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Márcio C. F. Macedo∗†, Antônio L. Apolinário Jr.∗, Antonio C. S. Souza†

∗Departamento de Ciência da Computação

Universidade Federal da Bahia (UFBA)

40170-970 - Salvador - BA - Brazil
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Abstract—In this paper we present an extension to the Kinect-
Fusion algorithm that allows a robust real-time face tracking.
This is achieved altering the original algorithm such that when
the tracking algorithm fails, it uses a head pose estimation to give
an initial guess to the Iterative Closest Point (ICP) algorithm. We
show that this approach can handle more face pose changes and
variations than the original KinectFusion’s tracking.

Index Terms—Augmented Reality; Head Pose Estimation; Face
Tracking.

I. INTRODUCTION

Augmented reality (AR) is a technology in which a user’s

view of a real scene is augmented with additional virtual

information. Accurate tracking, or camera pose estimation, is

required for the proper registration of virtual objects. However,

tracking is one of the main technical challenges of AR.

In some AR systems, the user turns his head in front of a

camera and the head is augmented with a virtual object. In this

case, is desirable an algorithm able to track the person’s head

with enough accuracy and in real-time. One way to achieve

this goal is building a reference 3D model of the user’s head

and aligning it to the current head captured by the sensor.

We present an approach for robust real-time face tracking

based on head pose estimation for a markerless AR system.

First, a reference 3D model is built with a 3D reconstruction

system. Afterward, the Kinect raw data is aligned to the ref-

erence 3D model, predicting the current camera pose. Finally,

to improve the robustness of the system, is used a head pose

estimator to give an initial guess to the tracking algorithm

when it fails. An overview of this method can be seen in

Figure 1.

The method is inspired by two recent works: An algorithm

that allows the dense mapping of extended scale environments

in real-time using only Kinect raw data called KinectFusion

[1], and an algorithm for estimating the location and orienta-

tion of a person’s head from low quality depth data [2]. Our

approach adapts the KinectFusion to reconstruct heads and

extends its tracking using the head pose estimation. We show

that this approach can handle more face pose changes and

variations than the original KinectFusion’s tracking.

The rest of the paper is arranged as follows. Section 2 pro-

vides a review on the related work of surface reconstruction,

markerless AR and real-time head pose estimation. Section

3 presents the proposed algorithm. Section 4 discusses the

experimental results. The paper concludes in Section 5, with

a summary and discussion of future work.

II. RELATED WORK

Surface reconstruction, markerless AR and head pose esti-

mation have been driven by different approaches, as we can

see in the next subsections.

Surface reconstruction: In 1996, Curless and Levoy [3]

described a method for volumetric integration of complex

models from range images (VRIP). The volumetric integration

basically consists of a cumulative weighted signed distance

function (SDF). This method is able to integrate high-detail

models, in the order of a million triangles. However, the

execution time can be in the order of hours and it is not

suitable for AR applications. The range images used in this

work were captured by laser scanners. Laser scanners provide

range images with high accuracy, but the drawback of them is

the high cost of the hardware.

In 2002, Rusinkiewicz et al. [6] described a method for

real-time 3D model acquisition. Using a real-time low-quality

structured-light 3D scanner, they aligned the range images

from different viewpoints to produce complete 3D rigid ob-

jects. Different from the method proposed by Curless and

Levoy, it operated at ≈ 10 Hz with lower cost hardware but

did not reconstruct high-quality models. It was the first system

to reconstruct and display the 3D models in real-time and it

increased the possibility to do markerless AR with surface

reconstruction.

In 2010, Cui et al. [7] described a method for 3D object

scanning using a time-of-flight (ToF) camera. In this work,

Cui et al. showed a superresolution method that improves

significantly the quality of the depth maps acquired from a

ToF camera. One drawback of this method is that it does not

run in real-time. Compared to the other scanners presented,

time-of-flight cameras have the lowest cost and provide range

images with the lowest accuracy.



Fig. 1. Overview of the online processing pipeline. A) RGB-D live stream. B) Reference 3D model is reconstructed with KinectFusion. C) The user’s head
is augmented with a virtual object and the current camera pose is predicted by the alignment between the reference 3D model and the Kinect raw data. D)
The user rotated his face fast and the ICP failed. E) The head pose estimation is used to give an initial guess to the ICP and the fast motion is compensated.

Markerless AR: In 1999, in the field of AR, Kato and

Billinghurst [4] presented a video-based AR system with

marker tracking which mixed virtual images on the real world.

They used fast and accurate computer vision techniques to

track the fiducial markers through the video. The system

presented is also called ARToolKit and it is one of the most

used systems in this field.

In 2000, Simon et al [5] described one of the first methods

using markerless tracking for an AR system: a tracker of planar

structures. Despite being a special case of tracking (i.e. when

there is a planar structure visible in the scene), the method

does not need fiducial markers and robustly track the planar

structures through the video.

Surface Reconstruction + Markerless AR: In 2011, Izadi

et al. [1] described a system that enables real-time detailed 3D

reconstruction of a scene using the depth stream from a Kinect.

The system was called KinectFusion. Using a GPU, it was the

first system to reconstruct high-detail models at ≈ 30 Hz. Izadi

et al. [1] also presented some markerless AR applications,

showing the level of the user interaction in their system.

As mentioned before, our approach uses the KinectFusion to

reconstruct heads and extends its tracking algorithm taking

advantage of the model that we are reconstructing.

In the same year, Weise et al. [8] presented a system that

enables active control of facial expressions of a digital avatar

in real-time. The system is called FaceShift [9]. It was the

first system to enable high-quality reconstruction and control

of facial expressions using blendshape representation in real-

time. FaceShift represents a great advance in the field of

markerless AR and non-rigid surface reconstruction.

Head Pose Estimation: Recently, automatic real-time 3D

head pose estimation have become popular due to the increas-

ing availability of the 3D scanners.

Breitenstein et al. [10] developed a real-time algorithm to

estimate 3D head pose using GPUs. Using high-quality depth

data, the algorithm computes a set of candidate nose positions

and compares the input depth data to precomputed pose images

of an average face model.

Fanelli et al. [2] developed a real-time algorithm to estimate

3D head pose using only the CPU. Using low-quality depth

data (e.g. captured from a Kinect sensor), the algorithm trains

random forests to estimate head pose.

We choose this last algorithm for head pose estimation

because it operates directly on low-quality depth data.

III. ROBUST REAL-TIME FACE TRACKING USING HEAD

POSE ESTIMATION

In this section we describe the proposed improvements we

made to the KinectFusion’s tracking algorithm to track and re-

construct faces. Before, we describe the original KinectFusion

and the head pose estimation used.

A. Reconstructing 3D Models with KinectFusion

KinectFusion [1] is a system that integrates raw depth data

from a Kinect camera into a voxel grid to produce a high-

quality 3D reconstruction of a scene. The system first applies

a bilateral filter [11] to the depth map to reduce the noise

preserving discontinuities of the raw data. The filtered depth

map is then converted into a vertex map and a normal map.

To compute the transformation that defines the camera pose

is used a real-time point-plane variant of the well known ICP

(Iterative Closest Point) algorithm [12]. The ICP estimates the

transformation that aligns the current depth frame with the

accumulated model. Once with the current transformation, the

raw depth data can be integrated into the voxel grid. The grid

stores at each voxel the distance to the closest surface and a

weight that indicates uncertainty of the surface measurement.

This distance is a truncated signed distance function (TSDF).

Surface extraction is achieved by detecting zero-crossings

through a raycaster. All these operations are made using the

GPU. An overview of this method can be seen in Figure 2.

B. Real-Time Head Pose Estimation from Consumer Depth

Cameras using Random Regression Forests

Random Regression Forests are trees trained randomly that

generalize a problem better than decision trees taken separately

[13]. Fanelli et al. [2] trained random forests to estimate

head pose from low-quality depth images. To train the trees,

each depth map was annotated with labels indicating head

center and Euler rotation angles. These labels were estimated

automatically using ICP after a 3D facial reconstruction. After

the labeling and training, the head pose can be estimated

letting every image region to vote it. The vote consists of a



Fig. 2. Overview of KinectFusion’s pipeline [1].

classification whether the image region contains a head and

a retrieval of a Gaussian distribution computed during the

training and stored at the leaf. This probabilistic approach

achieves high accuracy and runs in real-time using only CPU.

C. Our Approach

The system we build consists of two main stages: head

reconstruction and markerless AR face tracking. The first stage

consists in the application of KinectFusion to reconstruct the

user’s head (Figure 3) and the second stage consists in tracking

of the user’s face augmented with a virtual object. We use the

tracking algorithm in these two stages.

Fig. 3. An example of user’s head reconstructed with the KinectFusion.

For each new depth frame D, we segment the region of

interest (i.e. user’s head) by applying a Z-axis threshold of

1.3m. It is the maximum acceptable distance from the user’s

head to the camera center in the original Fanelli’s head pose

estimation [2]. After that, we apply the ICP algorithm to

compute the current camera pose (i.e. transformation matrix

T ). The ICP uses the projective data association [14] to

find correspondences between the current depth frame and

the accumulated model. In this association, each point is

transformed into camera coordinate space and perspective

projected into image coordinates. The corresponding points

are that on the same image coordinates. The ICP fails (i.e.

does not converge to a correct alignment) when there is not a

small pose variation between sequential frames. In this case,

we use the head pose estimation to give a new initial guess to

the ICP compute correctly the current transformation.

The use of the head pose estimation is shown in Algorithm

1. Given the previous depth frame Dprev and the current depth

frame Dcurr, the head pose estimation is used to set the head

orientation (Rprev and Rcurr) and the head center (Hcprev and

Hccurr) of them. The head centers are converted from camera

to global coordinates. The incremental rotation matrix Rinc

and the translation ∆t between the previous and the current

head center are computed (lines 7 and 8). The translation ∆t is

added to the current global translation t (line 9). The implicit

surface is then raycasted to generate a new view (i.e. new

previous depth frame) (line 10). The raycasted view is rotated

around Hccurr with Rinc (line 11). Finally, we reuse the ICP

to estimate the current T .

Algorithm 1 Use of the head pose estimation

1: estimate head pose of Dprev .

2: Rprev ← extract rotation matrix estimated from Dprev .

3: Hcprev ← extract global head center from Dprev .

4: estimate head pose of the Dcurr.

5: Rcurr ← extract rotation matrix estimated from Dcurr.

6: Hccurr ← extract global head center from Dcurr.

7: Rinc ← Rcurr ∗R
−1

prev .

8: ∆t← Hcprev −Hccurr.

9: t← t+∆t.

10: raycast the implicit surface to generate a new view.

11: rotate the raycasted view around Hccurr with Rinc.

IV. RESULTS AND DISCUSSION

In this section we analyze the system’s performance and

describe the experimental setups we used.

We based our system on the open source C++ implementa-

tion of the KinectFusion [15] released by the PCL project [16]

and on the open source C++ implementation of the head pose

estimation released by Fanelli [17]. For all tests we ran our

system on an Intel(R) Core(TM) i7-3770K CPU @3.50GHz

8GB RAM in real-time. When the head pose estimation was

used, the main pipeline of our system needed only 80ms to

process a frame.

We tested our algorithm with real data captured with

a Kinect sensor using a grid with volume size of

5cmx5cmx13cm that could reconstruct high-quality heads.

We can analyze the qualitative performance for two cases:

fast translation and rotation of the user’s face.

When the user translated his face in front of the camera and

the ICP failed, the algorithm could give a correct initial guess

to the ICP. If the user translates his face fast, there will not be

sufficient points at the same image coordinates and the ICP

will fail. By applying our approach we can solve this problem.

This situation can be seen in Figure 4.

The algorithm slightly improved the tracking performance

when the user rotated his face and the ICP failed. The reason

is that the larger the pose variation, the larger the non-

overlapping region, and there are cases that the ICP is not



Fig. 4. A) The user translated his face fast. A small number of points were at
the same image coordinates and the ICP failed. B) By applying our approach
we solved this problem.

appropriate in the presence of non-overlapping regions (Figure

1, D and E) even if the head pose estimation provides the initial

guess. In this case (Figure 5), the user needs to reposition his

face to the tracking algorithm align correctly the raw depth

data.

The accuracy of the head pose estimation is the same as the

Fanelli’s approach (angle error: about 8o in each axis; head

center error: 10mm). However, as mentioned before, in the

case of large pose variations, its initial guess is not sufficient

for the ICP algorithm.

Fig. 5. An example of tracking failure. The user needs to reposition his face
to the tracking algorithm align correctly the raw depth data to the reference
3D model.

V. CONCLUSIONS AND FUTURE WORK

We presented an approach for robust real-time face tracking

using head pose estimation for a markerless AR system. We

used the KinectFusion to reconstruct the user’s head and we

extended its tracking algorithm using the head pose estimation

to give the initial guess to the ICP algorithm when it failed. We

showed that this approach can handle more face pose changes

than the original KinectFusion’s tracking and the use of the

head pose estimation is suitable for AR applications, as it runs

in real-time.

Encouraged by the work of Meister et al. [18], for future

work we plan to analyse the accuracy of the system to check

if this method can be used for medical applications. Further

improvements can be achieved by implementing a deformable

registration to track the face, as it is a non-rigid object,

or extending this to other objects by the use of other pose

estimators.
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