Hash Table Manager‘

Bloom filter counters C
and Bloom filters B are

Bloom filters can be applied for approximate set recon- — updated
ciliation and data synchronization [72]. This applicatian Priority Encoder
important for P2P systems, in which a peer may send a ‘Hash Table Interface }»—»Next Hop

compact data structure to another peer that represents item 7
that the peer already has. Bloom filters are not directlylidea
for this kind of set reconciliation applications, becau$¢he
possibility for false positives. Therefore a number of Btoo
filter-baseq structures have been deve.loped .[73], [74]. Fig. 12. Longest Prefix Matching with Bloom filters
Bloom filters have also been used in social networks, for
example in Tribler [75], a social P2P file sharing system.
Tribler uses Bloom filters to keep the databases that maintgasks. These cases include IP lookups, loop and duplicate
the social trust network synchronized between peers. Thetection, forwarding engines, and deep packet scannieg. W
Bloom filters are used to filter out peers already known kiso briefly discuss the use of Bloom filters for content-dase
message destination nodes from swarm discovery messagedlish/subscribe and multicast, which is an active resear
Tribler can reach common friends—of—friends of two peers kytea.
using a Bloom filter of260 bytes in size, enabling a peer to 1) IP Lookups:Bloom filters can be applied in various parts
exchange information with thousands of others in a shog timin a routing and forwarding engine. Probabilistic techeisju
have been used for efficient IP lookups. IP routers forward
C. Packet Routing and Forwarding packets based on their address prefixes. Each prefix is as-
Bloom filters have been used to improve network routesociated with the next hop destination. CIDR-based routing
performance [76]. Song et al. used a Counting Bloom Filtend forwarding uses the longest prefix match for finding the
to optimize a hash table used in network processing, sueéxt hop destination. This is commonly solved using a binary
as maintaining per-flow context, IP route lookup, and packséarch, a trie search, or a TCAM. IP lookups can be made
classification. The small, on-chip Bloom filter eliminatésvg more efficient by dividing the addresses into tables based on
off-chip lookups when the searched flow is not found, arttieir length and then utilizing binary search to find the lesig
minimizes the number of lookups required when the flowommon prefix. Thei-left hashing technique has been used
is found. This is done by associating a hash table bucketmake this lookup more compact and efficient [78].
with each Bloom filter counter. The bucket associated with Many different probabilistic structures have been devetbp
the counter with the lowest value and lowest index is thdnr fast packet forwarding. To take one example, an algorith
always accessed, and the corresponding item is storedtin tiat uses Bloom filters fdrongest Prefix Matching (LPMyas
bucket. Counters are also artificially incremented to elateé introduced in [79]. The algorithm performs parallel queram
collisions. This leads to one worst-case off-chip lookup fdloom filters, to determine address prefix membership in sets
flows stored. of prefixes sorted by prefix length. This work indicates that
In [77], Bloom filters are used for high-speed networBloom filter—based forwarding engines can offer favoratee p
packet filtering. A regular Bloom filter with a collision liss formance characteristics compared to TCAMs used by many
implemented in kernel space in a Linux network driver. Theouters. Figure 12 illustrates this design for high—speredixp
filter is populated by signatures of (protocol, IP addresst)p matching. The idea is to have different regular Bloom filters
tuples. Incoming packets are matched against the filter afod different address prefixes. These BFs are implemented in
matches given to a user-space network monitoring prograhardware and updated by a route computation process. The
Wildcards are supported by setting one of the tuple fields toute manager uses counting Bloom filters to keep track of
zero when populating the filter, and on input packets whdmw the regular BFs should be instrumented.
querying. The authors also implement a threaded networkAsymmetric Bloom filters that allocate memory resources
packet processor to offload packet processing from the Linagcording to prefix distribution have been proposed for LPM.
kernel to a separate thread. With the Bloom filter the authdBy using direct lookup array an@ontrolled Prefix Expansion
almost quadruple the performance of the existing driver, §8PE), worst-case performance is limited to two hash probes
compared to when capturing all packets and filtering in useand one array access per lookup. Performance analysis indi-
space only. cates that average performance approaches one hash probe pe
In the remainder of the subsection, we focus on impoleokup with less than 8 bits per prefix [79].
tant uses of Bloom filter variants in routing and forwarding The system employs a set & Counting Bloom Filters

v
Off-chip Hash Tables

17

whereW is the length of input addresses, and associates anterface. The filters contain the addresses associatédtingt
filter with each unique prefix length. A hash table is alsmterfaces. When a multicast packet arrives on one interface
constructed for each distinct prefix length. Each hash tablethe Bloom filters of each outgoing interface are checked for
initialized with the set of corresponding prefixes, wherehea matches. The packet is forwarded to all matching interfaces
hash entry is a (prefix, next hop)—pair. This technique is interesting, because it does not store any
Based on the analysis, the expected number of hash probddresses at the router; however, the addition and reméval o
per lookup depends only on the total amount of memomulticast addresses requires that the Bloom filters aretadda
resources)/, and the total number of supported prefixd§, e.g., using any BF variant supporting deletions.
The number of required hash probes is giver(gy%. The A similar idea has been recently proposed for content-
result is independent of the number of unique prefix lengtiesntric networks [82], where packet forwarding decisiorag/m
and the distribution of prefixes among the prefix lengths. be based on a new identifier space for information objeats, (e.
2) Loop Detection: Bloom filters can be used for loop 256-bit flat labels) or novel forwarding identifiers. An afast
detection in network protocols. IP uses the Time-To-Livewitching element can be built by querying in parallel a bank
(TTL) field to detect and drop packets that are in a forwardimgf Bloom filters, one for each possible port-out (physicad an
loop. The TTL counter is incremented for each network hopirtual). The evaluation of the SPSwitch in [82] argues for
For small loops, TTL may still allow a substantial amount oft simpler system design and enhanced flexibility by relying
looping traffic to be generated. on a fingerprint-based-left hash table. The unifying Bloom
Icarus is a system that uses Bloom filters for preventinginciple of information-centric networking applicat®is to
unicast loops and multicast implosions. The idea is sttaighieduce the state requirements and simplify multicast suppo
forward, namely to use a Bloom filter in the packet headéy tolerating some overdeliveries due to false positives.
as a probabilistic loop detection mechanism. Each node has & similar tradeoff can be applied to enterprise and data
corresponding mask that can be ORed with the Bloom filteenter networks, where the scalability of the data plane be-
in the header of a packet, and then determine whether or natames increasingly challenging with the growth of forwagi
loop has occurred. Detection accuracy can be traded offisigatables and link speeds. Simply building switches with large
space required in the packet header [80]. amounts of faster memory is not appealing, since high-speed
3) Duplicate Detection:In [41], Deng and Rafiei intro- memory is both expensive and power hungry. Implementing
duce the Stable Bloom filter (SBF), which is a modifiedhash tables in SRAM is not appealing either because it regjuir
Counting Bloom Filter. In the update procegs,randomly significant over-provisioning to ensure that all forwaggltable
chosen counter values are decremented bgnd then the: entries fit. The BUFFALO architecture [83] proposes Bloom
counters of the added element are sefifaz, the maximum filters stored in a small SRAM to compress the information of
counter value. This causes a probabilistic aging of cosntehe addresses associated with each outgoing link. Levegagi
and eventual convergence of thir. This also results in the flattening of IP addresses and the shortest-path rquting
false negatives. The authors use the SBF in stream duplicBtéFFALO proposes a practical switch design that gracefully
detection, and achieve an improved false positive rate lBandles false positives without reducing the packet-foring
compared to a regular Bloom filter, and an improved falgate, while guaranteeing that packets reach their deidirsat
negative rate compared to simple buffering. with bounded stretch with high probability. Routing chasge
Decaying Bloom filters (DBFJleveloped in [38] can also are handled by dynamically adjusting the filter sizes based o
be used for duplicate detection in an unbounded data stredounting Bloom Filters stored in slow memory.
The DBF is a Counting Bloom filter, in which thecounters The other extreme approach to support multicast is to move
that map to a new element are setltg, the sliding window state from the network elements to the packets themselves in
size, when adding. Before adding, all counters are decrmdenform of Bloom filter-based representations of the multicast
by one. The authors further improved the performance of threes. This notion has been exploited by Ratnasamy et al.
DBF by dividing the DBF into blocks (lDBF) so that each when revisiting IP multicast [84] and by Jokela et al. [85]
addition only takesn/T+k operations, wher@ is the number to provide a scalable forwarding plane for publish/sulteeri
of blocks andm the number of counters. Unfortunately thenetworks (See Fig. 13). While [84] insert the inter-domain
authors examine the false positive ratio with a much small&S path information into a 800-bit Bloom filter-based header
sliding window than in [41], so [38] and [41] are not directly(called shimheader), LIPSIN [85] departs from the IP inter-
comparable. However, DBF appears, by interpolation, tehametworking model and handles link identifiers more gengrall
a much lower false positive rate than SBF: less théhat from network interfaces to virtual links spanning multiple
4096 bits, compared to SBF'8.2% at 16384 bits. Further- hops. Link IDs take a Bloom filter form (i.em bits with
more, DBF does not suffer from false negatives. only k£ bits set to 1) that can be ORed together to build
4) Forwarding Engines: Bloom filters can also be useda source-routing Bloom filter. Forwarding nodes maintain a
in multicast forwarding engines. A multicast packet is sersmall Link ID table whose entries are checked for presence
through a multicast tree. A multicast router maps an inR the routing BF to take the forwarding decision. In a typica
coming multicast packet to outgoing interfaces based on t#AN topology, using 256-bit BFs, multicast trees contagnin
multicast address. Initially, ®nvall suggests an alternativearound 40 links can be constructed to reach in a stateless
multicast forwarding technique using Bloom filters [81]. Irfashion up to 24 users while maintaining the false positive
this technique, a router has a Bloom filter for each outgoingte & 3%) and the associated forwarding efficiency within

18

Rendezvous (multicast tree maintenance)

Publication
[001101111 | TopiciD | Data F2o S
P 211 Node 2 Subscriber
o I EEE TR T >
-/ IF 1-1 /"
) IFP-1 IF1-3
***** Publisher Node 1 |-
———————— >
IF1-2
Node 3
Interface Link ID
IF 1-1 001001001
IF1-2 001010001
IF1-3 100011000
Fig. 13. Example of zFilter routing and forwarding
reasonable performance levels. rate of the Bloom filters [90].

Applying the core idea of compressing source routes into Packet classification continues to be an important chal-
packet headers, the Switching with in-packet Bloom filtedenge in network processing. It requires matching eachetack
(SiBF) architecture [86] proposes a Valiant load balancedjainst a database of rules and forwarding the packet accord
forwarding service tailored for data center networks. Bame ing to the highest priority matching rule. Within the hash-
OpenFlow-capable switches, iBFs are carried in the Etherdmsed packet classification algorithms, an algorithm that i
source and destination fields which are re-written at Tep-ajaining interest is the tuple space search algorithm tratgy
Rack switches. the rules into a set of tuple spaces according to their prefix

tian et al. have proposed an application-oriented multicdengths. An incoming packet can now be matched to the rules
(aom) protocol [87]. each router uses the standard unipastin a group by taking into consideration only those prefixes
routing table to determine necessary multicast copies axrtd n specified by the tuples. More importantly, matching of an
hop interfaces. all the multicast membership and addrgssincoming packet can now be performed in parallel over all
information traversing the network is encoded with bloortuples. Within these tuple spaces, a drawback of utilizing
filters for low storage and bandwidth overhead. the papes gdeashing is that certain rules will be mapped to the same
on to prove that the aom service model is loop-free and incdezation, also called a collision. The negative effect oftsu
no redundant traffic. the false positive performance of tree collision is that it will result in multiple memory accesse
bloom filter implementation was also analyzed. and subsequently longer processing time. The authors ¢f [91

5) Deep Packet Scanning and Packet ClassificatiBluom propose a pruned Counting Bloom Filter to reduce collisians
filters have found applications also in deep packet scanimngthe tuple space packet classification algorithm. The aghroa
which applications need to search for predefined patternsdacreases the number of collisions and memory accesses in
packets at high speeds. Bloom filters can be used to detéwt rule set hash table in comparison to a traditional hgshin
predefined signatures in packet payloads. When a susp®atem. They investigate several well-known hashing fanst
packet is encountered, it can then be moved for furthand determine the number of collisions and show that utijzi
investigation. One advantage of Bloom filters is that they cahe pruned Counting Bloom Filter can reduce the number of
be efficiently implemented in hardware and parallelized],[88collisions at leastt% and by at mosB2% for real rule sets.
[46], [89], which can result in high-performance and energy 6) Content-based Publish/Subscribéfhe content-based
efficient operation. publish-subscribe (pub-sub) paradigm for system design is

The storage requirements of the well-known crossprodumtcoming increasingly popular, offering unique benefits fo
algorithm used in packet classification can be significantimany data-intensive applications. Coupled with peerderp
reduced by using on-chip Bloom filters. For packets that mattechnology, it can serve as a central building block for teve
p rules in a rule set, a proposed algorithm requitesp + e oping data-dissemination applications deployed over gelar
independent memory accesses to return all matching rulssale network infrastructure. A key open problem in cregtin
wheree is a small constant that depends on the false positilarge-scale content-based pub-sub infrastructureseseltd

19

efficiently and accurately matching subscriptions withivas 3) Packet Attribution: The current Internet architecture
predicates to incoming events [92], [93]. A Bloom filter-bds allows a malicious node to disguise its origin during denial
approach has been proposed for general content-basedgoutif-service attacks with IP spoofing. A well-known solution
with predicates [93]. to identify these nodes is IP traceback. The main types of
Bloom filters and additional predicate indices were usdthceback techniques are (1) to mark each packet with partia
in a mechanism to summarize subscriptions [94], [95]. Apath information probabilistically, and (2) to store packe
Arithmetic Attribute Constraint Summary (AACS) and aligests in the form of Bloom filters at routers and reconstruc
String Attribute Constraint Summary (SACS) were used faitack paths by checking neighboring routers iteratively.
summarize constraints, because Bloom filters cannot tirect The Source Path Isolation Engine (SPIE)02] implements
capture the meaning of other operators than equality. Thgpacket attribution system, in which the system keeps wéck
subscription summarization is similar to filter merging,t buncoming and outgoing packets at a router. Simply storithg al
it is not transparent, because routers and servers need tdhgeresulting information is not feasible. Therefore, Sroe
aware of the summarization mechanism. In addition, the it al. proposed to use Bloom filters to reduce the state
of attributes needs to be known a priori by all brokers arf@¢quirements. A Bloom filter stores a summary of packet
new operators require new summarization indices. The benéfformation in a probabilistic way. One key observationhatt
of the summarization mechanism is improved efficiency,esin€ach router maintains its own Bloom filters and thus theihhas
a custom-matching algorithm is used that is based on Blodumnctions are independent.
filters and the additional indices. A SPIE-capable router creates a packet digest for every
packet it processes. The digest is based on the packet’s non-
mutable header fields and a prefix of first 8 bytes of the
D. Monitoring and Measurement payload. These digests are then maintained by a network

N . .component for a predefined time.
Network monitoring and measurement are key application\yhen 5 security component, such as an intrusion detection

areas for Bloom .filter.s and their variants. We brieﬂy examinﬁ,stem, detects that the network is under attack, it can use
some key cases in this domain, for example detection of heayig|= 15 trace the packet's route through the network to the
flows, Iceberg queries, packet attribution, and approX@malenger. A single packet can be traced to its source given that
state machines. Key functions for monitoring include flow,e royters on the route still have the packet digest availab
classification [96], [97] and approximate counting and SUnggise positive in this setting means that a packet is inctlyre
marization of flows and packets [98], [99]. reported as having been seen by a router. When the source of
1) Heavy Flows: Bloom filters have found many appli-5 packet is traced, false positives mean that the reverse pat
cations in measurement of network traffic. One particulgfecomes a tree (essentially branches to multiple pointsa@lue
application is the detection of heavy flows in a router. Heawy|se positives).
flows can be detected with a relatively small amount of The packet attribution was extended to payload attribution
space and small number of operations per packet by hashiygshanmugasundaram et al. [31] with the Hierarchical Bloom
incoming packets into a variant of the counting Bloom filtefiter, As discussed in this survey, this structure allows th
and incrementing the counter at each set bit with the sizleeof fquery of a part of a string. SPIE uses the non-mutable headers
packet. Then if the minimum counter exceeds some threshaldg a prefix of the payload, whereas with Hierarchical Bloom
value, the flow is marked as a heavy flow [100]. filters it is sufficient to have only the payload to perform a
2) Iceberg Queries: Iceberg querigd01] have been an traceback.
active area of research development. An Iceberg query Is suc The key idea of the IP traceback in [103] is to sample only
that identifies all items with frequency above some givea small percentage (e.g., 3%) of the digests of the sampled
threshold. Bloom filter variants that are able to count elei:ie packets. Relying on a low sampling rate is critical to relae t
are good candidate structures for supporting Iceberg egieristorage and computational requirements and allow linkdpee
In networking, low-memory approximate histogram struetur to scale to OC-192 or higher rates.
are needed for collecting network statistics at runtimet Fo The Generalized Bloom filter (GBF) [51], introduced in
example, in some applications it is necessary to track flo@ec. Ill-R, was conceived to address single-packet IP iaxie
across domains and perform, to name a few examples, cima stateless fashion by probabilistically encoding a ptisk
gestion and security monitoring. Iceberg queries can bd ugeute into the packets themselves. The key feature of the GBF
to detect Denial-of-Service attacks. is the double set of hash functions to set and reset bits hop-
Packet and payload attribution is another application areaby-hop, which provides built-in protection against Bloofftefi
measurement for Bloom filters. The problem in payload attiampering at the cost of some false negatives.
bution is as follows. Given a payload, the system reduces theCounter braids [104] revisits the problem of accurate per-
uncertainty that we have about the actual source and destifleww measurement. The authors present a counter archigectur
tion(s) of the payload, within a given target time intervilhe called Counter Braids, inspired by sparse random graphscode
goodness of the system is directly related with how much this a nutshell, Counter Braids "compresses while counting”.
uncertainty can be reduced. The implementation of a paylokdsolves the central problems (counter space and flow-to-
attribution system has two key components, namely a payloaaunter association) of per-flow measurement by "braidimg”
processing component and a query-processing componenthierarchy of counters with random graphs. Braiding results

20

drastic space reduction by sharing counters among flows; andoving over to the field of network security, Attig, Dharma-
using random graphs generated on-the-fly with hash furetigourikar and Lockwood [111] describe an FPGA implemen-
avoids the storage of flow-to-counter association. tation of an array of Bloom filters and a hash table used

While the problem of high-performance packet classificatidor string matching to scan malicious Internet packets. The
has received a great deal of attention in recent years, #estem searcheX Bloom filters with string signature lengths
research community has yet to develop algorithmic methoftem 2 to 26 bytes in parallel. False positives are resolved
that can overcome the drawbacks of TCAM-based solutiorisy exact match search using the hash table. Matches generate
A hybrid approach, which partitions the filter set into subseUDP packets that notify the user, a monitoring process, or a
that are easy to search efficiently, is introduced in [10%5le T network administrator.
partitioning strategy groups filters that are close to orwlzer Antichi et al. [112] used Counting Bloom Filters to detect
in tuple space, which makes it possible to use informatiomfr TCP and IP fragmentation evasion attacks. Attack signature
single-field lookups to limit the number of subsets that mustere split to 3-byte substrings which were inserted into a
be searched. Running time can be traded off against sp&®F. One CBF per attack signature string per flow was used.
consumption by adjusting the coarseness of the tuple sp&geoming fragmented packet data was then matched agaest th
partition. The authors find that for two-dimensional filtetss CBF's and attack substrings detected. Each substring téetec
the method finds the best-matching filter with just four haskhas removed from the corresponding CBF. Corresponding
probes while limiting the memory space expansion factor fall string matchers were also enabled when a substring was
about 2. They also introduce a novel method for Longest Prefietected. When the CBF was empty to the degrethe attack
Matching (LPM), which is used as a component of the overadtring was considered detected, and the full string matafasr
packet classification algorithm. The LPM method uses a smaled to check for false positives. In case the full stringctmert
amount of on-chip memory to speed up the search of an offetected the attack, the flow was blocked. The authors report
chip data structure, but uses significantly less on-chip argm a greater tha9% detection rate and false positive ratios of
than earlier methods based on Bloom filters. 1% or less.

4) Approximate State MachinesEfficient and compact Bloom filters are used in the Trickles stateless network
state representation is needed in routers and other netwsrkck and transport protocol for preventing replay attacks
devices, in which the number and behaviour of flows needgainst servers. Two Bloom filters of identical size and gisin
to be tracked. TheApproximate Concurrent State Machinehe same family of hash functions are used to simplify the
(ACSM) approach was motivated by the observation thgkriodic purge operation [113]. The counting variant (CBF)
network devices, such as NATs, firewalls, and applicatias used in [114] to provide a lightweight route verification
level gateways, keep more and more state regarding T@Rchanism that enables a router to discover route failures
connections [106]. The ACSM construction was proposed &nd inconsistencies between advertised Internet routéghan
track the simultaneous state of a large number of entitiagtual paths taken by the data.
within a state machine. ACSMs can return false positives, Focusing on the distributed denial-of-service (DDoS)éssu
false negatives, and 'do not know’ answers. Their constiact Ballani et al. [115] were among the first to use in-network
follows the Bloom filter principle and proposes a spaceBloom filters to pro-actively filter out attacks, allowingaka
efficient fingerprint compressed d-left hash table design. host to explicitly declare to the network routing infrastiure

what traffic it wants routed to it. In addition to performing
E. Security the standard longest-prefix match before forwarding pacleet

The hashing nature of the Bloom filter makes it a naturabuter performs a reachability check using Bloom filtersnSi
fit for security applications. Spafford (1992) was perhapes tilar in their reliance on Bloom filters, Phalanx [116] coméxn
first person to use Bloom filters to support computer securitjie notion of capabilities with a multi-path-aware overlay
The OPUS system [107] uses a Bloom filter which efficientlymplementing Bloom filters to reduce state requirementdewhi
encodes a wordlist containing poor password choices to hekil providing probabilistic guarantees for in-networmcsirity.
users choose strong passwords. Two years later, Manber vahg et al. [117] proposeongestion puzzleso mitigate
Wu [108] presented two extensions to enhance the Blootmandwidth-exhaustion attacks. Congested routers clalen
filter-based check for weak passwords. clients to generate hashes that match certain criteriaderor

The privacy-preserving secure Bloom filters by Bellovito obtain bandwidth. Basic Bloom filters are maintained at
and Cheswick [59], described in Sec. Ill-W, allows parties tmuters to detect duplicate solutions.
perform searches against each other’'s document sets withoun [118], Wolf presents a mechanism where packet forward-
revealing the specific details of the queries. The systeng is dependent on credentials represented as a packetrhead
supports query restrictions to limit the set of allowed dger size Bloom filter. Credentials are issued by en-route reuter

Bloom filters have been used by Aguilera et al. [109] tlow initiation and later verified on a packet-basis. Alsodshs
detect hash tampering in a network-attached disks (NADah in-packet Bloom filters (iBF), the self-routing capaiélé
infrastructure. Also in the field of forensic filesystem pradn [119] enhance the security properties of LIPSIN [85] by
tices, themd5bloommanipulation tool [110] employs Bloom using iBFs as forwarding identifiers that act simultanepasl
filters to efficiently aggregate and search hashing infoionat path designators, i.e. define which path the packet shokéd ta
demonstrating its practicality of identifying object viensing and as capabilities, i.e. effectively allowing the forwiagl
in Linux libraries. nodes along the path to enforce a security policy where

21

to XPath queries encoded to it. In this method, millions dhpa

ﬂ ‘ gueries can be stored efficiently. At the same time, it is easy
Sender to deal with the change of these path queries. Performance
Detect wakeup signal is improved by using Prefix Filters to decrease the number
Data communications of candidate paths. This Bloom filter-based method takes les
time to build a routing table than an automaton-based method
Makeup o Rocetver: Wakeus module '_rhe _method has a good perfo_rmance with acceptﬁ»}emhgn
Bloomfiten filtering XML packets of relatively small depth with millien

of path queries.
‘ Achieving expressive and efficient content-based routing i
Receiver: Data communications module publish/SUbSCI‘ibe SyStemS iS a d|ﬁ|cu|t problem. Tradmb
approaches prove to be either inefficient or severely lidnite
in their expressiveness and flexibility. The authors of [93]
present a novel routing method, based on Bloom filters, which
shows high efficiency while simultaneously preserving the

only explicitly authorized packets are forwarded. Link ID§lexibility of content-based schemes. The resulting impam
are dynamically computed at packet forwarding time using!ation Is a faS_t, flexible and fully decoupled content-based
loosely synchronized time-based shared secret and auhiitioOUb“Sh/SUbS(f”be system. .
in-packet flow information (e.g., invariant packet congnt As pervasive Computlng enwronment; become popular,
The capabilities are thus expirable and flow-dependent, @IE_ID tags are introduced into our daily life. However, there
do not require any per-flow network state or memory lool€XISts a privacy problem that an adversary can trace us_ers’
ups, which are traded-off for additional, though amenatée;, Pehavior by linking the tag's ID. Although a hash-chain
packet computation. scheme can solve this privacy problem, the scheme needs a
In wireless sensor networks (WSNs), a typical attack H9ng identification time or a large amount of memory. The au-
compromised sensor nodes consists of injecting large qudfers of [125] propose an efficient identification schemegsi
tites of bogus sensing reports, which, if undetected, aﬁgoom fllterg. Th_e_lr B_Ioom_pre-calculanon scheme provides
forwarded to the data collector(s). The statistical erteouhigh-speed identification with a small amount of memory by
filtering approach [120] proposes a detection method bas&g"ng pre-calculated outputs of thg tags in Bloom filters. 3
on a Bloom filter representation of the report generation 1he authors of [126] propose a simple but elegant modifi-
(collection of keyed message authentications), that igfiger Ccation to the Bloom f'llter algorilthm fo'r hardwf':lre |mplemenFa
probabilistically and dropped en-route in case of incdrress. ions that uses banking combined with special hash funstion
In order to address the problem of multiuser broadcast authé1at guarantee all hash indexes fall into non-conflictingksa
tication in WSNs, Ren et al. [121] propose a neat integratiorf!€y evaluate several applications of this Banked Bloorarfilt
of several cryptographic techniques, including Bloom fite (BBF) in prediction in processors: BBF branch prediction,

the partial message recovery signature scheme and theaeRBF load hit/miss prediction, and BBF last-tag prediction.
hash tree. The BBF predictors can provide accurate predictions with

substantially less cost than previous techniques.

A power management proxy for P2P applications uséd
sets of hash functions and picked the Bloom filter with the

This section summarizes use of Bloom filters in severiast 1 bits to improve the false positive rate [127]. Thehhas
other interesting applications. functions were generated from a seed hash using a RNG. The

In web services, Counting Bloom Filters have been used feystem was used to allow a smart NIC to answer peer queries,
accelerated service discovery [122]. To manage a large aumhnd the computer was only woken up for download and upload
of services based on quantified service features, the &atuasks to conserve energy.
were stored in text form and mapped into the Bloom filter. Bloom filters have been used for differential file access in

A Bloom filter-based wakeup mechanism has recently beanDBMS [128]. The differential file, with updated records,
proposed [123]. This work proposes an identifier-matchingould be accessed only when the record to fetch was contained
mechanism that uses a Bloom filter for wake-up wireless the Bloom filter, indicating that the record in the databas
communication. The devices and services agree on wakeismot up-to-date. Otherwise the system would know that the
wireless identifiers beforehand. The simulation resulggest record has not been changed, and it is sufficient to read the
that this approach can be used to reduce mobile deviezord from the database.
energy consumption. The identifier-matching mechanism canBloom filters were used in probabilistic finite state transi-
be implemented with a simple circuit using a Bloom filter, inion system verification in [129]. The authors optimize hash
which a query only uses an AND circuit. Figure 14 shows atrlculation by shortening the state name using hashing, and
overview of device wakeup using a Bloom filter. then re-hashing the resulting value to obtain A&loom filter

The authors of [124] introduce a novel approximate methaddices. A Bloom filter allows all states to be kept in memory
for XML data filtering, in which a group of Bloom filters in a compact manner so that verification can proceed without
represented a routing table entry and filtered packets dicgpr swapping.

Fig. 14. Overview of device wakeup using a Bloom filter

F. Other Applications

22

(Approximate Count and Deletion Support\

(Distributed Search, Informed Search, Caching,
O Shortest Path Distance Calculation

[
J \ [Dynamic BF J[Scalable BF
(

Dynamic Count Filter}[Spectral BF

.

(“Search with Known Popularity

O

\ (Memory Efficiency

Conscious BF

[Data Popularity
AN N

Weighted BF J[Retouched BF]
v,
~

P2P File Sharing, Resource location [e T]

-
ol [Memory-Optlmlzed BF] Partial Matching ~
(& A -/
(] Networking, Database . .
P‘artial Match Search Hierarchical BF
i - - ~N [Distance-sensitive BF}
S High Variability \))
~

(“High-speed per-Flow [Variable-Length

Traffic Monitoring Signature BE }[Space Code BF
-

- [
_ [Unbounded Duplicaté

>
Detection

Adaptive BF]
/

(] Duplicate Detection - - Generic)
Hint-Based Routing [Time Decaying BF] Add-ons [Dynamic BF][Generalized BF

[Decaying BF
" N\

[Scalable BF]{Bloomier Filter]{ Secure BF

\;}
\——) _

Fig. 15. Summary of Bloom filter variants

In [130], Bloom filters are used to represent and quefilter, such as those required by per-flow traffic monitoring.
ranges of multi-dimensional data. Range queries are hdndknally, Unbounded duplicate detectids a class of Bloom
by segmenting the attribute range into separate Bloomdiltdilter that aims to represent a continuous stream of incoming

that represent membership in that segment. elements and detect duplicate elements in the stream. The
Figure also includes five variants that have been grouped
V. SUMMARY into General add-onsThese Bloom filter techniques can be

. . . employed alone, or combined with another variant in the
Bloom filters are a general aid for network processingjyre For example, many Bloom filters can be combined
and improving the performance and scalability of distretbit with Scalable Bloom Filterby increasing their length with

systems. In Figure 15, The Bloom filter variants introduded L e\, piock of space after the false positive ratio reaches a
this paper are categorized by application domain and stgxbor

X _) certain value.
features. The Figure aims to help domain experts select an
appropriate Bloom filter based on their application. An ekpe

need only find their domain on the left side and pick a Bloom

filter on its right. Each rectangular bubble represents amlo This work was supported by TEKES as part of the Future
filter variant. Variants that support a certain feature aunfl Internet program of TIVIT (Finnish Strategic Centre for -Sci
inside a highlighted area labeled with the name of that featuence, Technology and Innovation in the field of ICT).
Approximate count and deletion suppoefers to the ability

to support approximate multiplicity and deletion of elertgen REFERENCES

The Varla.'nts that ‘.SUPport this are derlyed from th? Coun.tmg[l] A. Z. Broder and M. Mitzenmacher, “Network Application$ Bloom
Bloom Filter and 'n‘?ll_lde an array of fixed or varlab'le.5|ze Filters: A Survey,"Internet Mathematigsvol. 1, no. 4, 2003.
counters.Memory efficiencyneans that the variant optimizes [2] B. H. Bloom, “Space/time trade-offs in hash coding withoalable
the memory use of a Bloom filter in some fashion. These €rrors.” Commun. ACMvol. 13, no. 7, pp. 422-426, 1970.

.. . . . [3] A. Ostlin and R. Pagh, “Uniform hashing in constant timed dimear
are .recomme'j]ded for appllcatlops in which memory is scgrce. space,” inSTOC '03: Proceedings of the thirty-fifth annual ACM
Partial matching means the ability to answer the question symposium on Theory of computingNew York, NY, USA: ACM,
if = is near an element contained in the filter. These allow__ 2003, pp. 622-628. o _

. . L [4] C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluatidnhash
for example in-word matches for text searétigh variability

) A i ! y functions for multipoint measurement§SIGCOMM Comput. Commun.
variants allow rapid changes in the set of items stored in the Rey, vol. 38, no. 3, pp. 39-50, 2008.

ACKNOWLEDGEMENTS

[5] A. Pagh, R. Pagh, and S. S. Rao, “An optimal Bloom filter aep}

(6]

(7]

El

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

ment,” in SODA '05: Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithmsPhiladelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2005, pp. 823-829.

E. Porat, “An optimal Bloom filter replacement based on mxasolv-
ing,” in CSR '09: Proceedings of the Fourth International Computer

(26]

(27]

Science Symposium in Russia on Computer Science - Theory afikB]

Applications Berlin, Heidelberg: Springer-Verlag, 2009, pp. 263-273.
M. Mitzenmacher, “Compressed Bloom filters,” IRODC '01: Pro-
ceedings of the twentieth annual ACM symposium on Prirgiple
distributed computing New York, NY, USA: ACM, 2001, pp. 144—
150.

P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, Drhton,
M. Smid, and Y. Tang, “On the false-positive rate of Bloom fite
Inf. Process. Lett.vol. 108, no. 4, pp. 210-213, 2008.

D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and network éggtions
of dynamic Bloom filters,” inProceedings of the 25th Annual Joint
Conference of the IEEE Computer and Communications Sesieti
(INFOCOM), Apr 2006.

L. F. Mackert and G. M. Lohman, “R* Optimizer Validation @n
Performance Evaluation for Distributed Queries,MhDB’86 Twelfth
International Conference on Very Large Data Basasg 1986, pp.
149-159.

G. Marsaglia and W. W. Tsang, “Some difficult-to-passtdesf
randomness,Journal of Statistical Softwarevol. 7, no. 3, pp. 37-51,
2002.

G. VargheseNetwork Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices (The Morgan KaufmanneSen
Networking) San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2004.

A. Kirsch, M. Mitzenmacher, and G. Varghesdélgorithms for
Next Generation Networks, Computer Communications and/diks
Springer-Verlag, Feb 2010, ch. Hash-Based Techniquesifgr-Bpeed
Packet Processing, pp. 181-218.

J. L. Carter and M. N. Wegman, “Universal classes of hasittions
(extended abstract),” 8TOC '77: Proceedings of the ninth annual
ACM symposium on Theory of computingNew York, NY, USA:
ACM, 1977, pp. 106-112.

G. Antichi, D. Ficara, S. Giordano, G. Procissi, and Ftu¥ci,
“Blooming trees for minimal perfect hashing,” iRroceedings of the
Global Communications Conference (GLOBECOMIEEE, Nov 2008,
pp. 1567-1571.

A. Kirsch and M. Mitzenmacher, “Less hashing, same penforce:
building a better Bloom filter,” InESA'06: Proceedings of the 14th
annual European symposium on Algorithmé.ondon, UK: Springer-
Verlag, 2006, pp. 456-467.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balared alloca-
tions,” SIAM J. Comput.vol. 29, no. 1, pp. 180-200, 2000.

B. Vocking, “How asymmetry helps load balancing,”ACM vol. 50,
no. 4, pp. 568-589, 2003.

A. Z. Broder and A. R. Karlin, “Multilevel adaptive hasty,” in SODA
'90: Proceedings of the first annual ACM-SIAM symposium cstiite
algorithms Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1990, pp. 43-53.

F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, an¥&ghese,
“An Improved Construction for Counting Bloom Filters,” iti4th
Annual European Symposium on Algorithms, LNCS 42686, pp.
684-695.

F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and &gklese,
“Bloom filters via d-left hashing and dynamic bit reassignnieimt
44th Allerton ConferengeSep 2006.

S. Lumetta and M. Mitzenmacher, “Using the power of twoiche to
improve Bloom filters,"Internet Mathematigsvol. 4, no. 1, pp. 17-33,
2007.

F. Hao, M. Kodialam, and T. V. Lakshman, “Building high acacy
Bloom filters using partitioned hashing,” BIGMETRICS '07 New
York, NY, USA: ACM, 2007, pp. 277-288.

M. V. Ramakrishna, “Practical performance of Bloom fiteand
parallel free-text searchingCommun. ACMvol. 32, no. 10, pp. 1237—-
1239, 1989.

M. Mitzenmacher and S. Vadhan, “Why simple hash functiomskw
exploiting the entropy in a data stream,” $ODA ’'08: Proceedings of
the nineteenth annual ACM-SIAM symposium on Discrete #dlgos
Philadelphia, PA, USA: Saociety for Industrial and Appliecatlemat-
ics, 2008, pp. 746-755.

[29]

(30]

[31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

(45]

[46]

23

K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A dar-time
probabilistic counting algorithm for database applicasi9ACM Trans.
Database Systvol. 15, no. 2, pp. 208-229, 1990.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
scalable wide-area web cache sharing protoc®IGCOMM Comput.
Commun. Reyvol. 28, no. 4, pp. 254-265, 1998.

——, “Summary cache: a scalable wide-area web cache sgharin
protocol,” IEEE/ACM Trans. Netwwvol. 8, no. 3, pp. 281-293, 2000.
D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, ‘iklayer com-
pressed counting Bloom filters,” iRroceedings of the 27th Annual
Joint Conference of the IEEE Computer and Communicatioogeges
(INFOCOM) IEEE, 2008, pp. 311-315.

C. E. Rothenberg, C. A. B. Macapuna, F. L. Verdi, and M.gsliéges,
“The deletable Bloom filter: a new member of the Bloom family,”
IEEE Communications Letterssol. 14, no. 6, pp. 557-559, June
2010. [Online]. Available: http://arxiv.org/abs/100852

K. Shanmugasundaram, H. @mimann, and N. Memon, “Payload
attribution via hierarchical Bloom filters,” i€CS '04: Proceedings of
the 11th ACM conference on Computer and communicationgigecu
New York, NY, USA: ACM, 2004, pp. 31-41.

S. Cohen and Y. Matias, “Spectral Bloom filters,” 88GMOD '03:
Proceedings of the 2003 ACM SIGMOD international confeeenn
Management of data New York, NY, USA: ACM, 2003, pp. 241-252.
B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “ThedgImier filter:
an efficient data structure for static support lookup tablies SODA
'04: Proceedings of the fifteenth annual ACM-SIAM symposam
Discrete algorithms Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2004, pp. 30—39.

D. Charles and K. Chellapilla, “Bloomier filters: A seabiook,” in
ESA ’'08: Proceedings of the 16th annual European symposiom o
Algorithms Berlin, Heidelberg: Springer-Verlag, 2008, pp. 259-270.
M. Dietzfelbinger and R. Pagh, “Succinct data struetufor retrieval
and approximate membership (extended abstract)C#&LP '08: Pro-
ceedings of the 35th international colloquium on Automatmguages
and Programming, Part.| Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 385-396. B

L. Golab and M. T.Ozsu, “Issues in data stream management,”
SIGMOD Reg.vol. 32, no. 2, pp. 5-14, 2003.

A. Arasu and G. S. Manku, “Approximate counts and quastibver
sliding windows,” in PODS ’'04: Proceedings of the twenty-third
ACM SIGMOD-SIGACT-SIGART symposium on Principles of detab
systems New York, NY, USA: ACM, 2004, pp. 286—296.

H. Shen and Y. Zhang, “Improved approximate detectionulidates
for data streams over sliding windows]. Comput. Sci. Technol.
vol. 23, no. 6, pp. 973-987, 2008.

X. Li, J. Wu, and J. J. Xu, “Hint-based routing in wsns ngi
scope decay Bloom filters,” itWNAS '06: Proceedings of the 2006
International Workshop on Networking, Architecture, antbr&ges
Washington, DC, USA: IEEE Computer Society, 2006, pp. 118-11
K. Cheng, L. Xiang, M. lwaihara, H. Xu, and M. M. Mohani&ime-
decaying Bloom filters for data streams with skewed distiing,” in
RIDE '05: Proceedings of the 15th International WorkshopResearch
Issues in Data Engineering: Stream Data Mining and Applaas
Washington, DC, USA: IEEE Computer Society, 2005, pp. 63-69.
F. Deng and D. Rafiei, “Approximately detecting duplesfor stream-
ing data using stable Bloom filters,” iIBIGMOD ’'06: Proceedings of
the 2006 ACM SIGMOD international conference on Managerént
data New York, NY, USA: ACM, 2006, pp. 25-36.

A. Kumar, J. J. Xu, L. Li, and J. Wang, “Space-code Bloontefil
for efficient traffic flow measurement,” iMC '03: Proceedings of the
3rd ACM SIGCOMM conference on Internet measuremeéwéw York,
NY, USA: ACM, 2003, pp. 167-172.

Y. Matsumoto, H. Hazeyama, and Y. Kadobayashi, “Adaptive
Bloom filter: A space-efficient counting algorithm for
unpredictable network traffic,” IEICE Trans. Inf. Syst.
vol. E91-D, no. 5, pp. 1292-1299, 2008. [Online].
Available: http://iplab.naist.jp/research/tracebdt&isumotal EICE-
ED200805.pdf

Y. Lu, B. Prabhakar, and F. Bonomi, “Bloom filters: Designovations
and novel applications,” irProceedings of the Forty-Third Annual
Allerton Conferencesep 2005.

M. Yoon, “Aging Bloom filter with two active buffers forghamic sets,”
IEEE Transactions on Knowledge and Data Engineerirgl. 22, no. 1,
pp. 134-138, 2010.

F. Chang, K. Li, and W. chang Feng, “Approximate cachespfacket
classification,” inProceedings of the 23rd Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCQRDA4.

[47]

(48]

[49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

(57]
(58]

[59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]

(68]

(69]

P. S. Almeida, C. Baquero, N. Preguica, and D. HutchisSgalable
Bloom filters,” Inf. Process. Lett.vol. 101, no. 6, pp. 255-261, 2007.
D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic @&io
filters,” IEEE Transactions on Knowledge and Data Engineering
vol. 22, no. 1, pp. 120-133, 2010.

M. Xiao, Y. Dai, and X. Li, “Split Bloom Filter,” Acta Electronica
Sinicg vol. 32, no. 2, pp. 241-245, 2004.

B. Donnet, B. Baynat, and T. Friedman, “Retouched Bloolters:
allowing networked applications to trade off selected dapsitives
against false negatives,” ICONEXT '06: Proceedings of the 2nd
international conference on Emerging networking expenitseand
technologies New York, NY, USA: ACM, 2006, pp. 1-12.

R. P. Laufer, P. B. Velloso, D. d. O. Cunha, I. M. Moraes, M D.
Bicudo, M. D. D. Moreira, and O. C. M. B. Duarte, “Towards slats
single-packet IP traceback,” IlCN '07: Proceedings of the 32nd IEEE
Conference on Local Computer NetwarksWashington, DC, USA:
IEEE Computer Society, 2007, pp. 548-555.

A. Kirsch and M. Mitzenmacher, “Distance-sensitive 8o filters,”
in Proceedings of the Eighth Workshop on Algorithm Enginepand
Experiments and the Third Workshop on Analytic Algorittenénd
Combinatorics (Proceedings in Applied MathematicsyIAM, 2006.
A. Andoni and P. Indyk, “Near-optimal hashing algorithifios approx-
imate nearest neighbor in high dimension6gmmun. ACMvol. 51,
no. 1, pp. 117-122, 2008.

A. Gionis, P. Indyk, and R. Motwani, “Similarity searcm ihigh
dimensions via hashing,” iVLDB '99: Proceedings of the 25th
International Conference on Very Large Data BaseSan Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 518-529.
M. Zhong, P. Lu, K. Shen, and J. Seiferas, “Optimizingadabpularity
conscious Bloom filters,” irPODC '08: Proceedings of the twenty-
seventh ACM symposium on Principles of distributed comgutiNew
York, NY, USA: ACM, 2008, pp. 355-364.

M. Ahmadi and S. Wong, “A memory-optimized Bloom filter usiag
additional hashing function.” ifProceedings of the Global Communi-
cations Conference (GLOBECOM)IEEE, Nov 2008, pp. 2479-2483.
J. Bruck, J. Gao, and A. Jiang, “Weighted Bloom filten"2006 IEEE
International Symposium on Information Theory (ISIT0&)ly 2006.
E.-J. Goh, “Secure indexes,” Cryptology ePrint ArahivReport
2003/216, 2003, http://eprint.iacr.org/2003/216/.

S. M. Bellovin and W. R. Cheswick, “Privacy-enhancedrshes using
encrypted Bloom filters,” Columbia University and AT&T, TedRep.
CUCS-034-07, 2004.

R. Nojima and Y. Kadobayashi, “Cryptographically sexuBloom-
filters,” Transactions on Data Privagyol. 2, no. 2, pp. 131-139, 2009.
P. Hurley and M. Waldvogel, “Bloom filters: One size fitdl?a

Proceedings of the Annual IEEE Conference on Local Computer

Networks (LCN)pp. 183-190, 2007.

F. Putze, P. Sanders, and J. Singler, “Cache-, hashsgack-efficient
Bloom filters,” inWEA'07: Proceedings of the 6th international confer-
ence on Experimental algorithmsBerlin, Heidelberg: Springer-Verlag,
2007, pp. 108-121.

R. Pagh, “Cuckoo hashing,” iBncyclopedia of AlgorithmsM..-Y. Kao,
Ed. Springer, 2008.

H. Cai, P. Ge, and J. Wang, “Applications of Bloom filtérs peer-
to-peer systems: Issues and questions,NisS '08: Proceedings of
the 2008 International Conference on Networking, Architeg; and
Storage Washington, DC, USA, 2008, pp. 97-103.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtatde
distributed storage system for structured data,ODI '06: Proceed-
ings of the 7th USENIX Symposium on Operating Systems Dasijn
Implementation Berkeley, CA, USA: USENIX Association, 2006, pp.
15-15.

D. Borthakur,The Hadoop Distributed File System: Architecture and
Design The Apache Software Foundation, 2007.

J. Risson and T. Moors, “Survey of research towards sbipeer-to-
peer networks: search method€bmput. Netw.vol. 50, no. 17, pp.
3485-3521, 2006.

H. Cai, P. Ge, and J. Wang, “Applications of Bloom filtérs peer-
to-peer systems: Issues and questions,NisS '08: Proceedings of
the 2008 International Conference on Networking, Archites; and
Storage Washington, DC, USA: IEEE Computer Society, 2008, pp.
97-103.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, Pt&® D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhadg89]

“OceanStore: an architecture for global-scale persistsiorage,”
SIGARCH Comput. Archit. Newsol. 28, no. 5, pp. 190-201, 2000.

24

[70] H. Cai and J. Wang, “Exploiting geographical and tempdoaality
to boost search efficiency in peer-to-peer systet=EE Transactions
on Parallel and Distributed Systemsol. 17, no. 10, pp. 1189-1203,
2006.

A. Kumar, J. Xu, and E. W. Zegura, “Efficient and scalablexy rout-
ing for unstructured peer-to-peer networks, Hroceedings of the 24th
Annual Joint Conference of the IEEE Computer and Commupitsit
Societies (INFOCOM)2005, pp. 1162-1173.

D. Starobinski, A. Trachtenberg, and S. Agarwal, “Béfiit pda syn-
chronization,”IEEE Transactions on Mobile Computingol. 2, no. 1,
pp. 40-51, 2003.

J. Byers, J. Considine, M. Mitzenmacher, and S. Rostfotmed
content delivery across adaptive overlay networks SiGCOMM ’'02:
Proceedings of the 2002 conference on Applications, tdojres,
architectures, and protocols for computer communicationew York,
NY, USA: ACM, 2002, pp. 47-60.

P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyavsearching,”
in Middleware '03: Proceedings of the ACM/IFIP/USENIX 2008ein
national Conference on MiddlewareNew York, NY, USA: Springer-
Verlag New York, Inc., 2003, pp. 21-40.

J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yakglosup,

[71]

[72]

[73]

[74]

[75]

D. H. J. Epema, M. Reinders, M. R. van Steen, and H. J. Sips,

“TRIBLER: a social-based peer-to-peer syster@bncurrency and
Computation: Practice and Experienceol. 20, no. 2, pp. 127-138,
2008.

H. Song, S. Dharmapurikar, J. Turner, and J. LockwoodstFhash
table lookup using extended Bloom filter: an aid to network-pr
cessing,” inSIGCOMM '05: Proceedings of the 2005 conference on
Applications, technologies, architectures, and protecfar computer
communications New York, NY, USA: ACM, 2005, pp. 181-192.

L. Deri, “High-speed dynamic packet filtering]’ Netw. Syst. Manage.
vol. 15, no. 3, pp. 401-415, 2007.

A. Z. Broder and M. Mitzenmacher, “Using multiple hash ¢tions
to improve IP lookups,” inProceedings of the 20th Annual Joint
Conference of the IEEE Computer and Communications Sesieti
(INFOCOM), 2001, pp. 1454-1463.

S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, figest prefix
matching using Bloom filters,” inSIGCOMM '03: Proceedings of
the 2003 conference on Applications, technologies, achites, and
protocols for computer communicationdNew York, NY, USA: ACM,
2003, pp. 201-212.

A. Whitaker and D. Wetherall, “Forwarding without Loops Icarus,”

[76]

[77]

(78]

[79]

(80]

in Proceedings of Open Architectures and Network Programming

(OPENARCH) 2002, pp. 63-75.

B. Gronvall, “Scalable multicast forwarding,SIGCOMM Comput.
Commun. Reyvol. 32, no. 1, pp. 68-68, 2002.

C. Esteve, F. L. Verdi, and M. F. Magéles, “Towards a new generation
of information-oriented internetworking architectures; CoNEXT
08: Proceedings of the 4th international conference on yner
networking experiments and technologiddew York, NY, USA: ACM,
2008.

M. Yu, A. Fabrikant, and J. Rexford, “BUFFALO: Bloom #it
forwarding architecture for large organizations,”"@@NEXT '09: Pro-
ceedings of the 5th international conference on Emergingvoiking
experiments and technologiedNew York, NY, USA: ACM, 2009, pp.
313-324.

S. Ratnasamy, A. Ermolinskiy, and S. Shenker, “RevigitiR mul-
ticast,” in SIGCOMM '06: Proceedings of the 2006 conference
Applications, technologies, architectures, and protscfadr computer
communicationsPisa, Italy, Sept. 2006.

P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar, and Raiier,
“LIPSIN: Line speed Publish/Subscribe Inter-Networkingy SIG-
COMM '09: Proceedings of the 2009 conference on Applicatjdach-
nologies, architectures, and protocols for computer comications
Barcelona, Spain, August 2009.

C. E. Rothenberg, C. Macapuna, F. Verdi, M. Magalh, and A. Za-
hemszky, “Data center networking with in-packet Bloom fdtérin
28th Brazilian Symposium on Computer Networks (SBR2y 2010.
X. Tian, Y. Cheng, and B. Liu, “Design of a scalable muist scheme
with an application-network cross-layer approadiEE Transactions
on Multimedia vol. 11, no. 6, pp. 1160-1169, 2009.

S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and\J.Lock-
wood, “Deep Packet Inspection using Parallel Bloom FiltetREE
Micro, vol. 24, no. 1, pp. 52-61, 2004.

Y. Chen and O. Oguntoyinbo, “Power efficient packet sifisation
using cascaded Bloom filter and off-the-shelf ternary camwdm
networks,” Comput. Communvol. 32, no. 2, pp. 349-356, 2009.

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

on

(90]

[91]

(92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

S. Dharmapurikar, H. Song, J. Turner, and J. Lockwoo@stpacket
classification using Bloom filters,” inANCS ’'06: Proceedings of
the 2006 ACM/IEEE symposium on Architecture for networlang

communications systemsNew York, NY, USA: ACM, 2006, pp. 61—

70. [112]
M. Ahmadi and S. Wong, “Modified collision packet classifiion
using counting Bloom filter in tuple space,” PDCN’07: Proceedings
of the 25th IASTED conference on parallel and distributethpating [113]

and networks Anaheim, CA, USA: ACTA Press, 2007, pp. 315-320.
I. Aekaterinidis and P. Triantafillou, “Publish-sulb&e information
delivery with substring predicatedEEE Internet Computingvol. 11,
no. 4, pp. 16-23, 2007.

Z. Jerzak and C. Fetzer, “Bloom filter based routing fantent-
based publish/subscribe,” iDEBS '08: Proceedings of the second
international conference on Distributed event-basedesyst New
York, NY, USA: ACM, 2008, pp. 71-81.

P. Triantafillou and A. Economides, “Subscription summsarifor
scalability and efficiency in publish/subscribe systentsPioceedings

[115

[114]

of the 1st International Workshop on Distributed Event-&hSystems [116]

(DEBS’'02) J. Bacon, L. Fiege, R. Guerraoui, A. Jacobsen, and
G. Muhl, Eds., 2002.
——, “Subscription summarization: A new paradigm for e#iu

publish/subscribe systems,” iroceedings of the 24th International [117]

Conference on Distributed Computing Systems (ICDCS’04)ash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 562-571.
A. Soule, K. Salamatian, N. Taft, R. Emilion, and K. Papawiaki,

“Flow classification by histograms: or how to go on safari ire th [118]

internet,” in SIGMETRICS2004, pp. 49-60.

J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulerodah L. Larriba-
Pey, “Dynamic adaptive data structures for monitoring dateasts,”
Data Knowledge Engineeringol. 66, no. 1, pp. 92-115, 2008.

A. Cvetkovski, “An algorithm for approximate countinging limited
memory resources,” iIBIGMETRICS2007, pp. 181-190.

Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statisticsunter
architecture with optimal space and time efficiency,"SIGMETRICS
'06/Performance '06: Proceedings of the joint internatibconference
on Measurement and modeling of computer systeftNew York, NY,
USA: ACM, 2006, pp. 323-334.

W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “THe_EE active
queue management algorithmdEEE/ACM Trans. Netw.vol. 10,
no. 4, pp. 513-528, 2002.

Q. G. Zhao, M. Ogihara, H. Wang, and J. J. Xu, “Findinghgil
icebergs over distributed data sets,”"RODS '06: Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Riiesi
of database systemsNew York, NY, USA: ACM, 2006, pp. 298-307.
A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. JoRe§,chak-
ountio, B. Schwartz, S. T. Kent, and W. T. Strayer, “Singéeket IP
traceback,JTEEE/ACM Trans. Netwvol. 10, no. 6, pp. 721-734, 2002.
M. Sung, J. Xu, J. Li, and L. Li, “Large-scale IP tracekan high-

[122

[119]

[120]

[121]

]

[123]

speed internet: practical techniques and informationsétenfounda- [124]
tion,” IEEE/ACM Trans. Netw.vol. 16, no. 6, pp. 1253-1266, 2008.
Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikarl @ Kabbani,
“Counter braids: a novel counter architecture for per-flowasuze-
ment,” in SIGMETRICS2008, pp. 121-132. [125]

H. Song, J. Turner, and S. Dharmapurikar, “Packet ilaagon using
coarse-grained tuple spaces,” ANCS '06: Proceedings of the 2006
ACM/IEEE symposium on Architecture for networking and comim
cations systems New York, NY, USA: ACM, 2006, pp. 41-50.

F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, an¥&ghese,
“Beyond Bloom filters: from approximate membership checks to ap
proximate state machines,” BIGCOMM '06: Proceedings of the 2006
conference on Applications, technologies, architectuaesl protocols
for computer communicationsNew York, NY, USA: ACM, 2006, pp.
315-326.

E. H. Spafford, “OPUS: preventing weak password césicComput.
Secur, vol. 11, no. 3, pp. 273-278, 1992.

U. Manber and S. Wu, “An algorithm for approximate memhgrs
checking with application to password securityif. Process. Letf.
vol. 50, no. 4, pp. 191-197, 1994.

M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, EQertli,

D. Andersen, M. Burrows, T. Mann, and C. A. Thekkath, “Bldekel
security for network-attached disks,” FAST '03: Proceedings of the
2nd USENIX Conference on File and Storage TechnologiBsrkeley,
CA, USA: USENIX Association, 2003, pp. 159-174.

V. Roussev, Y. Chen, T. Bourg, and G. G. R. lll, “md5bloom:
Forensic filesystem hashing revisite®igital Investigation vol. 3, no.
Supplement-1, pp. 82-90, 2006.

[128

[126]

[127]

]

[129]

[130]

25

[111] C. Dixon, T. Anderson, and A. Krishnamurthy, “Phalamthstand-

ing multimillion-node botnets,” iNNSDI'08: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Impéement
tion. Berkeley, CA, USA: USENIX Association, 2008, pp. 45-58.
G. Antichi, D. Ficara, S. Giordano, G. Procissi, and \Rtucci,
“Counting Bloom filters for pattern matching and anti-evasat the
wire speed,”IEEE Network vol. 23, no. 1, pp. 30-35, 2009.

A. Shieh, A. C. Myers, and E. G. Sirer, “A stateless apgh to
connection-oriented protocolsACM Trans. Comput. Systvol. 26,
no. 3, pp. 1-50, 2008.

E. L. Wong, P. Balasubramanian, L. Alvisi, M. G. Goudada
V. Shmatikov, “Truth in advertising: lightweight verificati of route
integrity,” in PODC '07: Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computingNew York, NY,
USA: ACM, 2007, pp. 147-156.

H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, aigh8nker, “Off

by default!” in Proc. 4th ACM Workshop on Hot Topics in Networks
(Hotnets-1V) College Park, MD, Nov. 2005.

C. Dixon, T. Anderson, and A. Krishnamurthy, “Phalamithstand-
ing multimillion-node botnets,” iNNSDI'08: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Impéement
tion. Berkeley, CA, USA: USENIX Association, 2008, pp. 45-58.
X. Wang and M. K. Reiter, “Mitigating bandwidth-exhgtion attacks
using congestion puzzles,” IBCS '04: Proceedings of the 11th ACM
conference on Computer and communications securitflew York,
NY, USA: ACM, 2004, pp. 257-267.

T. Wolf, “A credential-based data path architectuwedssurable global
networking,” in Proc. of IEEE MILCOM Orlando, FL, October 2007.
C. E. Rothenberg, P. Jokela, P. Nikander, M. Sareld, &nYlitalo,
“Self-routing denial-of-service resistant capabilitiesing in-packet
Bloom filters,” inthe 5th European Conference on Computer Network
Defense (EC2ND)2009, pp. 46-51.

F. Ye, H. Luo, S. Lu, L. Zhang, and S. Member, “Statidtiea-route
filtering of injected false data in sensor networks,” Pmoceedings
of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM)004, pp. 839-850.

K. Ren, W. Lou, and Y. Zhang, “Multi-user broadcast raaritication

in wireless sensor networks,” iRroceedings of the Fourth Annual
IEEE Communications Society Conference on Sensor, MeshAdnd
Hoc Communications and Networks (SECOR)O07, pp. 223-232.

S. Cheng, C. K. Chang, and L.-J. Zhang, “An efficienv&er discovery
algorithm for counting bloom filter-based service registig ICWS
'09: Proceedings of the 2009 IEEE International ConferemmceWeb
Services Washington, DC, USA: IEEE Computer Society, 2009, pp.
157-164.

T. Takiguchi, S. Saruwatari, T. Morito, S. Ishida, M.idmi, and
M. Morikawa, “A novel wireless wake-up mechanism for energy-
efficient ubiquitous networks,” ifProceedings of the 1st International
Workshop on Green Communications (GreenComm’20D9.

X. Gong, W. Qian, Y. Yan, and A. Zhou, “Bloom filter-bakem| pack-
ets filtering for millions of path queries,” ilCDE '05: Proceedings of
the 21st International Conference on Data Engineering/ashington,
DC, USA: IEEE Computer Society, 2005, pp. 890-901.

Y. Nohara, S. Inoue, and H. Yasuura, “A secure highespieentifica-
tion scheme for rfid using bloom filters,” IARES '08: Proceedings
of the 2008 Third International Conference on AvailabjliReliability
and Security Washington, DC, USA: IEEE Computer Society, 2008,
pp. 717-722.

M. Breternitz, G. H. Loh, B. Black, J. Rupley, P. G. Sarss, W. Attrot,
and Y. Wu, “A segmented bloom filter algorithm for efficient gie
tors,” in SBAC-PAD '08: Proceedings of the 2008 20th International
Symposium on Computer Architecture and High Performancs-Co
puting Washington, DC, USA: IEEE Computer Society, 2008, pp.
123-130.

M. Jimeno, K. Christensen, and A. Roginsky, “A power ngaa
ment proxy with a new best-of-n Bloom filter design to reduce
false positives,1EEE Performance, Computing, and Communications
Conferencepp. 125-133, 2007.

L. L. Gremillion, “Designing a Bloom filter for differeral file access,”
Commun. ACMvol. 25, no. 9, pp. 600-604, 1982.

P. C. Dillinger and P. Manolios, “Bloom filters in prdilistic verifi-
cation,” in Formal Methods in Computer-Aided Design (FMCAR)I.
3312. Springer-Verlag Heidelberg, 2004, pp. 367—-381.

Y. Hua, D. Feng, and T. Xie, “Multi-dimensional rangeegy for data
management using Bloom filters,” iEEE International Conference
on Cluster Computing Los Alamitos, CA, USA: IEEE Computer
Society, 2007, pp. 428-433.

