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Abstract—Due to the high propagation latency and high power
consumption of acoustic communications, scheduling techniques
designed for terrestrial radio-based systems, may not be suitable
for underwater acoustic sensor networks (UWASN). In this paper,
we consider how to time schedule each link in a single broadcast
domain. We show that, unlike its terrestrial RF counterpart, this
problem is NP-complete, and the hard-to-approximate ratio is
presented. Due to the intractability and inflexibility of centralized
scheduling policies, and the high communication energy overhead
of reservation-based strategies, we further investigate the perfor-
mance of an ALOHA-like access scheme, which is distributed,
randomized and requires no topology knowledge. According to
our analysis, although the random scheduling policy that picks
transmission times uniformly in a given interval is throughput-
optimal for terrestrial radio-based systems, it performs poorly
in underwater acoustic networks. We thereby seek for the
throughput-optimal, distributed random policy by solving a non-
linear optimization problem. We present an extensive comparison
between this policy and the uniform one, with respect to different
packet lengths, scheduling length, and network density. We show
that the optimal solution offers substantial improvements in
throughput, particularly for long packets.

I. INTRODUCTION

Because radio waves decay rapidly in water, acoustic com-
munication is the most popular choice for underwater sensor
networks. Different from radio, acoustic communication has
its own characteristics, such as high communication energy
consumption, low bandwidth, long delay, high error rate,
distance-dependent bandwidth, etc. These features make the
scheduling for UWASN fundamentally different from radio-
based communication systems. For example, because the prop-
agation speed of acoustic waves is 5 order slower than radio,
carrier-sensing and reservation based protocols will lead to low
utilization in underwater acoustic networks, while this is gen-
eral not the case for terrestrial RF based systems. In addition,
a standard modem takes 50W to transmit and couples watts
to listen and receive data [1]. It is prohibitively expensive to
transmit frequently in such a power-scarce environment. Other
issues, such as simplex communication hardware constraints,
low transmission rate, small communication bandwidth etc.,
all make the scheduling problem under this environment
challenging [2][3][1].

The first key contribution of this work is

that we consider the algorithmic complexity and
hardness of the UWASN scheduling problem. We
show that this problem is NP-complete, and it is
impossible to approximate within (n2 )

1−ε,∀ε >
0 (where n is the number of nodes in the network), unless
NP = ZPP 1.

Besides being computationally hard, centralized schedul-
ing has other limitations. For example, in order to apply
a centralized scheduling protocol, several conditions, e.g.
complete knowledge of network topology, are required, thus
incurring high communication overhead. Whenever changes
of topology take place, or nodes lose synchronization, cen-
tralized algorithms require to repeat scheduling decision mak-
ing processes, thus becoming inflexible. Hence, a distributed
scheduling scheme is preferable in this scenario. There are
different flavors of distributed scheduling protocols. Among
them, carrier-sensing cannot function well for UWASN due to
the long propagation delay. On the other hand, reservation-
based schemes require extensive packet exchange to deter-
mine transmission eligibility, thus also suffering from high
communication overhead. Due to these unwanted properties,
we are interested in a light energy overhead, low deploy-
ment effort, and versatile to network dynamics MAC. The
answer to our needs is therefore a Distributed, Randomized
and Topology-unaware (DRT) scheduling strategy. Given that
optimal scheduling is hard even to approximate well, and DRT
solutions are preferable, we focus on analyzing and optimizing
a distributed random access protocol for UWASN. Our second
key contribution is to show that unlike in terrestrial RF
networks, uniform access is not optimal. We formulate and
solve a novel non-linear optimization problem to find the
optimal access time distribution, which is demonstrated to
give enormous improvements in throughput. For brevity, we
refer to a DRT scheduler that picks the transmission times
uniformly from a given period as a uniform DRT scheduler. A
scheduler, which is obtained by using nonlinear programming
and utilizes DRT strategy, is referred to as a optimal DRT
scheduler. We present the achievable throughput by using

1ZPP, Zero-error Probabilistic Polynomial time, is a complexity class of
problems, such that there exists a probabilistic Turing machine, which always
returns correct YES or NO answers in polynomial time on average [4].



DRT strategy, and compare the performance of uniform DRT
scheduler and optimal DRT scheduler. Based on our findings,
optimal DRT scheduler prevails in low density and long packet
length setting. Compared with uniform DRT scheduler, the
throughput improvement ratio keeps increasing while packet
length goes up.

This paper is organized as follows. We demonstrate the NP-
completeness and hard-to-approximate ratio in Section III. The
analysis of uniform DRT scheduler is presented in Section
IV, and the optimal DRT scheduler is derived in Section
V. We characterize the features of optimal DRT scheduler,
and compare its performance with uniform DRT scheduler in
Section VI Our findings and future directions are summarized
in Section VII.

II. RELATED WORK

Due to the features of acoustic communication, some exist-
ing work focuses on designing new MAC protocols. Syed et
al. [5] study the performance of traditional slotted and non-
slotted ALOHA performance for underwater networks and
show that they can have the same throughput due to variations
in latency. They then propose a guard-band scheme to improve
the throughput. This scheme is mathematically analyzed and
optimized by Ahn et al. in [6]. Syed et al. in [5] have further
proposed a reservation based scheme called T-Lohi. Molins
et al. use ideas similar to slotted-CSMA/CA to design a
reservation based MAC protocol, Slotted-FAMA[7]. Because
Slotted-FAMA uses RTS/CTS mechanism to avoid collision,
this protocol suffers from low channel utilization and high
handshake communication energy overhead. Nguyen et al. [8]
and Casari et al. [9] compare the existing MAC protocols, and
review the pros and cons of various underwater medium access
techniques under different network setting. Preisig et al. [10]
focus on acoustic channel property descriptions and provide
propagation phenomena that can influence network perfor-
mance in a quantitative way. Other than these directions, Badia
et al. [11] propose a cross-layer optimization framework,
which utilizes integer programming, that can determine link
scheduling and packet routing. To our knowledge, there are no
prior results on the computational complexity of scheduling in
underwater networks.

The paper that’s closest to our work in spirit is the work by
Ahn et al. [6] in that both focus on an analysis of randomized
access in underwater networks. However, while that work
focuses on the improvement of throughput for a single receiver
using guard-bands, our focus is on maximizing the sum-
throughput of multiple links in the same broadcast domain by
optimizing the access time distribution. This is more challeng-
ing because in underwater networks, the same transmission
may appear as interference at significantly different times at
different receivers.

III. ALGORITHMIC COMPLEXITY

We consider a time-slotted, single carrier frequency and
single communication power setting system. Each node we
considered is located in the same broadcast domain, i.e. each

transmission can be overheard by all nodes. There are two
kinds of receptions in the viewpoint of a receiver; one is
intended transmission and the other one is interference. An
intended transmission is the data sent by the corresponding
sender of this receiver, and an interference is data sent by
nodes other than its corresponding sender. We assume a trans-
mission has high enough power to corrupt an intended trans-
mission, even it has propagated the longest distance within
the deployed area. Every transmission can only take place
at the beginning of a time slot, and spans exactly one time
slot. We assume no coding protection for all transmissions.
Therefore, an intended transmission fails, if and only if a
collision happens. By collision, we refer to the condition that
an intended transmission is corrupted by interferences. Take
Figure 1(a) for example, if transmitter 1 and 2 transmit in slot
1 and 10, respectively, then both transmissions arrive receiver
2 at slot 11, thus causing collision.

Our interest is, “given a set of transmitter-receiver pairs P ,
and pair-wise delay between any two nodes, which satisfy a
metric 2, is it possible to schedule all transmissions within
a schedule period with length K, such that no collision
will corrupt intended communications?” We call this problem
“Metric Underwater Scheduling”, and claim that it is NP-
complete.

(a) (b)

Fig. 1. Examples of network topology.

Theorem 1: Metric Underwater Scheduling is NP-complete.

Proof:
A schedule with length K is a certificate of the Metric

Underwater Scheduling. We could check this schedule, in
polynomial time, whether every transmitter is scheduled within
K and no intended communication is corrupted by interfer-
ence. Therefore, Metric Underwater Scheduling is in NP.

To prove NP-hardness, we do the reduction from K-Coloring
[12]. Consider an arbitrary instance with graph G = (V,E) of
K-Coloring, we build a corresponding graph H = (V ′, E′) as
follows. For every node v ∈ V , we build a gadget consisting
of two nodes v′1 ∈ V ′ and v′2 ∈ V ′, such that v′1 and v′2 can be

2A valid metric satisfies the following properties: (1) non-negativity , (2)
identity of indiscernible, (3) symmetry, and (4) triangle inequality.



considered as a transmitter and a receiver in Metric Underwa-
ter Scheduling, respectively. Note that, if the highest degree
of G is 4, K must be no less than 4 to be feasible. Connect
every transmitter and receiver pair in H with an edge, which
has length a > K. The length of an edge in H represents the
propagation delay between the pair of nodes connected by this
edge. For every edge (u, v) ∈ E, we add two edges, (u′1, v

′
2)

and (v′1, u
′
2), with length a in H . If two nodes, say x and y,

are not connected by an edge in G, then we add two edges,
(x′1, y

′
2) and (y′1, x

′
2), with length 2a in H . In this construction,

the exhaustive combination of edges which form a triangle can
be listed as:{a, a, a}, {a, 2a, a}, {2a, 2a, a}. Obviously, they
satisfy triangular inequality. In addition, distances are non-
negative and symmetry, thus, the construction of H satisfies a
metric.

We first prove that, if vertexes of G are K colorable, then
we can construct a solution of Metric Underwater Scheduling
as follows: for each color used in K-Coloring, we map it to
a unique time slot within K. If we denote the color of node
v ∈ V as c(v), then we assign its corresponding time slot,
t(v), to the transmitter v′1 ∈ H . Because G is K colorable, two
vertexes, say u and v in G, which are joint by a edge, say (u, v)
in G, can not have the same color. In other words, transmitter
u′1 and v′1 in H can not transmit at the same time slot because
of interference. On the other hand, if two vertexes, say x and y
in G, are not connected by an edge, then they can be assigned
either the same color , i.e., t(x) = t(y), or different, i.e.,
t(x) 6= t(y), and both corresponding assignments are feasible
in H . First, consider t(x) = t(y). Since the packets of both
x′1 and y′1 will arrive at their intended receivers and other’s
intended receivers at time t(x)+a and t(x)+2a, respectively,
no collision occurs under this schedule. If t(x) 6= t(y), then
transmission of x′1 will arrive y′2 at time (t(x) + 2a) > 2a.
However, y′2 already receives its packet at time (t(y) + a) ≤
(2a − 1). Similarly, we can verify that y′1 will not interfere
with x′2 intended communication. Thus K-colorable implies a
feasible solution of Metric Metric Underwater Scheduling.

Conversely, we will prove that if Metric Underwater
Scheduling has a satisfying solution, then G is also K-
colorable. For a transmission schedule, say t(u) for transmitter
u′1, we map it to a unique color within the K choices. If a
receiver, say v′2, is connected with another transmitter, say
u′1, with a length a edge in H , then we know u′1 and v′1
will interfere with each other, thus will not be scheduled
in the same slot. By the above mapping, u and v in G
are also colored in different colors. However, we know that
(u, v) ∈ E. Therefore, this color assignment is feasible in G.
If a receiver, say y′2, is connected with another transmitter,
say x′1, with a length 2a edge in H , then we know there
does not exist an edge (x, y) ∈ G. Therefore, there is no
direct conflict on color choices between node x and y in G.
Thus, we construct a viable K-Coloring solution from Metric
Underwater Scheduling.

Further, we can have the following conclusion:
Theorem 2: If we denote the number of nodes in Metric

(a) Construction of a gadget

(b) Mapping an edge of G to H

(c) Mapping an edge of G to H

Fig. 2. Construction of gadgets.

Underwater Scheduling as n, then it is not possible to approx-
imate Metric Underwater Scheduling within (n2 )

1−ε,∀ε > 0,
unless NP = ZPP.

Proof: Suppose the original K-coloring instance has K
nodes, then the corresponding Metric Underwater Scheduling
instance has 2K nodes. According to the above proof, we no-
tice that the number of minimum chromatic number equals to
the minimum schedule length. If we have n

2
1−ε = K1−ε,∀ε >

0 approximation for Metric Underwater Scheduling, then it
implies that we can approximate Minimum Chromatic Number
within K1−ε,∀ε > 0, which contradicts to the conclusion
proposed by Feige and Kilian [4].

The most challenging issue of dealing with underwater
scheduling problem is the non-negligible propagation delay:
the same transmission may be considered as interference by
different nodes at significantly different times. Therefore, the
interference pattern not just depends on the time the packet has
been sent, but also relates to the network topology. In short-



ranged terrestrial RF networks, because propagation delay is
negligible, once a packet is transmitted, it arrives every node
in the same broadcast domain immediately. Therefore, the
minimum number of time slots we need to time schedule every
link once within a given period, equals to the number of links
in the same broadcast domain.

On the contrary, UWASN allows concurrent transmission
without incurring collision due to the fact of high propagation
latency. Therefore, it is possible to schedule multiple, say X ,
transmission pairs with scheduling length less than X slots. An
example of this scenario is depicted in Figure 1(a). However,
when a network has high density, it is more likely that we may
need a scheduling period with length larger than the number
of transmission pairs. An example of this situation is plotted
in Figure 1(b).

IV. PERFORMANCE ANALYSIS OF UNIFORM DRT
SCHEDULER

As mentioned in the introduction, because of several un-
desired features of centralized schedulers, reservation-based
protocols and carrier-sensing protocols, we are interested in
the performance that DRT strategy can achieve in UWASN.
Due to its throughput superiority and simplicity for terres-
trial RF networks, uniform DRT scheduler, which picks the
transmission times uniformly from a given period, is analyzed
in this section as a starting point to help us understand the
applicability and limitations of DRT strategy.

A. System Modeling

For the sake of generality, we use “normalized distance unit”
and “normalized time unit” in the following context. For ex-
ample, if a network of interest has dimension 1000m×1000m,
then we will denote the area as 1× 1. In addition, “1 unit of
normalized time” in this example represents the actual time,
in unit of second, for the sound wave to travel 1000m.

Consider the following settings. In a 1 × 1 square area, a
network is independently, uniformly and randomly deployed
with 2N nodes. Exactly N of them are transmitters, and the
remaining nodes are receivers. Each transmitter is uniquely
and exclusively coupled with a receiver, and can transmit
one packet in one schedule period. In other words, there are
exactly N links located in this broadcast domain. The length
of a schedule period is K units of normalized time, and each
transmitter independently chooses an instance within this
period to start transmitting a packet according to a continuous
uniform distribution. Moreover, every packet takes exactly
P units of normalized time to transmit, and a transmission
fails if and only if collision takes place. The assumptions
about transmission power, coding and transmission bands are
the same as in Section III. The symbols we use are listed in
Table I. We are interested in the probability of a successful
transmission, system throughput (defined later), and per user
throughput using this random scheduler.

B. Theoretical Analysis
First, the PDF (Probability Density Function) of random

variable Zij (the distance between node i and j) is described
by Square Line Picking problem [13]. By applying elementary
probability techniques, we can find the exact PDF of random
variable Aij (the first bit, transmitted by node i, arrival time
at node j). Since every node is independently deployed, and
transmission times are also independently determined, we
abbreviate Zij and Aij to Z and A, respectively. However, due
to the tedious expressions of PDF of A, we describe a more
insightful approximation in this paper, and refer interested
readers to [14].

A good approximation of A can be stated as follows: when
K ≤ 1.3, PDF of A can be approximated as a normal
distribution; when K >> 1.3, PDF of A can be approximated
as a uniform distribution within the range (0,K +

√
2).

Examples of the distribution of A for small K and large K are
plotted in Figure 3(a) and 3(b), respectively. When K > 1.3,
the PDF of A always has a flat region as plotted in Figure 3(b),
and the width of this region becomes wider, as K increases.

(a) A vs. normal (small K value)

(b) Distribution of A (large K value)

Fig. 3. Example distribution plots of A for small K and large K.

Note that, although the scenario we discuss so far is for
“one” scheduling period only, independently iterating this ran-
dom access process can be a viable MAC protocol. However,
in order to prevent transmissions taking place in prior schedule



TABLE I
DEFINITION OF SYMBOLS

K the schedule length P the packet length
N num of transmission pairs in the same broadcast domain
Aij a RV representing the 1st bit transmitted by node i, arriving time at node j
Zij a RV representing the Euclidean distance between node i and j

periods from interfering with consequent ones, using “guard
time” between two consecutive schedule periods is necessary.
In our case, the longest propagation delay is

√
2 unit of

normalized time and the packet length is P , thus
√
2 + P

is proper for our purpose. Because decisions of transmission
time are made independently across different users and dif-
ferent schedule periods, the above iterating scheme can be
considered as a renewal process. Therefore, the throughput
can be calculated as:

throughput =
average amount of delivered data in one schedule period

length of one schedule period
(1)

Because of independency, the numerator of Equation 1 can be
computed as:

(average amount of delivered data in one schedule period) =
N × (probability a transmission succeeds)× (packet length) (2)

If we denote the PDF and CDF (Cumulative Density Function)
of A as fA and FA, respectively, then a transmission will be
corrupted by interferences with probability:

Pr(collision) =

∫ K

0

fA(j)

∫ min(K,j+P )

max(0,j−P )

fA(k)dkdj (3)

Therefore, the probability a transmission succeeds is 1 −
Pr(collision). For the sake of space restriction, the exact
expressions of the probability that a packet can be successfully
delivered are listed in our technical report [14]. We will
present plots showing the throughput of this uniform scheme
with respect to various parameters in the next section, after
describing the optimal DRT scheduler.

C. Observations

One of the main difference between the PDF of A plotted
in Figure 3(a) and 3(b) is the shape: while K is small,
the PDF has an obvious peak, whereas the other one has
flat top. In Figure 3(a), around 80% of transmissions start
arriving a receiver within time 0.516 to 1.528, which represents
only 41% of total possible arrival period. On the contrary, in
Figure 3(b), around 80% of transmissions arrive within time
1.522 to 9.521, which is over 70% of total possible arrival
period. Therefore, when schedule length K is small, using
uniform DRT scheduler will lead to high collision probability,
due to the concentration of transmission arrival pattern. The
throughput of using uniform DRT scheduler is even more
problematic when longer packets are used. On the other hand,
although the first bit arrival time for the case of long schedule
length distributes more evenly across whole possible arrival

period, as we will see in Section VI, uniform DRT scheduler
still suffers from long transmission packets, thus leading to
low throughput.

V. OPTIMAL DRT SCHEDULER

In light of our findings, we seek for the throughput-optimal
scheduler, which uses DRT strategy, in this section. Because of
the consideration of computation complexity, we approximate
PDF with PMF (Probability Mass Function), which is derived
from discretizing PDF, in this section.

A. Problem Formulation

System throughput is determined by Equation 1 and 2. If
packet length P , schedule length K, and number of trans-
mission pairs N are constants, then maximizing throughput is
equivalent to minimizing collision probability. We denote the
transmission time generated by optimal DRT scheduler and its
corresponding first bit arrival time as T ∗ and A∗, respectively.
Because DRT strategy does not utilize the knowledge of
network topology, fA∗(a), PMF of A∗, can be calculated as:

fA∗(a) =
∑
i

fT∗(i)fZ(a− i) (4)

The collision probability becomes:

Pr(collision) =
∑
j

(fA∗(j)
∑

|j−k|<P

fA∗(k)) (5)

Therefore, our goal can be achieved by solving the following
optimization problem:

minimize :
∑
j

(fA∗(j)
∑

|j−k|<P

fA∗(k))

subject to : fT∗(t) ≥ 0,∀t∑
t

fT∗(t) = 1 (6)

B. Characteristics of Optimal DRT Scheduler

We use Matlab optimization toolbox to solve the above
problem, and 1 unit of time is divided into 100 segments
in our PMF computation. In general, we have the following
observations:
• When K < 1, the optimal DRT scheduler only picks

the first and the last available transmission instances. In
this case, if K >> P , then these two instances have
equal probability to transmit; if K ∼ P , then the last
available instance has higher probability. An example
PMF of optimal DRT scheduler is plotted in Figure 4(a).

• When K ≥ 1, the optimal DRT scheduler may use some
instances in the middle of the schedule period. If K >>
P , then the PMF of optimal DRT scheduler may look



like the circle/red set of points in Figure 4(b); if K > P ,
then the PMF of optimal DRT scheduler may look like
the plus/blue set of points in Figure 4(b); if K ∼ P , then
the PMF of optimal DRT scheduler has the shape of the
circle/red set of points in Figure 4(a).

• When K >> 1 and K >> P , then the uniform DRT
scheduler is close to optimal.

• As plotted in Figure 5, compared with uniform DRT
scheduler, optimal DRT scheduler tends to distribute the
transmission arrival time more evenly, so as to avoid the
traffic concentration issue.

(a) small K value

(b) large K value

Fig. 4. Example PMF plot of optimal random policy for small K and large
K.

VI. DISCUSSION

In Figure 6(a), we vary K and set N = 2 and P =
{0.5, 1.5}. Because there are only two pairs, contention is
light, thus leading to low collision probability when packet
is short. When P = 0.5, the improvement of using optimal
DRT scheduler, compared with uniform DRT scheduler, is
22%. However, when longer packet P = 1.5 is used, collision
probability raises significantly for uniform DRT scheduler. On
the contrary, collision probability of optimal DRT scheduler
degrades more gracefully, thus benefiting from using longer

Fig. 5. Distribution of first bit arrival time: A*(optimal) vs. A(uniform)

packets. When P = 1.5, optimal DRT scheduler has around
4 times of throughput than uniform DRT scheduler, and this
ratio keeps increasing when P goes up as plotted in Figure 7.
More importantly, the maximum throughput of optimal DRT
scheduler is even higher than P = 0.5. In general, optimal
DRT scheduler prevails under long packet settings.

The major difference between Figure 6(b) and 6(a) is the
increase of network density from N = 2 to N = 7. When
N = 7, because contention is high, both schedulers suffer in
this setting. Although the improvement ratio of using optimal
DRT scheduler is even higher (around 9 times) when P = 1,
the achievable throughput is still low and may not be an ideal
operational choice.

In Figure 6(c), we vary N and set K = 0.5 and P =
{0.5, 1}. For both schedulers, the throughput optimal density
is N = 2, and experience low throughput in this short
schedule length K = 0.5 setting. While we increase K to
2 in Figure 6(d), both schedulers still prefer low network
density. Therefore, it is not suitable to deploy DRT strategy-
based schedulers in heavy contention environments.

In Figure 6(e), we vary P and set K = 0.5 and N = {2, 6}.
While N = 2, both schedulers can benefit from using longer
packet. As contention raises (N increases to 6), no one can
take advantage of long packet, and need to use the shortest
packet to maximize throughput. The throughput gain of using
optimal DRT scheduler also shrinks, as the network density
goes up.

To understand how the throughput optimal packet length
varies with schedule length K, we compare both schedulers in
Figure 6(f). It is noticeable that both schedulers choose to use
longer packets, while schedule length increases. In addition,
the throughput gain of optimal DRT scheduler, compared with
uniform DRT scheduler, also increases with schedule length.

We summarize our findings as follows:
• When schedule length and density are fixed, the through-

put improvement ratio of using optimal DRT scheduler,
compared with uniform DRT scheduler, increases as
packet length goes up as plotted in Figure 7.



(a) (b)

(c) (d)

(e) (f)

Fig. 6. Performance evaluation and comparison



Fig. 7. Throughput improvement ratio vs. packet length P

• For optimal DRT scheduler, there exists an throughput
optimal packet length and network density, when sched-
ule length is fixed. In general, optimal DRT scheduler
achieves higher throughput when density N is low and
packet length P is long.

• Both policies benefit from low network density. In other
words, DRT strategy-based schedulers are suitable for low
contention environments.

VII. CONCLUSIONS

In this paper, we prove the NP-completeness and hard-to-
approximate ratio of Metric Underwater Scheduling. Having
seen that collision-free scheduling is intractable, we then
focus on low-complexity distributed, randomized, topology-
independent (DRT) schemes. In light of our analysis results,
we find that uniform DRT scheduler, which is the throughput-
optimal DRT strategy-based scheduler for terrestrial RF net-
works, performs poorly in UWASN. We find the optimal DRT
scheduler by using nonlinear programming, and characterize
its properties. The performance comparison of optimal DRT
scheduler and uniform DRT scheduler is also presented. Al-
though the propagation delay is the major issue influencing the
throughput of UWASN, it is possible to significantly improve
throughput without the knowledge of network topology. In
general, optimal DRT scheduler performs highest throughput
in low contention environments and prefers long packet. We
plan to extend this work to a multi-hop network setting. In
addition, we are also interested in applying our findings to
design a medium access protocol, and a collision resolution
protocol.
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