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Abstract—In this treatise, we firstly review the associated
Multiple-Input Multiple-Output (MIMO) system theory and re-
view the family of hard-decision and soft-decision based detection
algorithms in the context of Spatial Division Multiplexing (SDM)
systems. Our discussions culminate in the introduction of a range
of powerful novel MIMO detectors, such as for example Markov
Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors,
which are capable of reliably operating in the challenging
high-importance rank-deficient scenarios, where there are more
transmitters than receivers and hence the resultant channel-
matrix becomes non-invertible. As a result, conventional detectors
would exhibit a high residual error floor. We then invoke the Soft-
Input Soft-Output (SISO) MIMO detectors for creating turbo-
detected two- or three-stage concatenated SDM schemes and
investigate their attainable performance in the light of their
computational complexity. Finally, we introduce the powerful
design tools of EXtrinsic Information Transfer (EXIT)-charts
and characterize the achievable performance of the diverse near-
capacity SISO detectors with the aid of EXIT charts.

Index Terms—EXIT chart, iterative detection, MIMO, mul-
tiuser detection, turbo coding, wireless communication.

I. INTRODUCTION

MULTI-User Detectors (MUDs) were originally devel-
oped for the Code-Division Multiple Access (CDMA)

uplink [1], where the direct-sequence spread symbols transmit-
ted from the users supported are jointly estimated at the Base
Station (BS), in order to minimize the associated Multiple-
Access Interference (MAI), while exploiting the BS’s knowl-
edge of both the spreading sequences and of the supported
users’ Channel Impulse Responses (CIRs) [2]. However, as a
benefit of the system model similarity between the CDMA up-
link and the Space Division Multiplexing (SDM)-aided uplink
[3], the family of MUDs developed for CDMA uplinks may
be readily applied to Spatial Division Multiplexing (SDM)
systems.

Figure 1 shows the classification of Multiple-Input Multiple-
Output (MIMO) detectors. The class of linear MIMO detectors
incorporated the classic Zero-Forcing (ZF) [4] and Minimum
Mean Square Error (MMSE) detectors [5, 6], as well as the
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recently-proposed Minimum Bit-Error Rate (MBER) detector
[7–10]. The linear MIMO detectors typically rely on adaptive
MUD coefficient adjustment algorithms, such as the Least
Mean Square (LMS) and Recursive Least Square (RLS) algo-
rithms [11], which may be invoked both in the context of the
classic MMSE criterion as well as in the recent Least Bit-Error
Ratio (LBER) algorithm [12] relying on the MBER criterion.
By contrast, the class of non-linear MIMO detectors enables us
to achieve a higher BER performance than those of the linear
detectors. The Maximum-Likelihood (ML) detector is capable
of attaining the optimal performance in an uncoded scenario,
which is achieved however at the cost of a prohibitively high
complexity. In order to reduce the ML detector’s complexity,
the tree search-based Sphere Detector (SD) [13] was proposed
for achieving a near-optimal BER performance by approxi-
mating the exhaustive ML search. Furthermore, the family of
guided random detection algorithms, such as Genetic Algo-
rithm (GA) [1, 14–16], Ant-Colony Optimization (ACO) [17–
19], Particle Swarm Optimization (PSO) [20–22] and Markov
Chain Monte Carlo (MCMC) algorithms [23–25], was pro-
posed for reduced-complexity near-optimum operation.

Moreover, since the invention of turbo coding [26], there has
been a significant interest in iterative detection, where the re-
ceiver is constituted by multiple Soft-Input Soft-Output (SISO)
decoders and each decoder iteratively exchanges extrinsic
information gleaned from the other components [27]. During
the iterative detection process, each SISO decoder is required
to output soft information of the estimated bits. To this end,
the diverse hard-decision MIMO detectors were extended
to the SISO-assisted detectors, which are for example the
SISO-MMSE [28, 29], the SISO-MBER [30, 31], the SISO-
Maximum A Posteriori (MAP) [5], the SISO-MCMC [32],
the SISO-ACO [33] and the SISO-SD [34–36] detectors.

In this treatise, we introduce diverse hard-decision and
soft-decision detectors in the context of SDM systems, while
explicitly characterizing their fundamental complexity versus
performance tradeoffs. The remainder of this chapter is or-
ganized as follows. Section II describes the system model of
the SDM scheme considered in this chapter and guarantees
the channel capacity. In Section III, a class of hard-decision
MIMO detectors is introduced, including the recent Markov
Chain MBER (MC-MBER) detector [37, 38]. Furthermore,
Section IV discusses the family of soft-decision detectors,
in order to facilitate iterative detection. Section V analyzes
the achievable performance with the aid of EXIT charts and
quantifies the computational complexity of the SISO detectors.
Finally, we summarize our findings and conclude in Section
VI.
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Fig. 1. Classification of MIMO detectors.

II. SYSTEM OVERVIEW

In this chapter, we consider the (M × N )-element SDM
system, which is portrayed in Fig. 2 and relies on M transmit
Antenna Elements (AEs) and N receive AEs, while commu-
nicating over frequency-flat Rayleigh fading channels. Here,
we employ the block-based system model of Y = HS + V ,
where the channel components H ∈ CN×M and the noise
components V ∈ CN×1 follow zero-mean complex-valued
Gaussian variables having variances of unity and of N0,
respectively. At the transmitter of Fig. 2, B = M · log2 L
information bits are mapped to M number of L-PSK/QAM
substreams S = [s1, s2, · · · , sM ]T. Then, the mth symbol
sm is transmitted from the mth transmit AE simultaneously
with the other AEs’ symbols. By contrast, the receiver has
to decompose the M multiplexed substreams, based on the
received signals Y , the estimated channel components H as
well as the noise variance N0.

A. Channel Capacity

• CCMC capacity
According to Telatar’s tutorial paper [39], the ergodic
capacity of the SDM system is formulated as CCCMC =
E
[
log2 det

(
I + HHH/N0

)]
. This ergodic capacity is

also referred to as the Continuous-input Continuous-
output Memoryless Channel (CCMC) capacity, which is
evaluated based on the effect of the symbol power and the
bandwidth, but without taking into account the specific
constellation size employed.

• DCMC capacity
In contrast to the above-mentioned CCMC capacity, the
Discrete-input Continuous-output Memoryless Channel
(DCMC) capacity was defined in [40], which serves
as a more practical capacity bound than the CCMC
capacity since it considers the effects of the specific
signaling scheme employed. Hence, the DCMC capacity
characterizes the maximum throughput limit in the high
Signal-to-Noise Ratio (SNR) region, where the DCMC
capacity curve saturates.
Given the lth symbol S(l) from the set of Nb = LM
legitimate symbols (l = 1, · · · , Nb), the conditional

TABLE I
SYSTEM PARAMETERS OF THE UNCODED SDM SCHEME OF FIG. 3

Number of transmit antennas M = 2, 3, 4
Number of receive antennas N = 3
Modulation L−PSK/QAM
Channels Frequency-flat Rayleigh fading
Channel’s coherence-time τ symbol durations
Transmission rate RSDM = M · log2 L

probability of the received signals Y is given by

p(Y |S(l)) =
1

(πN0)N
exp

(
−||Y − HS(l)||2

N0

)
. (1)

Assuming that all the signals S(l) are equiprobable,
namely that we have p(S(1)) = · · · = p(S(Nb)) = 1/Nb,
the corresponding DCMC capacity CDCMC is given by

CDCMC =
(

log2(Nb) − 1
Nb

×
Nb∑
l=1

E

{
log2

[
Nb∑
k=1

exp(Ψk,l)

∣∣∣∣∣S(l)

]})
,

with the relation Ψk,l = −||H(S(k) − S(l)) + V ||2 +
||V ||2, where E[ζ|S(l)] indicates the expectation of ζ
conditioned on S(l).

Fig. 3 shows the CCMC and DCMC capacity of the SDM
scheme of Fig. 3, recorded for (a) BPSK and (b) QPSK
modulation schemes, where the number of transmit AEs was
varied from M = 2 to M = 4, while using N = 3 receive
AEs. It was found in both Figs. 3(a) and 3(b) that upon
increasing the SNR value, the corresponding CCMC capac-
ity increased infinitely, due to the assumption of Gaussian
input signals. By contrast, the DCMC capacity was upper-
bounded by the corresponding system’s achievable throughput
of RSDM = M log2 L at sufficiently high SNRs.

III. MIMO DETECTORS FOR UNCODED SYSTEMS

In this section we describe the class of hard-decision
detectors developed for the uncoded SDM scheme of Fig.
3, where we commence with the family of linear detectors,
which are classically referred to as spatial filtering schemes.
In order to detect the mth substream sm while suppressing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



SUGIURA et al.: MIMO-AIDED NEAR-CAPACITY TURBO TRANSCEIVERS: TAXONOMY AND PERFORMANCE VERSUS COMPLEXITY 3

Source bits

S/P
SDM

mapping

M

1

s1

sM

SDM

detector

�

1

P/S

s1

sM̂

^

B B̂

Fig. 2. Schematic of the uncoded (M × N )-element SDM scheme.
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Fig. 3. CCMC and DCMC capacity curves of the SDM scheme obeying the architecture of Fig. 3, recorded for (a) BPSK and (b) QPSK modulation schemes,
where the number of transmit antennas was varied from M = 2 to M = 4, while the number of receive antennas was N = 3. All other system parameters
were summarized in Table I.

the interfering (M − 1) substreams, a linear MIMO detector
multiplies the received signals Y by the complex-valued
weights wm = [w1,m, w2,m, · · · , wN,m]T, which is given by
ŝm = wH

mY . More specifically, the corresponding M weight
vectors are required for the sake of detecting all the M sub-
streams, which are represented by W = [w1,w2, · · · ,wM ].
Accordingly, the demodulated symbols Ŝ may be expressed
in a vectorial form as Ŝ = [ŝ1, ŝ2, · · · , ŝM ]T = W HY . In the
class of linear detectors, once the complex-valued weights W
are calculated, they can be reused for this filtering operation
within the channel’s coherence time τ . Hence, the complexity
imposed by the linear detectors is decreased upon increasing
the value of τ . Next, we will introduce the linear hard-decision
ZF, MMSE and MBER detectors, followed by the non-linear
ML, MCMC and MC-MBER detectors.

A. Zero-Forcing Detector

The classic ZF detector is the simplest linear detector,
whose weights are given by the inverse of the channel matrix
H−1. Hence, the estimated symbols Ŝ are represented by
Ŝ = H−1Y = S+H−1V , where we have the corresponding
inverse matrix H−1 [41].1 Note that since the ZF detector does
not take into account the effects of noise components V , the

1Here, in order to calculate the inverse channel matrix of H, we em-
ployed the approach of pseudo-inverse matrix, where we have H+ =
(HHH)−1HH for M ≤ N and H+ = HH(HHH)−1 for M > N .

TABLE II
COMPUTATIONAL COMPLEXITY IMPOSED BY THE ZF DETECTOR

Real-valued Inverse operation
multiplications

(HHH)−1 (M ≤ N) 4M2N/τ O(M3)
(HHH)−1 (M > N) 4MN2/τ O(N3)

• × HH (M ≤ N) 4M2N —
HH × • (M > N) 4MN2 —

Ŝ = • × Y 4MN —

Total (M ≤ N) 8M2N/τ + 4MN O(M3)
(M > N) 8MN2/τ + 4MN O(N3)

resultant performance is typically degraded by the detrimental
effects of noise enhancement.

• Complexity analysis
Here, we characterize the computational complexity

imposed by the ZF detector in Table II, which is required
to calculate the estimates Ŝ. Throughout this chapter,
the complexity is evaluated in terms of the number of
real-valued multiplications, noting that a single complex-
valued multiplication is considered to be equivalent
to four real-valued multiplications. Furthermore, the
Cholesky decomposition of a Hermitian matrix having
a dimension of (C × C) requires approximately O(C3)
real-valued multiplications.
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TABLE III
COMPUTATIONAL COMPLEXITY IMPOSED BY THE MMSE DETECTOR

Real-valued Inverse operation
multiplications

HHH 4MN2/τ —
(• + N

ρ
I)−1 — O(N3)

• × H 4MN2/τ —
Ŝ = • × Y 4MN —

Total 8MN2/τ + 4MN O(N3)

As mentioned above, the complex-valued weights
W can be reused, while the channel matrix H remains
constant, indicating that the associated computational
complexity may be substantially reduced in slow-fading
environments.

B. Minimum Mean-Square Error Detector

Similarly to the ZF detector of Section III-A, the MMSE
detector belongs to the class of linear detectors. While the
ZF detector suffers from effects of noise enhancement, the
MMSE detector calculates the complex-valued weights by
minimizing the MSE between the estimated symbol and the
transmitted SDM symbol. Thus, the complex-valued weights
are optimized in order to minimize the effects of noise
enhancement.

More specifically, the minimization of the MSE between the
mth output ŝm = wH

mY and the mth component of the sym-
bol sm can be attained, according to the Wiener solution [11]:

wm =
(
E
[
Y Y H

])−1

E [Y s∗m]. Furthermore, since we have

E
[
Y Y H

]
= HE[SSH]HH + E[V V H] = HHH + N0I

and E [Y s∗m] = HE [Ss∗m] = hm, we arrive at wm =(
HHH +N0I

)−1

hm. Finally, the complex-valued weights

of the MMSE detector are given by W = [w1,w2, · · · ,wM ]

=
(
HHH +N0I

)−1

H . We note that the SDM system
satisfying the relation of M > N is referred to as a so-called
rank-deficient scenario, where the attainable performance of
the ZF and MMSE detectors is severely degraded by the
residual interferences owing to the fact that M streams have
to be estimated with the aid of N receive antennas.

• Computational complexity
The computational complexity imposed by the MMSE

detector is characterized in Table III. Clearly, the MMSE
detector exhibits a moderate computational complexity,
which is comparable to that of the ZF detector. Addi-
tionally, periodical updates of the linear complex-valued
weights W can be omitted when the channel matrix H
remains constant, similarly to the above-mentioned ZF
detector.

C. Minimum Bit-Error Rate Detector

Although the MMSE detection criterion is one of the
most popular ones, minimizing the MSE does not necessarily
guarantee the direct minimization of the system’s BER. By
contrast, the recently-proposed MBER detector [7–10] was
designed to directly minimize the BER, hence it was shown to

outperform the MMSE solution, provided that the detector’s
output is non-Gaussian.

Let us first define the Nb = LM number of legitimate
transmitted sequences of S as S(l) (l = 1, · · · , Nb) in con-
junction with the constellation order of L. Then, considering
the employment of BPSK modulation (L = 2), we arrive at
the error probability Pe(wm) of the mth substream signal sm
in a closed form, which is represented as a function of the mth
complex weight. Having arrived at the exact BER expression,
the MBER solution is given by wm = argminwm Pe(wm).
Since in general Pe(wm) is a nonlinear function of wm,
therefore in general the error-probability optimization problem
has to be solved iteratively, while for other linear detectors,
such as the ZF and MMSE detectors, a closed-form solution
can be derived. This suggests that the specific choice of the
optimization method employed for finding the MBER weights
affects both the computational complexity imposed and the
achievable BER performance.

To this end, a number of algorithms, such as the steepest
descent method [42], GAs [43] and PSO [44], were applied
to the non-linear MBER detection problem. A promising
approach is constituted by the Simplified Conjugate Gradient
(SCG) method [42], which will be characterized in this treatise
owing to its potential of delivering an efficient and stable
solution for this problem. More specifically, the SCG method
iteratively updates the tentative solution using the gradient
vector of the error probability with respect to the mth complex
vector wm as in [45]. This allows us to dispense with any
perturbation operation, while generating the gradient, which
reduces the associated complexity.

The above-mentioned MBER solution derived for BPSK
modulation may be readily extended to QPSK, by conducting
the error-probability minimization separately for both the real-
and imaginary-parts, which are denoted by PeI and PeQ ,
respectively [46]. Furthermore, we may invoke the Minimum
Symbol Error Rate (MSER) detector [47], where the MBER
solution is applied to multilevel pulse-amplitude modulation,
such as Quadrature Amplitude Modulation (QAM).

• Computational complexity
The total computational complexity imposed by the
MBER detector is characterized in Table IV, where Ng

is the number of iterations activated by the simplified
conjugate algorithm used for finding the minimum of
the BER versus MBER detector weight surface. It can
be seen from Table IV that the MBER detector’s com-
plexity increases linearly with the number of legitimate
sequences Nb. Hence, upon increasing the multiplexing
factor M , the associated complexity increases exponen-
tially. For example, for a BPSK-modulated SDM system
having M = 2 transmit AEs, the value of Nb becomes
as low as Nb = 22 = 4. On the other hand, the
corresponding value of Nb for the case of a QPSK-
modulated SDM system having M = 6 transmit AEs
becomes Nb = 46 = 4 096, which represents a 1 000
times higher value than that of theM = 2 case employing
BPSK. Naturally, the complex-valued weights have to
be updated more frequently in fast-fading environments,
which typically leads to a prohibitively-high complexity.
To overcome this problem, a reduced-complexity version
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TABLE IV
COMPUTATIONAL COMPLEXITY IMPOSED BY THE MBER DETECTOR

Real-valued multiplications exponential operation

HS(l) 4NbMN/τ —
(l = 1, · · · , Nb)
∇Pe(wm) M(5NbN + 2Nb + 1) log2 L/τ NbM log2 L/τ
Weight update (18MN + M)/τ —
SCG loop ×Ng ×Ng

All substreams ×M ×M

Ŝ = • × Y 4MN —

Total NgM
2[(4Nb + 5Nb log2 L + 18)N NgNbM2 log2 L/τ

+(2Nb + 1) log2 L + 1]/τ + 4MN

of the MBER detector, a so-called Markov Chain-assisted
MBER (MC-MBER) detector will be proposed in Section
III-F.

Having reviewed the class of linear ZF, MMSE and MBER de-
tectors. Let us now consider the family of non-linear detectors,
namely the ML, the MCMC and the MC-MBER detectors.

D. Maximum Likelihood Detector

The above-mentioned linear detectors are based on the
philosophy of spatial filtering, where each of the multiplexed
signal streams is separated into unique spatial dimensions at
the receiver. On the other hand, the ML detector has the capa-
bility of simultaneously identifying the spatially multiplexed
signals by carrying out an exhaustive search over the legitimate
signal space.

Let us first consider the classic MAP detection [34], which
estimates the symbols Ŝ by maximizing the a posteriori prob-
ability P (Ŝ|Y ), given an observation of Y . Here particularly,
the MAP criterion is given by ŝm = arg maxsm P (sm|Y ) =
arg maxsm

∑
∀S(l)

:s
(l)
m =sm

P (S(l)|Y ). Following from a
Bayes’ theorem, the a posteriori probability may be expressed
as P (Ŝ|Y ) = p(Y |Ŝ)P (Ŝ)/p(Y ), where p(Y ) is constant
for each candidate of the transmitted signals. Furthermore,
assuming that the a priori probability P (Ŝ) is equal for all the
estimated candidates, the MAP detector becomes equivalent
to the ML detector, where the maximization of P (Ŝ|Y )
is equivalent to that of p(Y |Ŝ). More specifically, the ML
detector selects the estimates from the Nb = LM legitimate
sequences so that the probability p(Y |Ŝ) is maximized. Since
the conditional probability of Eq. (1) is also referred to as
the likelihood function, the ML solution is simplified to2

Ŝ = argminS ||Y − HS||2.
• Computational complexity

The computational complexity imposed by ML detection
per symbol vector S is shown in Table V. It was found
that upon increasing the number of multiplexed streams
M , the associated computational complexity increases
exponentially, obeying the relationship of Nb = LM .
Additionally, since ML detection has to be conducted for
each symbol interval, the associated complexity may be-
come prohibitively high for a high value of M , although
the ML detector achieves the optimum performance in an
uncoded scenario.

2Note here the ML criterion comparing 2-dimensional Euclidean distances
is possible only when each noise component follows a Gaussian distribution.

TABLE V
COMPUTATIONAL COMPLEXITY IMPOSED BY THE ML DETECTOR

Real-valued
multiplications

HS 4MN
||Y − •||2 4M
arg min ×Nb

Total 4Nb(MN + M)

As mentioned, the ML detector is optimal, when all
the a priori probabilities are equal. However, in order
to achieve the optimal performance for a channel-coded
system, where additional apriori information may be
invoked at the receiver, the MAP detector [34] achieves
the optimal performance, since it exploits the a priori
probability.

E. Markov Chain Monte Carlo Detector

As mentioned above, although the ML detector achieves
the best attainable performance in an uncoded scenario, its
complexity is high. To this end, the recent studies of Markov
chain sampling have produced reduced-complexity solutions
for wireless communication systems [23–25, 32]. More specif-
ically, the MCMC detector [23–25,32] constitutes an alterna-
tive sub-optimal non-linear detector, which is based on the
efficient extraction of the statistical inferences with the aid of
Markov chains [23–25].

More specifically, the MCMC algorithm is based on two
different techniques, i.e. on the so-called Markov chain rep-
resentation and on Monte Carlo integration. While the former
is employed to find the most likely detection candidates
according to the associated probability distributions, the latter
is used to approximate the integral of interest on the basis
of the detection candidates calculated by the Markov chain
representation.
1) Markov chain representation: Several algorithms have

been designed for finding the most likely decision candidate
set with the aid of a Markov chain process [25]. In this treatise
we employ the most popular so-called Gibbs-Sampler, which
assists us in sampling the detection candidates set, with the
aim of finding the most likely ones. Fig. 4 portrays a flowchart
of the Gibbs-Sampler algorithm employed for the MCMC
detector, where the algorithmic steps are as follows:

1) Initialization:
The initialization block of the Gibbs-Sampler of Fig.
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Fig. 4. A flowchart depicting the structure of Gibbs-Sampler employed for
the MCMC detector.

4 randomly generates B = M log2 L binary signals
B(i=0) = [b(0)1 , · · · , b(0)B ]T, which represents one of the
Nb = LM legitimate signal sequences and the index i
indicates the number of loops of Fig. 4.

2) Sample generation:
In the sample generation block of Fig. 4, the bi-
nary signals B(i) = [b(i)1 , · · · , b(i)B ]T generated during
the ith loop are calculated based on the (i − 1)st
binary signals B(i−1), on the received signals Y (i)

and on the estimated channels H . To be more spe-
cific, the kth bit b(i)k of the signals B(i) in the ith
loop is generated from the conditional probability of
P (b(i)k = 0|Y ,B

(i)
−k,L

pr
1 ), where we have B

(i)
−k =

[b(i)1 , · · · , b(i)k−1, b
(i−1)
k+1 , · · · , b(i−1)

B ]T.
3) Sample collection:

This sample generation block is activated for NMC

iterations, thus a total of NMC signals B(i) (i =
1, · · · , NMC) are generated.

The above-mentioned Gibbs-Sampler of Fig. 4 samples a
set of likely signals with the aid of a random variable so that
the likelihood function is maximized as a result. Owing to the
iterative process of Fig. 4, a chain of NMC sampling processes
are correlated since the initial condition of the (i+ 1)st loop
is the outcome of the ith loop and hence all of the signals
are originated from the initial conditions B(0). Therefore, NP

parallel Gibbs-Samplers may be invoked to avoid the problem
of having highly correlated successive Gibbs-Sampler solu-
tions. The employment of this method results in an increased
number of detection candidates NMCNP.

To elaborate a little further, Fig. 5 shows a simple example
of the Gibbs-Sampler derived for the case of an 8-PAM SDM
system having M = 3 transmit AEs, where the corresponding
number of legitimate sequences Nb was Nb = 83 = 512
and the SNR was set to 5 dB. While Fig. 5(a) shows the
legitimate signal space, Fig. 5(b) represents the reduced-size
signal space. Here, the Gibbs-Sampler’s parameters were given
by NMC = 50 and NP = 1. Observe in Fig. 5(b) that the
sampled signals were distributed around the transmitted signal
due to the criterion associated with the likelihood function,

although this does not necessarily mean that the sampled
signals include the transmitted signals. As a result of the
Gibbs-Sampling operation, the signal space was reduced to
N ′

b = 34, indicating that a 512/34 = 15.1 times lower number
of detection candidates were evaluated than the total number
of legitimate sequences.
2) Monte Carlo integration: Having obtained a reduced

number of NMCNP decision candidates for signal set
B(i) (i = 1, · · · , NMC) with the aid of the Gibbs-Sampler
of Fig. 4, we infer the estimate of the transmitted signals with
the aid of a process referred to as Monte Carlo integration.
In general, the process of Monte Carlo integration may be
carried out by two different techniques, namely either by
empirical averaging or by importance sampling steps. The cor-
responding estimates E[ψ(x)] of ψ(x) may be generated from
the samples ψ(x(m)) (m = 1, · · · , NMC) as, respectively,
[32] E[ψ(x)] = 1

NMC

∑
m ψ[x(m)] (empirical average) and

E[ψ(x)] =
P

m f [x(m)]ψ[x(m)]
P

m f [x(m)]
(importance sampling), where

f [x(m)] represents a weighting function. Since the latter typi-
cally exhibits a better performance, we employ this technique
in our investigations.

The decision concerning the kth bit bk may be formulated
by considering the extrinsic Log-Likelihood Ratio (LLR)

value represented by Le
1(bk) = ln P (bk=0|Y ,Lpr

1 )

P (bk=1|Y ,Lpr
1 )
. In order to

estimate Le
1(bk) from a set of sampled signals, we first infer

the probability P (bk = 0|Y ,Lpr
1 ) based on the importance

sampling technique [32], which is then reformulated using
Bayes rule. As a result, we have

Lpo
1 (bk) = ln

∑
p(Y |B(i)

−k, bk = 0)P (B(i)
−k|Lpr

1 )∑
p(Y |B(i)

−k, bk = 1)P (B(i)
−k|Lpr

1 )︸ ︷︷ ︸
Le

1(bk)

+Lpr
1 (bk),

(2)

where Lpo
1 and Lpr

1 represent the a posteriori and a priori
LLR values, respectively [27]. While p(Y |B(i)

−k, bk = 0, 1) is

calculated during the Gibbs-Sampling process, P (B(i)
−k|Lpr

1 )
is given by 1/Nb in the non-iterative hard-decision based
scenario considering Lpr

1 = [Lpr
1 (b1), · · · , Lpr

1 (bB)]T =
[0, · · · , 0]T.

Finally, by subjecting the a posteriori probability
Lpo

1 (bk) (k = 1, · · · , B) to the hard-decision operation, the
output of the MCMC detector can be obtained.

• Computational complexity
Table VI shows the computational complexity imposed
by the Gibbs-Sampler of Fig. 4, which is employed by
the MCMC detector.

F. Markov Chain Minimum Bit Error Rate Detector

As mentioned in Section III-C, the family of MBER detec-
tors [7–10, 12, 30] was designed to directly minimize the BER,
and hence it was shown to outperform the MMSE solution
in the context of beamforming [7], Space-Time Equalization
(STE) [9] and SDMA [8], supporting either BPSK or QPSK
modulation schemes [12]. Furthermore, it was demonstrated
that the MBER receiver has the capability of operating in rank-
deficient scenarios, where the number of transmit antennas is
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Fig. 5. Example of the Gibbs-Sampling assisted signal space reduction for an 8-Pulse Amplitude Modulation (PAM) SDM system having M = 3 transmit
AEs. The number of legitimate signals Nb is given by Nb = 83 = 256, the resultant reduced-size signal space N ′

b was N ′
b = 34, where NMC = 50

successive samples were generated according to the Gibbs-Sampler.

TABLE VI
COMPUTATIONAL COMPLEXITY IMPOSED BY THE GIBBS-SAMPLER EMPLOYED FOR THE MCMC DETECTOR

Real-valued multiplications Exponential

||Y − HS
(i)
m±||2 ≤ 4(1 + NMCNPM log2 L) —

×(MN + M)

P (x
(i)
m |x(i)

−m, Y ) 2NMCNPM log2 L NMCNPM log2 L
Total ≤ 4(1 + NMCNPM log2 L) NMCNPM log2 L×(MN + M) + 2NMCNPM log2 L

higher than the number of receive antennas. However, the high
BER performance of the MBER scheme is achieved at the
cost of a high computational complexity, which may become
particularly challenging in rapidly fading propagation environ-
ments, requiring prompt MBER detector weight updates. To
be more specific, the calculation of the MBER weight gradient
imposes a prohibitively-high complexity, which increases with
the number of transmit AEs M . To this end, we introduce a
novel MCMC aided MBER (MC-MBER) algorithm for the
sake of reducing the computational complexity of the conven-
tional MBER algorithm without degrading its performance.

Fig. 6 shows the flowchart of the proposed MC-MBER
detector, which is composed of two blocks, i.e. the Markov
chain sampling block and the approximated MBER detector
block. Firstly, in our MC-MBER detector, the Markov chain
sampling is implemented to generate the most likely NMCNP

number of signals S(i) (i=1, · · · , NMCNP) that particularly
contribute to the BER calculation of the MBER detector. Here,
we also employ the Gibbs-Sampler for the Markov chain
sampling, similarly to the MCMC detector. Having completed
the generation of the Gibbs-Sampler’s detection candidate set
of NMCNP signals, only N ′

b < Nb number of detection
candidates S(i) (i=1, · · · , N ′

b) are retained from the Gibbs-
Sampler’s solution set, also ensuring that the identical detec-

tion candidates of the parallel Gibbs-Samplers are removed.

These N ′
b < Nb detection candidates are then input to the

approximate MBER detector of Fig. 6. More specifically, the
detection candidates are used for calculating the gradient by
replacing Nb number of legitimate sequences by a reduced
set of N ′

b < Nb signals. The underlying concept of this
approximate MBER detector is that the unlikely signals, which
are not sampled by the Gibbs-Sampler, do not substantially
contribute the BER minimization. Typically, N ′

b becomes
significantly lower than Nb = LM , which is an explicit benefit
of the rapid convergence of the Gibbs-Sampler of Fig. 4.

• Computational Complexity
The computational complexity imposed by the MC-
MBER detector is shown in Table VII, which is based
on the analysis of the MBER detector detailed in Section
III-C and on the MCMC detector discussed in Section
III-E. The computational complexity of the MC-MBER
detector, which is imposed by calculating the gradient
of the BER with respect to the weights can be reduced
by a factor of Nb/N

′
b in comparison to that of the

full-complexity MBER scheme, although the MC-MBER
detector imposes the additional computation of the Gibbs-
Sampler based reduced set of N ′

b < Nb signals.
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Fig. 6. A flowchart of the MC-MBER detector.

TABLE VII
COMPUTATIONAL COMPLEXITY FOR AN MC-MBER DETECTOR

Real-valued exponential
multiplications operation

Markov chain ≤ 4(1 + NMCNPM log2 L) NMCNPM log2 L
sampling ×(MN + M) + 2NMCNPM log2 L
Approximated 4(N ′

b log2 L + N ′
bNg + 3Ng)MN NgMNb log2 L

MBER detector +M{(N ′
bN + 2N ′

b + 1) log2 L + 6N + 1}

G. Center-Shifted Sphere Detector

In this section, we introduce the center-shifted SD, which
constitutes another computationally efficient solution to the
ML detection. Note that while the above-mentioned MCMC
detector approximate the ML detector with the aid of stochas-
tic sampling, the SD aim for deterministic approximation of
the ML detection.

More specifically, the ML solution of Section III-D may be
rewritten by [48]

Ŝ = arg min
S∈χ

J(S)

= arg min
S∈χ

(S − Xc)H(HHH +N0I)(S − Xc), (3)

where Xc represents the MMSE solution of Xc =
[xc,1, · · · , xc,M ] = (HHH + N0I)−1HHY and χ denotes
the legitimate signal space of S. To be more specific, by
exploiting the characteristics of the upper triangle matrix U ,
which is defined as UHU = HHH +N0I , the cost function
J(S) of Eq. (3) may be formulated as

J(S) = (S − Xc)HUHU(S − Xc)

=
M∑
i

∣∣∣∣∣∣
M∑
j

ui,j(sj − xc,j)

∣∣∣∣∣∣
2

︸ ︷︷ ︸
φi(Si)

,

where ui,j represents the i-th row and the jth column element
of U , while we have Si = [si, · · · , sM ]. Furthermore, φi(Si)
may be elaborated as [48]

φi(Si) =

∣∣∣∣∣∣
M∑
j

ui,j(sj − xc,j)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ui,i(si − xc,i) +
M∑

j=i+1

ui,j(sj − xc,j)

∣∣∣∣∣∣
2

. (4)

Here, let us define a cumulative sub-cost function Ji(Si) in a

recursive manner as

Ji(Si) = Ji+1(Si+1) + φi(Si) (i = M − 1, · · · , 1), (5)

where we have JM (SM ) = φM (SM ) =
|uM,M − (sM − xc,M )|2. Then, we have the following
properties of J(S) = J1(S1) > · · · > JM (SM ) > 0 and
Ji(Si) = Ji({sj}, j = i, · · · ,M) for all the possible signals
of S ∈ LM . Hence, Eqs. (4) and (5) enable us to facilitate
the low-complexity tree search algorithm, which is capable of
avoiding the exhaustive search. The detailed implementation
can be found in [48].

We note that the complexity of the SD may be further
reduced by choosing an appropriate value for the maximum
number of best MIMO-symbol candidates K retained at each
search level in the so-called K-best SD [49].

H. Performance Results

In this section, we present the performance results character-
izing diverse MIMO detectors in the context of SDM systems
obeying the architecture of Fig. 2 employing M = 2, 3 and 4
transmit AEs and N = 3 receive AEs. Here, we considered
the employment of BPSK and QPSK modulation.

Firstly, Fig. 7 compares the achievable BER performance of
the linear detectors, namely the ZF detector of Section III-A,
the MMSE detector of Section III-B and the MBER detector of
Section III-C. Here, we considered BPSK modulation. It was
found that the achievable BER performance of the MMSE
detector was better than that of the ZF detector, since the
MMSE detector optimizes its complex-valued weights so as to
minimize the effects of AWGN. By contrast, both the ZF and
MMSE detectors exhibited error floors in the rank-deficient
scenario of M = 4. Furthermore, observe in Fig. 7 that unlike
the ZF and MMSE detectors the MBER detector did not
show any error floors. This is, because the MBER detector
is more robust to the rank-deficient scenario than the other
two linear detectors, which is an explicit benefit of the direct
BER minimization.

Next, we characterize the performance results of the non-
linear detectors. Fig. 8 shows the achievable BER of the
optimal ML detector seen in Section III-D. Observe in Fig.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



SUGIURA et al.: MIMO-AIDED NEAR-CAPACITY TURBO TRANSCEIVERS: TAXONOMY AND PERFORMANCE VERSUS COMPLEXITY 9

SNR [dB]

0 5 10 15 20 25 30

B
E
R

10-3

10-2

10-1

100

ZF

MMSE

MBERM = 2, 3 and 4

Fig. 7. Achievable BER performance of the uncoded SDM scheme obeying
the architecture of Fig. 2 and employing the ZF, the MMSE and the MBER
detectors, where the number of transmit antennas was varied from M = 2 to
M = 4, while the number of receive antennas was maintained to be N = 3.
All other system parameters were summarized in Table I.
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Fig. 8. Achievable BER performance of the uncoded SDM scheme obeying
the architecture of Fig. 2 and employing the ML detector in Section III-D,
where the number of transmit antennas was varied from M = 2 to M = 4,
while the number of receive antennas was maintained to be N = 3. All other
system parameters were summarized in Table I.

8 that all the associated BER curves exhibited a good BER
performance, without showing any BER floors. Furthermore,
it can be seen in Fig. 8 that the ML detector is capable of
achieving the maximum attainable diversity order of M · N .
Upon increasing the multiplexing factor M , the performance
advantage of the ML detector over the other three linear
detectors increased, although this was achieved at the cost
of an increased complexity.

Fig. 9 shows the achievable BER performance, comparing
the MCMC and the MC-MBER detectors, where the param-
eters used for the Gibbs-Sampler were given by NMC =
Np = 2, 3, 4, 5, 10, 20 for the MCMC detector as well as
by NMC = Np = 2, 3, 4, 5 for the MC-MBER detector.
Here, we considered an (8 × 8)-element BPSK-modulated

SNR [dB]
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B
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ML detector

MCMC detector

MC-MBER detector

�MC (=�P) = 2,3,4,5

�MC (=�P) = 
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Fig. 9. The achievable BER performance of BPSK-modulated SDM scheme
obeying the architecture of Fig. 2, comparing the MCMC and the MC-
MBER detectors, where the parameters used for Gibbs-Sampler was given
by NMC = Np = 2, 3, 4, 5, 10, 20 for the MCMC detector as well as
by NMC = Np = 2, 3, 4, 5 for the MC-MBER detector. Furthermore, the
number of both transmit and receive AEs was set to (M, N) = (8, 8). All
other system parameters were summarized in Table I. The corresponding BER
curve of the ML detector was also plotted for comparison.

SDM system, where the number of legitimate sequences was
Nb = 28 = 256. The corresponding BER curve of the ML
detector was also plotted in Fig. 9 for comparison. Observe
in Fig. 9 that upon increasing NMC for the Gibbs-Sampler
to NMC = Np, the BER of the MCMC detector improved
and it converged to that of the ML detector when we have
NMC = Np = 20. In other words, it exhibited a performance
comparable to that of the ML detector. Nevertheless, when
NMC(= Np) was lower than 10, observe in Fig. 9 that
the MCMC detector exhibited an error floor. By contrast,
the achievable BER of the MC-MBER detector was good,
regardless of the Gibbs-Sampler parameters and it converged
at NMC = Np = 3. Since the MC-MBER detector is a hybrid
of the statistical and of the deterministic methods, the resultant
performance is more robust than that of the purely statistical
MCMC detector.

IV. SOFT-INPUT SOFT-OUTPUT MIMO DETECTORS

Having characterized both the achievable performance and
the complexity of the class of hard-decision detectors devel-
oped for the uncoded SDM system of Fig. 2, we now introduce
their soft-information assisted counterparts, in order to create a
practical Forward Error Correction (FEC) aided SDM system.

More specifically, we consider the two-stage serially-
concatenated SDM scheme of Fig. 10, where the uncoded
SDM system of Fig. 2 is extended to include a channel
encoder and a bit interleaver at the transmitter as well as the
corresponding interleaver/deinterleaver and a SISO channel
decoder at the receiver, according to the turbo coding principle
[27, 50]. At the transmitter, the source bits are first channel
encoded and then interleaved by the interleaver Π. Then, the
interleaved bits are S/P converted to M substreams, followed
by SDM mapping to each transmit AE. Based on the turbo
detection principle, the receiver employs iterative detection in
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Fig. 10. Schematic of the two-stage serially-concatenated SDM transmitter
and receiver, which was developed from its uncoded counterpart of Fig. 2.

the context of the SDM scheme. The receiver consists of two
SISO stages, namely the SISO-based detector and the SISO
channel decoder. The SISO detector employed demodulates
the received symbols Y and outputs the extrinsic information
Le

1 in the form of LLRs with the aid of the a priori LLRs Lpr
1 ,

which are fed back from the channel decoders to the detector.
The extrinsic LLRs Le

1 are then input to the Convolutional
Channel (CC) decoders of Fig. 10 after deinterleaving. The
extrinsic LLRs Le

2 of Fig. 10 are calculated at the channel
decoder, output and are interleaved again, before being passed
back to the SISO detector component of Fig. 10 as the a priori
information. We note that since there is no a priori information
during the first iteration, the initial values of Lpr

1 are set to
zero.

Therefore, the SDM demapping block of Fig. 10 has to
output bit-wise soft extrinsic information rather than the
estimates of the transmitted symbols. To this end, we introduce
a range of diverse SISO detectors designed for MIMO systems
in this section, including the SISO-MAP detector, the SISO-
MMSE detector, the SISO-MBER detector, the SISO-MCMC
detector and the SISO-MC-MBER detector.

Since the iterative detection is a non-linear process, it is a
challenging task to analyze the decoding characteristics and
to obtain a closed-form expression for the achievable perfor-
mance. This also makes it difficult to design the corresponding
channel encoder and to determine the appropriate number of
iterations at the receiver. Motivated by this problem, ten Brink
[51] invented a sophisticated analysis tool, namely the EXIT
chart, which visualizes the extrinsic information exchange
between the receiver components during the iterative process
and enables us to design a near-capacity turbo-coding assisted
SDM system. The fundamental theory of EXIT charts will be
described later in Section V-A.

Note that while in this treatise we focus our attention on
turbo-coded systems as a representative of channel coded
systems utilizing soft information, there exist many other
soft-information assisted channel-coded systems and their
detectors. For example, Low-Density Parity-Check (LDPC)
codes [52] constitute another important class of channel codes,
where soft information is iteratively exchanged at the decoder,
in order to increase the mutual information, similarly to the
receiver of turbo-coded systems.

A. SISO MAP Detector

According to the equivalent system model, the conditional
probability p(Y |S(l)) is given by Eq. (1). Considering that
the symbol vector S = [s1, s2, · · · , sM ]T carries B channel-
coded binary bits B = [b1, b2, · · · , bB]T, the a posteriori LLR
Lpo

1 of the bit bk (k = 1, · · · , B) is given by [53]

Lpo
1 (bk) = Lpo

1 (bk|S)

= ln

∑
S(l)∈Sk

1
p(Y |S(l)) exp

(∑
j �=k bjL

pr
1 (bj)

)
∑

S(l)∈Sk
0
p(Y |S(l)) exp

(∑
j �=k bjL

pr
1 (bj)

)
︸ ︷︷ ︸

Le
1(bk)

+ Lpr
1 (bk), (6)

where Ski (i = 0, 1) indicates a collection of the signals S
where the kth bit is bk = i ∈ {0, 1}. Then, by substituting
Eq. (1) into Eq. (6), we arrive at

Le
1(bk) =

ln

∑
S(l)∈Sk

1
exp

[
− ||Y −HS(l)||2

N0
+
∑

j �=k bjL
pr
1 (bj)

]
∑

S(l)∈Sk
0

exp
[
− ||Y −HS(l)||2

N0
+
∑

j �=k bjL
pr
1 (bj)

](7)

Furthermore, using the max-log approximation [54], the ex-
trinsic LLRs Le

1(bk) may be simplified at the cost of a minimal
performance loss.

B. SISO MMSE Detector

Similarly to the hard-decision MMSE detector reviewed in
Section III-B, the SISO MMSE detector is a popular detection
scheme, which computes the complex-valued receiver weights
by minimizing the expectation of the MSE and then outputs
the soft information. At the inner SISO demapping block of
Fig. 10, a soft-information vector HS, which is calculated
based on the a priori information, is subtracted from the equiv-
alent input signals Y excluding the mth multiplexed signal,
then the equivalent input signals Y are decontaminated from
the effects of the interference by the detector having complex-
valued weights as follows: ŝm = wH

m(Y − HS̄ + hms̄m),
where S̄ = [s̄1, s̄2, · · · , s̄M ]T hosts the signals calculated
from the a priori LLRs, whose elements are computed for

BPSK as s̄m = E[sm] = tanh
(
Lpr

m,1
2

)
, and for QPSK as

s̄m = 1√
2

{
tanh

(
Lpr

m,1
2

)
+ j tanh

(
Lpr

m,2
2

)}
, where Lpr

m,i (i =
1, · · · , log2 L) indicates the bits corresponding to the mth
signal sm.

Then, by applying to the MMSE criterion mentioned
in Section III-B, the weight vector corresponding to the
mth substream may be expressed in a closed form as
wm = (HΛmHH + |s̄m|2hmhH

m + N0I)−1hm, where
we have Λm = diag[v1, · · · , vm−1, 0, vm+1, · · · , vM ]
and vm represents the variance of the mth substream,
calculated from the a priori LLRs as follows:
vm = E[|sm|2] − |E[sm]|2 = 1 − |s̄m|2. Assuming
that the conditional PDFs P (ŝm|bm(i)) obey the
Gaussian distribution, we can express the extrinsic
information for BSPK as [28] Le

1(bm(1)) =
4R[wH

m(Y − HS̄ + hms̄m)]/(1 − vmwH
mhm),
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and for QPSK as Le
1(bm(1)) =

4R[wH
m(Y − HS̄ + hms̄m)]/(1 − vmwH

mhm) and
Le

1(bm(2)) = 4I[wH
m(Y − HS̄ + hms̄m)]/(1 − vmwH

mhm),
where bm(i) (i = 1, · · · , log2 L) is the ith channel-coded
binary bit of the mth substream at each symbol duration.

C. SISO MBER Detector

Similarly to the hard-decision MBER detector introduced
in Section III-C, the error probability of the mth substream
signal sm can be expressed as a closed form [30] based on
Q-function, on Nb = LM number of legitimate transmit-
ted sequences and on signals calculated from the a priori
information. Then, the MBER detector’s weights are then
derived by minimizing the BER function similarly to the hard-
decision MBER detector. wm = argminw Pe,I(wm). The
probability Pe,I(wm) is a nonlinear function of the weights
wm, therefore in general the optimization problem has to be
solved iteratively. Furthermore, similarly to the SISO MAP
detector of Section IV-A, the max-log approximation may be
invoked for the sake of reducing the complexity imposed.
Moreover, the above-mentioned MBER detector derived for
BPSK modulation may be readily extended to multi-level
modulation schemes, such as QPSK [55] and QAM [56].

Unfortunately, since the SISO MBER detector has to update
the weights per every symbol vector, its total complexity tends
to be higher than that of the SISO MAP detector. This may
be overcome by introducing MCMC and LLR thresholding
techniques as detailed in Section IV-E.

D. SISO MCMC Detector

In Section III-E, we have introduced the hard-decision
MCMC detector, which applies the hard-decision operation
to the output soft information formulated in Eq. (8). The
SISO MCMC detector may then be readily implemented
by modifying the treatment of the a priori LLRs at the
Markov chain sampling operation as well as the max-log
approximation [57]:

Le
1(bk) = max

S(i)∈Sk
1

[
−||Y − HS(i)||2

N0
+ lnP (B(i)

−k)

]

− max
S(i)∈Sk

0

[
−||Y − HS(i)||2

N0
+ lnP (B(i)

−k)

]
, (8)

where Ski (i = 0, 1) represents a set of samples S(l) generated
by the Gibbs-Sampler, whose kth information bit is bk = i and
P (B(i)

−m) is the a priori probability, which is calculated from
the a priori LLRs.

E. SISO MC-MBER Detector

As mentioned above in Section IV-C, the high BER per-
formance of the MBER scheme is achieved at the cost of a
high computational complexity, which may become particu-
larly challenging in rapidly fading propagation environments,
requiring prompt MBER detector weight updates. Similarly,
frequent weight-updates are required in iterative detection
scenarios, where soft information has to be exchanged between
the detector and the channel decoder.

Clearly, the calculation of the MBER weight gradient
imposes a high computational complexity, which increases
exponentially with the value of M . It may be readily shown
that an unlikely signal set of S(l) resulting in a small value
of P (S(l)) does not substantially contribute to the gradient
expression. Thus, similarly to Section IV-E, we introduce the
Markov Chain representation method that efficiently extracts
a likely set of signals from the Nb = LM legitimate se-
quences for the sake of reducing the computational complexity
associated with the gradient calculation. This is achieved
without degrading the BER performance of the full-complexity
SISO MBER scheme. The procedure of the SISO MC-MBER
detector is similar to that of the non-iterative hard-decision
MC-MBER detector of Fig. 4. The slight difference is in the
implementation of the approximate MBER detector block of
Fig. 4, where the SISO MBER detector assisted by the a priori
LLRs rather than the hard-decision MBER detector is applied
based on the N ′

b most likely signals generated by the Gibbs-
Sampler.

Furthermore, the computational complexity of the MC-
MBER detector is further reduced by introducing a novel
concept, namely thetechnique of a priori LLR thresholding,
in which a priori information is utilized in the Markov chain
simulation in order to reduce the associated computational
complexity without substantially degrading its performance.

1) A priori LLR Thresholding Assisted Complexity Reduc-
tion: Clearly, the above-mentioned Gibbs-Sampler is largely
affected by the a priori information passed to it from the chan-
nel decoder, which indicates whether the corresponding bit is
more likely to be 1 or 0. For example, when the LLR Lpr

1 (bk)
is a large positive value, P (b(i)k = 1|B(i)

−m,Y , Lpr
1 (bk)) is

close to unity. Thus the bit b
(i)
k is set to 0 as a result

of comparing P (b(i)k = 1|B(i)
−k,Y , Lpr

1 (bk)) to the random
variable ξ.

Based on this fact, we introduce the novel concept of using
an a priori LLR threshold based technique for the Gibbs-
Sampler, by omitting the low-probability detection candidates.
To be more specific, when the LLR Lpr

1 (bk) is higher than a
certain threshold value ζ > 0, the corresponding bit b(i)k is set
to 0 without implementing the Gibbs-Sampling. In the same
way, if the LLR Lpr

1 (bk) is less than the threshold value −ζ,
the bit b(i)k is set to 1. It is plausible that a lower value of the
threshold ζ leads to a lower complexity at the cost of a less
accurate approximation of the Gibbs-Sampler.

To elaborate a little further, the complexity reduction effects
of the a priori LLR thresholding technique is substantially
affected by the a priori LLRs utilized. For example, since
no a priori LLRs can be given in the first iteration, we
cannot benefit from this technique at this stage. After the first
iteration, upon increasing the number of the iterations, the
absolute value of the a priori LLRs gleaned from the channel
decoder tend to increase, leading to the increase in the effects
of the computational complexity reduction advocated by the a
priori LLR thresholding technique. Therefore, the beneficial
effect of this technique on the computational complexity
reduction largely depends on the number of iterations as well
as on the SNR.
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Fig. 11. Explanation of the a priori LLR thresholding technique, where the threshold value ζ was set to ζ = 3.

F. Computational Complexity

In this section, we compare the computational complexity
of the SISO detectors, such as the SISO MBER detector, the
SISO MAP detector, the SISO MCMC detector and the SISO
MC-MBER detector, which have to calculate M log2 L LLRs
corresponding to the information bits transmitted during each
symbol interval. Since the basic calculations associated with
each SISO detectors’ complexity is similar to those of the
hard-decision detectors shown in Section III, we only list
the results in Table VIII. The corresponding computational
complexity is evaluated in terms of the real-valued multi-
plications. Here, we show both the complexity of the MC-
MBER detectors, either employing or dispensing with the a
priori LLR thresholding technique of Section IV-E1, where
γ represents the relative frequency of activating the LLR
thresholding during the implementation of the Gibbs-Sampler.

We note that except for the SISO MMSE detector, the em-
ployment of the max-log approximation was assumed for the
LLR calculations, which substantially reduces the associated
complexity in comparison to the exact calculations of the LLR
values.

V. EXIT CHART AIDED SYSTEM DESIGN

In this section, we firstly highlight the concept of EXIT
charts, which is a powerful technique used for analyzing the
convergence behaviour of iterative detection aided transmis-
sions based on the turbo-coding principle. EXIT chart in
the next section. The EXIT charts are then used to analyze
the SDM system detected with the aid of SISO detectors
introduced in the previous section.

A. EXIT Chart

In turbo detection, an infinitesimally low BER may be
attained by the iterative exchange of extrinsic mutual infor-
mation between two SISO decoders, i.e. the inner and outer
decoders. Since the iterative decoding process is not linear,
the prediction of its convergence behaviour is a challenging
task. The ingenious tool of EXIT charts was proposed by
ten Brink [51, 58] for the visualization of the iterative de-
coding behaviour and for the prediction of the ‘BER-cliff’
position, where the BER suddenly drops. More specifically,
the input/output relationship of the mutual information at

each decoder is characterized by the EXIT chart and then
their interaction assisted by the iterative decoding process
is examined without time-consuming bit-by-bit Monte-Carlo
simulations.

The SDM demapper of Fig. 10 outputs the a posteriori
information based on the noise-contaminated channel output
observations and on the a priori information gleaned from the
outer channel decoder. By subtracting the a priori informa-
tion from the a posteriori information, the SDM demapper
generates the extrinsic information. The EXIT chart analysis
relies on exploiting the following two assumptions. Firstly,
it assumes having a sufficiently long interleaver that assures
statistical independence of the a priori LLRs La. Secondly, it
stipulates having a Gaussian distribution for the LLRs, which
may be formulated as La = μA · s + nA, where we have
μA = σ2

A/2, whith μ being the variance of the LLRs La.
Here the conditional probability of the a priori LLR La is
given by

pLa(x|S = s) =
1√

2πσA
exp

(
− (x− (σ2

A/2) · s)2
2σ2

A

)
. (9)

In binary EXIT chart analysis, the mutual information
between the a priori or extrinsic LLRs Li (i = a, e) and the
corresponding bits S is calculated by the following equation
[51]

I(Li;S) =
1
2

∑
s=±1

∫ ∞

−∞
pLi(x|s) log

pLi(x|s)
pLi(x)

dx (10)

with pLi(x) = 1
2 {pLi(x|s = +1) + pLi(x|s = −1)}, where

pLi(x|s) is the probability of the a priori information condi-
tioned on encountering s = ±1. Then, by applying Eq. (9),
which is based on the Gaussian distribution assumption to the
PDF of the LLRs La, the mutual information between the a
priori LLRs La and the equiprovable transmitted symbols s
can be written by [51]

I(La;S) = IA(σA)

= 1 −
∫ ∞

−∞

1√
2πσ2

A

exp
(
− (La − σ2

A/2)2

2σ2
A

)
× log2(1 + e−L)dL. (11)

For simplicity, Eq. (11) is written as I = J(σA), which
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TABLE VIII
COMPUTATIONAL COMPLEXITY OF THE SISO MMSE, THE SISO MBER, THE SISO MAP, THE SISO MCMC AND THE SISO MC-MBER DETECTORS

FOR THE TWO-STAGE TURBO-CODED SDM SYSTEM OF FIG. 10.

MUD Computational complexity

MMSE (4MN2 + 2MN + 10N2 − 2N + 2 log2 L + 1)M (weight calculation)
+12MN + 5M (LLR calculation)

MBER log2 L · NgNbM(8MN + 10N + M log2 L + 5) (weight calculation)
+3M log2 L + NgM(8M + 2)

+M log2 LNb(4N + 2) (LLR calculation)
MAP Nb(4MN + 2N + 1) + M log2 L

MCMC 4(1 + log2 L · MNMCNP)M(N + 1) (Gibbs-Sampler)
+2 log2 L · MNMCNP

+ 2N ′
b(M log2 L − 1) (LLR calculation)

MC-MBER 4(1 + log2 L · MNMCNP)M(N + 1) (Gibbs-Sampler)
+2 log2 L · MNMCNP

(without + log2 L · NgN
′
bM(8MN + 10N + M log2 L + 5) (approx. MBER)

thresholding) +3M log2 L + NgM(8M + 2)
+M log2 LN ′

b(4N + 2) (LLR calculation)
MC-MBER 4[1 + log2 L · M(1 − γ)NMCNP]M(N + 1) (Gibbs-Sampler)

(with +2 log2 L · M(1 − γ)NMCNP

thresholding) + log2 L · NgN
′
bM(8MN + 10N + M log2 L + 5) (approx. MBER)

+3M log2 L + NgM(8M + 2)
+M log2 LN ′

b(4N + 2) (LLR calculation)

we refer to as the J-function. In [59], this J-function was
approximated by

I = J(σA) ≈
(
1 − 2−H1σ

2H2
A

)H3

, (12)

where the constants H1, H2 and H3 are given by 0.3073,
0.9835 and 1.1064, respectively. The J-function is a unique
unambiguous function, and thus its inverse function is deter-
mined uniquely as

σA = J−1(I) ≈
(
− 1
H1

log
(
1 − I1/H3

)) 1
2H2

. (13)

By contrast, the mutual information between the extrinsic
LLRs Le and the corresponding bits S is calculated by the ex-
perimentally gathered histogram. More specifically, the LLRs
La generated by using the covariance σA in (13) are input
to the corresponding SISO decoder, and then the histogram
of the output LLRs Le is evaluated in order to obtain the
PDF pLe(x|s). Finally, the mutual information IE is calculated
using Eq. (10). According to this calculation procedure, the
two EXIT curves, i.e. the inner and outer decoder’s EXIT
curves, may be drawn. By examining the relationship of the
two curves, we can predict the convergence characteristics of
the iterative receiver.

The inner and outer decoders’ EXIT curves should not
intersect before the point of (IA, IE) = (1.0, 1.0), which leads
to the ideal extrinsic information exchange between the two
decoders. The emergence of an open EXIT chart convergence
tunnel enables the system to achieve an infinitesimally low
BER at the corresponding SNR. However, since in general
the outer decoder’s EXIT curve is not guaranteed to reach
the point of perfect convergence to a vanishingly low BER
at (IA, IE) = (1.0, 1.0) due to the non-recursive nature of
the inner code, this ideal condition may not always be satis-
fied, depending on the system’s structure. Nevertheless, every
system has the potential of arriving at a point of (IA, IE) =
(1.0, α) associated with 0 < α < 1, if the two EXIT curves
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Fig. 12. Outer decoder EXIT curves corresponding to a half-rate RSC having
the constraint length of 2 to 7, obeying the generator polynomials shown in
Table IX.

form an open tunnel, where we can have a moderately low
BER.

Fig. 12 shows the six different outer decoder EXIT curves
corresponding to various half-rate RSC codes having the
constraint lengths spanning from 2 to 7, obeying the generator
polynomials shown in Table IX. The generator polynomials
(Gr, G)8 employed in the simulation are listed in Table IX,
which are represented in octal form.

It can be seen from Fig. 12 that upon increasing the
constraint length of the RSC, the slope of the EXIT curve
becomes less steep around the value of IA = 0.5. Thus, for
IA > 0.5, a RSC code having a higher constraint length has
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Fig. 13. The inner code’s EXIT curves of the SISO MAP detector in the serially-concatenated SDM system seen in Fig. 10, for the scenarios of (M, N ) =
(4, 3) AEs and of (M, N ) = (4, 4) AEs. Here, the SNR was varied from 0 dB to 10 dB in every 1 dB. We also plotted the outer EXIT curve of the half-rate
RSC(2,1,3) with generator polynomials of (Gr, G) = (5, 7)8 in octal form. All other system parameters were summarized in Table X.

TABLE IX
GENERATOR POLYNOMIALS EMPLOYED FOR THE HALF-RATE RSC CODES

Constraint Generator polynomials
length in octal(Gr, G)8

2 (3, 2)8
3 (5, 7)8
4 (15, 17)8
5 (35, 23)8
6 (53, 75)8
7 (133, 171)8
8 (247, 371)8
9 (561, 753)8

the potential of exhibiting a wider EXIT tunnel. This indicates
that depending on the parameters of the RSC code employed,
the characteristics of the iterative receiver change and hence
the choice of these parameters provide us with an additional
degree of design freedom.

In contrast to the outer code’s EXIT chart of Fig. 12, Figs
13(a) and 13(b) show the inner code’s EXIT curves of the
BPSK- and QPSK-modulated SDM system seen in Fig. 10,
for the scenarios of (M,N ) = (4, 3) AEs and (M,N ) = (4, 4)
AEs. Here, we employed the SISO MAP detector of Section
IV-A and the SNR value was varied from 0 dB to 10 dB
with the step size of 1 dB. The outer RSC(2,1,3) decoder’s
EXIT curve was also plotted. Observe in Figs 13(a) and 13(b)
that upon increasing the SNR value, the inner decoder’s EXIT
curve moved upwards, hence leading to a wider EXIT tunnel.
Additionally, it was found that as expected, a increase in the
constellation size L and an decrease in the number of receive
antennas N degrades the corresponding inner code’s EXIT
curve by shifting it downwards.

Having generated the EXIT charts for the SDM system
invoking the SISO-MAP detector, we then embark on veri-

TABLE X
BASIC SYSTEM PARAMETERS OF THE CODED SDM SCHEME OF FIG. 10.

Number of transmit antennas M = 4
Number of receive antennas N = 3, 4
Modulation BPSK, QPSK

Channels Frequency-flat Rayleigh fading
Channel’s coherence-time τ = 1 symbol duration

Interleaver blocklength 200 000 bits
Channel code RSC(2, 1, 3)
Generator polynomials (Gr, G) = (5,7)8
Number of iterations I = 10

fying the prediction of the iterative convergence by drawing
the decoding trajectory within the EXIT chart. Fig. 14 shows
the decoding trajectory corresponding to the interleaver length
of 200 000 bits at SNR = 4 dB. Ovserve in Fig. 14 that
the trajectory exhibited a good match with the prediction,
where the iterative decoding converged after I = 5 iterations.
Furthermore, the achievable BER performance is shown in
Fig. 15, where the number of iterations I was changed from
I = 0 to I = 10.

In order to provide further insights, let us now characterize
the convergence behaviour of other SISO detectors. Firstly,
Fig. 16 show the EXIT charts for the SISO MMSE detector
of Section IV-B and for the SISO MBER detector of Section
IV-C. Here, we considered the scenario of (M,N ) = (4, 3)
AEs and BPSK modulation. It can be seen that the EXIT
curve of the SISO MBER detector exhibited a wider EXIT
tunnel than that of the SISO MMSE detector especially for
BPSK, although both the MBER and MMSE schemes’ EXIT
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Fig. 14. Decoding trajectory of the iteratively detected half-rate RSC-coded
QPSK-modulated SDM system of Fig. 10 employing (M, N ) = (4,3) AEs
and the SISO MAP detector of Section IV-A. The interleaver lengths was set
to 200 000 bits, while the SNR was 4 dB.

curves predicted a lower BER performance than that of the
SISO MAP detector.3

Fig. 17 shows the MCMC detector’s EXIT curves for
different values of NMC(= NP), which was varied from
NMC = NP = 2 to NMC = NP = 10, at SNR=5 dB. Observe
in Fig. 17 that upon increasing the value of NMC(= NP),
the EXIT curve improved, reaching that of the MAP detector
for NMC = NP = 10. Furthermore, Fig. 18 shows the
computational complexity imposed by the MCMC detector,
which corresponds to the EXIT curve of Fig. 17. Although
upon increasing the NMC(= NP) the computational com-
plexity also increased, the complexity of the MCMC detector
remained ten times lower than that of the MAP detector for
NMC = NP = 10. According to Figs. 17 and 18, this suggests
that the MCMC detector constitutes a good approximation of
the MAP detector, provided that a sufficiently high number of
samples are generated by the Gibbs-Sampler.

Fig. 19 shows the EXIT curves of the MC-MBER detec-
tor at SNR = 5 dB, while deactivating the a priori LLR
thresholding technique of Section IV-E1, where the Gibbs-
Sampler parameters were chosen as NMC = NP = 2, 3, 4 and
5. Furthermore, we plotted the corresponding EXIT curve of
the full-complexity MBER detector in order to characterize
the upper bound of the MC-MBER detector. Recall that the
MC-MBER detector is the reduced-complexity version of
the full-complexity MBER detector. Observe in Fig. 19 that
upon increasing the values NMC(= NP), the corresponding

3In order to provide further insights, consider the special case of the two-
stage receiver of Fig. 10, where the number of iterations I is set to zero,
which constitutes the two-stage non-iterative receiver. Since in this scenario
the SDM demapping block of Fig. 10 does not utilize a priori information,
the linear weights remains constant for the linear SISO detectors, such as
the SISO MMSE and the SISO MBER detectors. Therefore, the associated
complexity may be substantially reduced at the cost of no iterative gain, where
the extrinsic information output from the SDM demapping block corresponds
to the point of IA = 0.
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Fig. 15. Achievable BER performance of the iteratively detected half-rate
RSC-coded QPSK modulated SDM system of Fig. 10 employing (M, N ) =
(4,3) AEs and the SISO MAP detector of Section IV-A, where the number of
iterations I was varied from I = 0 to I = 10, while the interleaver length
was set to 200 000 bits. All other system parameters were summarized in
Table X.
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Fig. 16. The inner code’s EXIT curves of the SISO MMSE and MBER
detectors in the serially-concatenated BPSK-modulated SDM system seen in
Fig. 10, for the scenario of (M, N ) = (4, 3) AEs. Here, the SNR was varied
from 0 dB to 10 dB in every 1 dB. We also plotted the outer EXIT curve of
the half-rate RSC(2,1,3) with generator polynomials of (Gr, G) = (5, 7)8 in
octal form. All other system parameters were summarized in Table X.

EXIT curve of the MC-MBER detector was shifted slightly
higher, mainly in the low IA regime. More specifically, the
EXIT curve recorded for the case of NMC = NP = 5
attained a slightly lower performance than that of the full-
complexity MBER detector. Accordingly, it can be argued that
the proposed MC-MBER detector was capable of efficiently
approximating the full-complexity MBER detector. We also
note that while the performance of the MCMC detector was
substantially affected by the Gibbs-Sampler’s parameters, as
evidenced by Fig. 17, the MC-MBER detector exhibited a
good performance for low NMC = NP values, as shown
in Fig. 19. This is because the MC-MBER detector is a
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Fig. 17. EXIT chart of the SISO MCMC detector in the QPSK-modulated
(6 × 4)-element SDM system of Fig. 10 at the SNR = 5 dB, comparing the
effects of the Gibbs-Sampling parameters, where NMC(= NP) was given by
NMC = NP = 2, 3, 4, 5, 10. All other system parameters were summarized
in Table X.
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Fig. 18. Computational complexity imposed by the SISO-MCMC detector in
the QPSK-modulated (6×4)-element SDM system of Fig. 10 at the SNR = 5
dB, comparing the effects of the Gibbs-Sampling parameters, where NMC(=
NP) was given by NMC = NP = 2, 3, 4, 5, 10. All other system parameters
were summarized in Table X.

stochastic-deterministic hybrid detector, rather than being a
purely stochastic detector. Next, in Fig. 20 we characterized
the computational complexity imposed by the SISO MC-
MBER detector, which corresponds to the EXIT curves of Fig.
19. Here, the number of iterations I was varied from I = 0
to I = 10, noting that the number of sampled signals N ′

b

required is also affected by the a priori information gleaned
from the channel decoder. It can be seen from Fig. 20 that the
complexity of the MC-MBER detector employing the Gibbs-
Sampler parameter of NMC = NP ≤ 5 exhibited more than
ten times lower complexity than that of the MAP detector.
Additionally, upon increasing the number of iterations I , the

IA

0.0 0.2 0.4 0.6 0.8 1.0

I E

0.0

0.2

0.4

0.6

0.8

1.0
SISO MC-MBER

NMC (=NP) = 2,3,4,5

RSC(2,1,3)

Fig. 19. EXIT chart of the MC-MBER detector in the QPSK-modulated
(6 × 4)-element SDM system of Fig. 10 at the SNR = 5 dB, comparing
the effects of the Gibbs-Sampling parameters, where NMC(= NP) was
given by NMC = NP = 2, 3, 4, 5, while the a priori LLR thresholding
was deactivated. All other system parameters were summarized in Table X.
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Fig. 20. Computational complexity imposed by the SISO MC-MBER
detector in the QPSK-modulated (6 × 4)-element SDM system of Fig. 10
at the SNR = 5 dB, comparing the effects of the Gibbs-Sampling parameters,
where NMC(= NP) was given by NMC = NP = 2, 3, 4, 5, while the a
priori LLR thresholding was deactivated. All other system parameters were
summarized in Table X.

complexity of the MC-MBER detector was reduced owing to
the beneficial effects of having higher a priori LLRs.45

Furthermore, in Fig. 21 we investigated the a priori LLR
thresholding technique proposed for the complexity reduction
of the MC-MBER detector, where the EXIT curves of the MC-
MBER detector employing the different threshold values of
ζ = 0.5, 1, 5 and 10 were considered, for the QPSK-modulated
(6 × 4)-element SDM system at SNR = 5 dB. It was found

4To elaborate a little further, the a priori LLR thresholding technique was
found to further reduce the complexity of the MC-MBER detector, although
the detailed simulation results are omitted for the sake of saving space.

5Although in this paper we considered low-order constellations for the sake
of simplicity, the concepts of the MCMC and the MC-MBER detectors may
be readily applicable to higher order constellation schemes, such as 16-QAM
and 64-QAM. Further details and numerical results can be found in [32] for
the MCMC detector and in [60] for the MC-MBER detector.
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Fig. 21. EXIT curves of the MC-MBER detector in the QPSK-modulated
(6 × 4)-element SDM system of Fig. 10 at the SNR = 5 dB, where the a
priori LLR thresholding was activated with the aid of the threshold values
of ζ = 0.1, 1, 5 and 10. Here, the Gibbs-Sampling parameters was set to
NMC = NP = 10. All other system parameters were summarized in Table
X.
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Fig. 22. Achievable BER performance of the iteratively detected half-rate
RSC-coded QPSK modulated SDM system of Fig. 10 employing (M, N )
= (8,4) AEs and the SIC-MMSE-aided iterative centre-shifting K-best SD
receiver. c©2008 IET, Wang, Xu, Chen, Hanzo, [49].

that even for as low as ζ = 0.5, the outer EXIT curve of
the MC-MBER detector exhibited a good performance, which
was close to that of the full-complexity MC-MBER detector
of Fig. 19.

Moreover, Fig. 22 illustrates the achievable BER perfor-
mance of the K-best SISO SD [49] in the scenario of
the QPSK-modulated (8×4)-element SDM system. In this
scheme, search center Xc was iteratively updated with the aid
of Soft-Interference-Cancellation (SIC-)MMSE [29]. Observe
in Fig. 22 that the reduced-complexity (K = 16) center-
shifting SD is capable of approaching the performance of the
large-search-space (K = 1024) SD dispensing with center-
shifting at BER = 10−5. Also, for a fixed value of K = 32, the

TABLE XI
BASIC SYSTEM PARAMETERS OF THE CODED SDM SCHEME OF FIG. 23.

Number of transmit antennas M = 4
Number of receive antennas N = 3
Modulation QPSK

Channels Frequency-flat Rayleigh fading
Channel’s coherence-time τ = 1 symbol duration

Detector Max-log MAP detector
Interleaver blocklength 200 000 bits
Outer channel code RSC(2, 1, 2)
Generator polynomials (Gr, G) = (3,2)8
Precoder URC
Number of inner iterations Iin = 1
Number of outer iterations Iin = 0–10

iterative gain over the non-iterative receiver labeled as ‘SISO
detection’ was doubled to approximately 6 dB by the SIC-
MMSE center-shifting-aided receiver, when compared to that
of iterative SD dispensing with the center-shifting.6

B. Three-Stage-Concatenated Turbo SDM Systems

Let us now consider the family of serially concatenated
three-stage turbo SDM system shown in Fig. 23. More specif-
ically, the information bits are firstly channel-encoded by the
half-rate Recursive Systematic Convolutional (RSC) code and
then interleaved by the first random interleaver Π1 of Fig. 23.
Then, the interleaved bits are further encoded by the Unity-
Rate Convolutional (URC) code and the URC-coded bits are
then interleaved by the random interleaver Π2 of Fig. 23.
Finally, the interleaved bits are mapped to the AEs with the
aid of our SDM mapping scheme, in order to generate the
space-time codewords S(i) to be transmitted to the receiver.
By contrast, the receiver structure of Fig. 23 is constituted
by a three-stage iterative detector, where three SISO decoders
exchange their extrinsic information in the form of LLRs. Let
us assume that the RSC code is used as the outer code, while
considering the amalgamated combination of the URC code
and the SDM mapper to be the inner code.7

Fig. 24 shows the EXIT curves of the QPSK-modulated
SDM arrangements, where the corresponding SNR was varied
from 0 dB to 10 dB with a step-size of 1 dB for generating
the inner code’s EXIT curves. We also plotted the outer
RSC(2,1,2) decoder’s EXIT curve, which employed the octal
generator polynomials of (3, 2)8, where the interleaver length
of both interleaver Π1 and Π2 was set to 200 000 bits. This is
a sufficiently high interleaver length, which enables a good
match between the EXIT-chart prediction and the Monte-
Carlo simulation-based BER results, as detailed in [53]. The

6For further numerical investigations as well as the complexity analysis of
the SD, please refer to [48, 61]. Additionally, the achievable BER performance
of the SD and the MCMC can be found in [32, 62].

7The benefit of this assumption is that we do not need a three-dimensional
EXIT chart, whilst a three-stage concatenated scheme would require two 3D
EXIT charts for visualizing the mutual information improvement benefits of
exchanging extrinsic information amongst three serially concatenated SISO
blocks, as detailed in [53]. This amalgamation of the above-mentioned two
components is carried out by exchanging extrinsic information between these
two components as many times, as necessary for achieving the highest mutual
information between them and then considering them as a single SISO block.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



18 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

SDM
mapper

Source
1

M

Channel
encoder

Unity-
rate

encoder

SDM
demapper

1

N

Channel
decoder

Unity-
rate

decoder

Outer code Inner code

S/P

P/S

Fig. 23. Schematic of a three-stage RSC- and URC-coded SDM scheme using iterative detection.
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Fig. 24. EXIT chart of our RSC- and URC-coded SDM system of Fig. 23.
All other system parameters were summarized in Table XI.

corresponding EXIT curves of the two-stage turbo-coded SDM
system of Fig. 10 were also plotted as a benchmarker. It can be
seen in Fig. 24 that the corresponding inner decoder’s EXIT
curves of the three-stage and two-stage systems exhibited
substantially different characteristics. More specifically, the
inner code’s EXIT curve of the three stage system reached
the point of perfect convergence to a vanishingly low BER at
(IA, IE) = (1.0, 1.0), as the explicit benefit of employing a
URC.8

Finally, Fig. 25 shows the achievable BER performance of
our RSC- and URC-coded SDM system employing QPSK
modulation, which had a total throughput of R = 4
bits/symbol. The number of iterations I between the outer
and inner codes was varied from Iout = 0 to Iout = 10. As
predicted from the EXIT chart of Fig. 24, the corresponding

8The role of the URC is to transform the scheme considered into an Infinite
Impulse Response (IIR) arrangement, which results in an improved iterative
gain by effectively spreading the extrinsic information and hence eliminating
the potential error-floor.
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Fig. 25. Achievable BER performance of our RSC- and URC-coded SDM
system of Fig. 23 employing QPSK modulation, where the number of outer
iterations Iout was changed from Iout = 0 to Iout = 10. All other system
parameters were summarized in Table XI. The dashed-lines indicate the lowest
possible SNRs, at which an infinitesimally low BER may be attained at the
effective throughput of 4 bits/symbol, calculated from DCMC capacity and
the maximum achievable rate.

BER curve exhibited an infinitesimally low BER at the SNR
point of 4.9 dB.9

VI. SUMMARY AND CONCLUSIONS

In this treatise, we introduced diverse hard- and soft-
decision MIMO detectors in the context of SDM systems,
such as the ZF, the MMSE, the MBER, the ML, the MAP,

9To elaborate a little futher, EXIT charts are useful not only for analyzing
the convergence behaviour of iterative decoding, but also for designing the
system architecture capable of achieving a near-capacity performance. For
example, the recent turbo-coded system may be constituted by the IRregular-
Convolutional Codes (IRCC) [63] or the IRregular-Precoded LDCs (IR-
PLDC) [64], which can be optimized with the aid of the EXIT chart, so that
inner- and outer-EXIT curves are matched with each other, hence having a
minimal EXIT tunnel area over a wide range of SNRs. Similarly, the irregular
LDPC codes [65] can also be optmized based on the EXIT chart for the
sake of attaining a near-capacity performance, as shown in [66]. Furthermore,
in [67] Multi-Level Bit-Interleaved Coded Modulation (ML-BICM) may be
adaptively encoded with the aid of EXIT chart, where the information rate
loss caused by the mismatch between channel realization and channel coding
is minimized in a near-simultaneous manner.
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TABLE XII
SUMMARY OF THE MMSE, THE MBER, THE ML, THE MAP, THE MCMC, THE MC-MBER DETECTORS IN THE CONTEXT OF UNCODED AND

TURBO-CODED SDM SCHEMES OF FIGS. 2 AND 10, EMPLOYING THE SYSTEM PARAMETERS OF TABLES I AND X.

Linear detector
ZF MMSE MBER

Criterion Section III-A Section III-B Section III-C

Complexity O(max(M3,N3)
τ

) O(max(M3,N3)
τ

) O(
NgNbM2N log2 L

τ
)

Performancea 29.6 dB 23.2 dB 15.4 dB

Criterion — Section IV-B Section IV-C
Iterations I = 10
FEC rate 0.5
Complexity — O(M2N2) O(NgNbM2

×N log2 L)

Performanceb

(2 × 2) — 2.5 dB 2.5 dB
(4 × 2) — 5.7 dB 5.6 dB
(6 × 2) — 7.7 dB 7.4 dB
(8 × 2) — 12.5 dB 8.8 dB

Non-linear detector
ML MAP MCMC MC-MBER

Criterion Section III-D — Section III-E Section III-F
Complexity O(NbMN) — O(NMCNPM2 O(max(NMCNPM log2 L,

×N log2 L) NgN
′
b) · MN)

Performancea 11.7 dB — 12.9 dB 15.4 dB

Criterion — Section IV-A Section IV-D Section IV-E
Iterations I = 10
FEC rate 0.5
Complexity — O(NbMN) O(NMCNPM2 O(max((1 − γ)NMCNP,

×N log2 L) NgN
′
b) · M2N log2 L)

Performanceb

(2 × 2) — 2.5 dB 2.5 dB 2.5 dB
(4 × 2) — 5.6 dB 5.6 dB 5.6 dB
(6 × 2) — 7.3 dB 7.4 dB 7.4 dB
(8 × 2) — 8.7 dB 8.7 dB 8.8 dB

——————
a Performance is characterized by the SNR value recorded for BER = 10−3 in the (3 × 3)-element BPSK-modulated uncoded SDM system of Fig. 2.
b Performance is characterized by the SNR value required for BER = 10−3 in the (M × 2)-element BPSK-modulated uncoded SDM system of Fig. 10.

the MCMC and the MC-MBER detectors. In Section II, we
provided the system overview and the theoretical capacity of
the SDM scheme. Section III firstly reviewed the sub-class
of hard-decision aided linear detectors, which are beneficial
in slow-fading environments, since the calculated complex-
valued weights can be reused during the coherence-time of
the channels. More specifically, the ZF detector of Section
III-A exhibited the poor BER performance because of the
noise enhancement effects imposed on the channel’s inverse
matrix. The MMSE detector of Section III-B was designed to
overcome this problem, hence outperforming the ZF detector.
Furthermore, since the MBER detector of Section III-C di-
rectly minimized the BER, the MBER detector exhibited the
best BER performance among the linear detectors, although
at the expense of a high computational complexity. The
MBER detector is also capable of supporting rank-deficient
scenarios, while the ZF and the MMSE detectors typically
exhibited the error floors in these scenarios. In contrast to
the linear detectors, non-linear hard-decision detectors have
the potential of approaching the optimal BER performance,
but the detector weights have to be updated on a symbol-
by-symbol basis. The ML detector of Section III-D exhibited
optimal performance owing to its exhaustive symbol procedure

search, where the computational complexity increases expo-
nentially upon increasing the multiplexing factor M . In order
to reduce the ML detector’s complexity, the MCMC detector
of Section III-E invoked the Monte Carlo simulation with the
aid of Markov chain sampling. Moreover, in Section III-F we
proposed a new hybrid detector amalgamating the non-linear
MCMC detector and the linear MBER detector, aiming for
the MBER performance, while reducing its complexity in fast-
fading environments.

In Section IV we introduced soft-decision detectors for
the two-stage serially concatenated SDM scheme of Fig. 10,
where we advocated a turbo-coding assisted iterative MIMO
receiver structure. Here, we extended the hard-decision detec-
tors introduced in Section III to their SISO counterparts, which
are the SISO-MMSE detector of Section IV-B, the SISO-MAP
detector of Section IV-A, the SISO-MBER detector of Section
IV-C, the SISO-MCMC detector of Section IV-D and the SISO
MC-MBER detector of Section IV-E. Furthermore, in Section
IV-E1 we proposed a novel complexity-reduction technique,
namely a priori LLR thresholding, for the SISO MC-MBER
detector, while characterizing the computational complexity
imposed by each detector. In Section V, we characterized the
SISO detectors’ performance with the aid of EXIT chart, while
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analyzing the behaviour of the iterative decoding process. To
elaborate a little further, in Table V-A we summarized the
SISO detectors’ performance and complexity comparison both
for uncoded and coded SDM systems.

In this treatise, we have compared a range of diverse MIMO
detectors in the context of SDM systems and characterized
their complexity versus performance tradeoffs. Each sub-
optimal detector was designed for reducing the computational
complexity of the ML and MAP detectors, which are optimal
for uncoded and coded scenarios, respectively.

VII. GLOSSARY

ACO Ant-Colony Optimization
AEs Antenna Elements
AWGN Additive White Gaussian Noise
BER Bit-Error Ratio
BS Base Station
CC Convolutional Channel
CCMC Continuous-input Continuous-output Memo-

ryless Channel
CDMA Code-Division Multiple Access
CIRs Channel Impulse Responses
CSI Channel State Information
DCMC Discrete-input Continuous-output Memory-

less Channel
EXIT EXtrinsic Information Transfer
FEC Forward Error Correction
GA Genetic Algorithm
LBER Least Bit-Error Rate
LDPC Low-Density Parity-Check
LLR Log-Likelihood Ratio
LMS Least Mean Square
MA I Multiple Access Interference
MAP Maximum A Posteriori
MBER Minimum Bit-Error Rate
MC-MBER Markov Chain assisted Minimum Bit-Error

Rate
MCMC Markov Chain Monte Carlo
MIMO Multiple-Input Multiple Output
ML Maximum Likelihood
MMSE Minimum Mean-Square Error
MUD Multi-User Detection
PSK Phase-Shift Keying
PSO Particle Swarm Optimization
QAM Quadrature Amplitude Modulation
RLS Recursive Least Square
RSC Recursive Systematic Convolutional
SCG Simplified Conjugate Gradient
SD Sphere Detection
SDM Space Division Multiplexing
SISO Soft-Input Soft-Output
SNR Signal-to-Noise Ratio
STE Space-Time Equalization
URC Unity-Rate Convolutional
ZF Zero-Forcing
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