ON THE EFFICIENCY OF PROGRANMS
IN SUBRECURSIVE FORMALISMS

Zobert L, fonstable

Allan B. Borodin

Technical Report do, 70-54

April 1970

LUepartment of Computer Science
Cornell University

Upson Hall

Ithaca, New York 14850

CONTENTS

71

53

84

56

57

Introduction

General Recursive Languages

G, (N)

GR(N) Gra(N)

Computing functions imn @GR
Characterizing the language GR

Subrecursive Programming Languages,
SR , SA defined
Translating into Loop

Preliminary Theory

Elementary functions, &

Relative computability and E(f)
Hierarchy & normal form theorems

Ritchie-Cobham property

Relative Efficiency of CR arnd S2*

page

SR, SA 13

21
21
22
23
24

Programs

for ffl 26
Relative Efficiency Theorem 26
Strong minimal growth rates 37
Non-constructive aspects 40
Structural Complexity 40
Strong normal forms and program structure 40
Normal forms and efficiency 42
Applications 45
Speed-up 45
Abstract subrecursive measures 48
"go to" controversy 53

kKeferences

ON THE EFFICIENCY OF PROGRAMS
IN SUBRECURSIVE FORMALISMS

by

Robert L. Constable

*
Cornell University

Allan B, Borodin

University of Toronto

§1 Introduction

It is widely accepted that the theory of computing car
be organized as are the natural sciences on the basis of conser-
vation principles or trade-off relationships, Such relationships
hold among quantities characterizing computation (such as
information, logical complexity, structural complexity, resource
expenditure, etc.), There are a number of important exchange
relationships which are well-known, For instance the universal
machine involves a trade-off between program structure versus
size and computational complexity. Structural complexity in
this example is a quantity like the '"state-symbol product"
for Turing machines.

An interesting measure of structural complexity of
programming languages,- -therefore of programs, is the complexity
of the subrecursive class of functions which characterizes the
language. Using such a measure of structural complexity, we
examine the trade-off relationship between structure and com-

putational complexity.

<
This research was supported in part 5y Nation
roundation Grant No, GJ-579,.

[
}__

Measures of structural complexity directly related to high
level programming languages interest us most, We therefore use
abstract languages . which facilitate approximation of program
complexity in a highly structured language like Algol,

Our attention to programming language models 1is also
motivated by a concern for a thesis (somewhat like Church's or
Turing's Thesis), implicitly known in the literature, that all
functions actually used in computing are a subset of the primi-
tive recursive functions, (Call it the Implied Thesis,)
Acceptance of this thesis leads to the fact that the subrecursive
programming languages considered here are adequate for "actual"
computing. Furthermore, among the virtues these languages
possess are that all programs halt, the run-time of any program
can be estimated from its syntax, and the structure of the
programs is simpler than that of programs in general recursive
languages.

This situation explains our concern for structural trade-
off. The natural question to ask about subrecursive languages
is "at what cost do they buy their advantages?'" Blum has shown
that one €OSt js economy of program size, The subrecursive
languages will always be very uneconomical in the semnse that for
every recursive function £() there will be functions k()

whose shortest subrecursive programs, T , satisfies
£Cml) < ||

where l I measures size and T 1s a general recursive

program for k()

It was conjectured that the same price was paid for run-
time as well as size, at least for certain interesting subre-
Cursive languages and formalisms such as [18], [14] or [7].

We show that the conjecture is false and that in fact these
interesting subrecursive run-times are (given the right primi~
tive arithmetics) within a linear factor of general recursive
run-times,

The case for subrecursive languages is supported further
by the observation in Constable [8] that the very uneconomically
long subrecursive programs known from Blum must also be compu-
tationally very complex (a2t least on a finite set).

Owing to the advantages of these languages over general
recursive languages,one surmises ﬁhat they should be examined
more carefully, expecially in regard to such problems as equi-
valence and correctness of programs.

The subrecursive languages prosented here are all based cn
existing languages, They are selected with several criteria in
mind. In one casc (SR) it is to point out their expressive
power as support for the "Implied Thesis.” 1In another case (SA)
it is to facilitate definitions of structural complexity, In
the third case ("pure Loop") it is to relate our languages to
the most elegant examples in the literature, In each case, one
is able to acquire more of a “feel"” for the primitive recursive

functions and their apparent "'naturalness’.

+
Another implicit problem in thce literature of recursive function
theory and the theory of computing is to explain th> ~on=ient
o1 | .
naturalness of {7 . Som& authors intcrsrot
denying naturalness [19], other go to l.nzels

Constable | 7].

al

S a3

[

sul

T oer

= O
™
e

<
L

D
Hh

rhc
to

In the last sections of this paper w:z explore the results

and problems presented here (including “naturalness' of

4?1) 1in the context of abstract computational complexity

on subrecursive classes. The cxploration is in the form of a
tentative step not a definitive step, We also offer two "appli-
cations"” of the main result. Thc first concerns the speed-up
theorem for Loop programs and the sccond concerns the "go to"

controversy flourishing in programming circles,

§2 General Recursive Languages

One of the simplest universal programming languages is

Ga(N) defined by the instruction set

[v«v+1l, vev=21l, if v # 0 then go to- <label>]'

where v 1is any variable of the language. The variables

"range over" the set [= {0,1,2,,.,} . The labels are usually
positive integers which provide the instructions with unique
identifiers. A program is a finite sequcnce of instructions

with unique labels, The language G3(kj) refers to the class

of all programs over the instruction set,

As is shown in Shepherdson & Sturgis [24], G3(Fj) lan-

guage can express programs for all partial recursive number

theoretic functions, GD s consequently for all general recur-

sive functions %? . We say that @ characterizeg__QBLE§2

T The semantics of this language gge obvious except for v « v 2
which means v is assigned 0 if v = 0 otherwise v - 1 .

1

To obtain a higher level language the features are slightly

altered and expanded,

(1) diterative stataments

DO v
T
END

is allowed as a program (or a block) when T 1is a program and

v any variable. The meaning of the DO-block is understood as

vV € v

1 1if v # 0 then __

where v does not occur in T . The variable v is called

the loop comtrol variablec {or register),

(2) expanded conditional

'if v # 0 then Sy else 52“

where s and s

1 o are simple statements (go to's or assignments

but not conditionals). These replace the simpler "if v # O
then go to <label>" <conditionals,
In order to isolate the univcrsal power of the language,

we distinguish between forward and backward go to's.

(3) directional go to's.

‘go to + <labul>®

"go to - <label>"

The meaning of thcse instructions is that in the + case
the label must occur below (or after) the "go to" statement,
in the - case it must occur above (or before) it, otherwise
the program is not well-formed.

We also allow

(4) computed directional go to's

"go to + <variable>"

"go to - <variable>"

The interpretation 1s clear, the value of the variable deter-
mines the label. One must assume that labels are integers. In

fact we specify
<label> ::= 1|2]3]...

(5) expanded arithemtics

In addition to the simple arithmetic operations, + 1 and
21 it is customary to have binary addition, + , multiplication,
* , exponentiation, ** , and integer division, * , an identity

and constants. These are syntactically encorporated by the fol-

lowing rules

<arithmetic operator> ::= +|*|:|**

<term> ::= <variable>|<constant>|<variable><operator>
<vatiable>++

<assignment> ::= <variable> « <term> .

(]

A semantically simpler statement would be 'go to + c'¥ or
"go to - c¢" which means 'go to + or - ¢ statements from the
statement.”" However, this use of relative addressing is not
common in higher-level languages.

oo e

"' The clause <term> ::= <variable> provides for the identity

and <term> ::= <constant> provides the constants

More gemncral arithmetic operators for functions
£ er-* N can be added., The symbol l will be used to
indicate the addition of an arbitrary such operation,

<arithmetic operator>>::= <arithmetic operator>ll

The language having features (1) to (5) is denoted GR(R])
cr simply GR . Adding block structure to the language and

allowing nesting of conditionals, e.g,

if 2., then if &, then s

1 2 1 else s, else if 2, then s, else S,

3 3

represents an cven more structured language, Since this featurse
is suggestive of Algol syntax, we designate the language with
this feature as GRA , General Pecursive Algol, The procedure
feature of an actual Algol-like language is missing here, but

it could easily be encorvporated if it would serve our purposes,
Stated precisely the nesting of conditionals becomes

(6) nested conditionals

<statement> ::= <assignment>[<go to>l<conditiona1>
<block> ::= <statement><iterative>| begin <program> end
<program> ::= <statement>|<block>|<program>;<program>

<conditional> ::= if <variable> # O then <block> else <block> .

A complete RJF description'of the languages is given by

adding

- !
<variable> ::= <Letter> | <Letter><constant>

<iterative> ::= DO <variable>;<program>;END
<go to> ::= <go to +>|<go to ->
<go to +> ::= go to + <label>

<go to => :(:= go to - <label>

Simple examples of GR and GRA programs are given below.

GR: if X # 0 then go to +1 else go to +2
1 DO Y
Y« Y +1
END
go to 3
2 DO X.
¥« Y +1
END
go to 3
GRA: if X # 0 then DO Y
T «Y +1
END
cise DO X
Y «Y +1
ZND

The logical structure of the programs is the same, It is

represented by

where <:;> is a decision (conditional) -node and are

program blocks,

GR: X2 « X
l1 X« X+ 1
X2 « X2 ~ 1
if X2 # 0 then go to -1 else X2 « X

The universality of this languege can b2 isolated to the

negative go to statemaut, either in the form “go to - <constant>",

"go to - <variable>»” , 1In other words, GR can express algor-
ithms for all partial r=cursive functionmns, Q\ , because it

can use the “‘go to” end the conditional to form uncontrolled
loops. The conditional statement without the "dreaded negative
go to's" 1is "harmless" in that it cannot produce programs that
fail to halt.

Those readers familiar with Ritchie’s Loop Language [18]
or Minsky's "repeat’ language [20] will recognize that GR
without the negative '"go to’'s" has the samc power as Loop.
Therefore, it will allow computations for exactly the primitive
recursive functions, We will sketch an argument for this

below, but first we must be precise about how programs compute

functions.

ram 7 1inm GR ¢ compute a function, certain
variables must bc specified as inpw:ic and outputs, This will

be done by writing "IN" followed by a list of variables from

m™ and "out"” followed by a single variable of 7T (multivariables

) . n B .
if m is to compute £ : N - N¥ a vector valued function).
The variables of 7 which are no: izput variables are called

fined as a function

-
=
[A,
5]
(nj
(e}
[
Q
i
et
]
&5
()

WwCcrk variables,
computing progrem, then the inici © —~-_uz of its work wvariadles

should not effect the cutput of th. computation,

- 10 -

Def: An occurrence uf a variable V din 1 is a left occur-

rence iff it appears oz the 1lhs (left nhand side) of an assign-
ment but not on the wx=2s (right hand side)., All other occur-
rences are right.

Def: Call a variable of mT left variable iff every possible

first occurrenc2 in T (during execution) is a2 left occurrence,

Call all other variables apparent right variables.

)]

Prop: If V g Laft variable of 7 , then the initial value
of a V doze not «Zfect the output of the computation.

Pf: trivizl,

Remark. The conZition is clearly not ncecessary because if V

1 o

appears first in 1 V <« V =1

if V¢ 0 then 1 then its initial value
is irreievant.

Def: The program + with inputs Xjs+ee»X , Output Y com-

putes the functiiszzn T @ § =+ N for S c Rjn iff the work

variables of & =~ :: ail left variakles and if Xi has initial

value x thozx T halts with fix.:...,xn) =y in Y ,

i’ , X
The program 1 computes a partial ‘u-ction ¢ : NII-* N iff
on S = domaiu ¢ , ™ computes ¢t =restructed to S and if

<X j,..0,x_ > & +h.n o does not khiit when X begins with
1 n i 8

value x, .
i
To be precise alonut this defi.: %i:a we should define what

we mean by a compuriafion of T an’ . Zerminating computacion

of m. FHowever, this matter is *“ric:icd 2xtensively in the

- 11 -

literature ([10], [24], etc,) and we refer the reader to these
sources for a precise definition, Sufficc it to say that a

computation of 7T 1is simply a sequence So’sl’SZ"" each of

whose elements is an instantaneous description (id.), Each

id , <M1,Nl> s is a list M of the values of the variables

T and the number Ni of the statement which was executed in

the last discrete interval of time to produce those values.

The first id Sy also contains a listing of the progranm,

and i =1 the initial instruction of m , The sequence of

instructicn numbers (1,n1,n) associated with s

2%t Ojslsszge'o

is the flow of control and the sequence of lists of variable

values MO,M M is the sequence of memory configurations.

1272
The 1d's thus contain information about all quantities which
change from dit to dit .

Non~terminating computations s can be repre-

o’sl’sz""
sentcd as w-length scquences and terminating computations as

finite sequence Sy38ys eSS, Thus 2 computation is a sequence

8,387 058, where 0 < w , The value 0 1is the number of

steps (number of dits) taken by # on input x , written

o(x) . We can thus represent the number of steps taken by =
on input x as g7(x) = o0(x) . The statement om(x) = w 1is
abbreviated m(x)4 , read T 7 divirges at x ", and

omn(x) < & 1is abbreviated T{x)+v , rcad ' =w converges at X

- 12 -

Characterizigg the language GR

We can now speak precisely about the expressive power of

a2 programming language.
Def: A programming language oL 1s capable of computing

¢ : Nti'* N iff there is a program 7m of Af with inputs

xli,..txn and output Y which computes ¢ .

FACT: GR 1is capablz of computing é) .
See Shepherdson & Sturgis [24] for a proof technique which
applies directly.

The programming language £ is characterized by the

class H of number-theoretic (or partial number-theoretic)

functions iff computes precisely H

Basic recursive function theory applied to GR

For the purposes of 83 we will need to mention certain
elementary facts about GR stated in the vocabulary of recursive
function theory. Such discussions usually begin with a list
(indexing) of all function computing programs of the language
(in general of the formalism for expressing algorithms),.

Therefore let ¢0,¢1,¢2;... be an effective enumeration of all

, T
function computing programs. The basic theorems needed about
the list are the 'universal machine theorem"” and the '"s-m-n"

theorem (so called for Kleene's original formulation), We state

these theorems for the simple cas¢ of one argument functions,

We think of lists as including functions of any finite number
of inputs, but we usually want only the one argument functions,

(i.e. the 1 have only one input variable specified, usually

x). Therefore, we think of the list as containing n-argument
function for all n from which the sublist of n argument func-
tions for fixed n can be effectively extracted, and we use the
same notation for both lists unless this will be confysing, in

. n . .
which case we write ¢i indicating n arguments,

"

13 -

Theorem 1: (Universal machine for one argument functions)

There is an ¢3 such that ¢§(isx) = $i(x) for all i and
e}
all x .+

Theorem 2: There is a function o() such that

d,(1,x) = ¢o(j,i)(x) for all x , i

3

§3 Subrecursive Programming Language, SR,.SA.

The lang1age SR 1is defined to be the language obtained

1

from GR by deleting all '"go to's" except the positive ''go to's'’
"go to + <constant>" and ''go to + <variable>",

The language SA (Subrecursive Algol) is obtained by de-
leting all go to's from the language GRA .

Consider the simple subrecursive language '"Loop” (or pure

Loop) defined by

<constant> ::= 0
<label>::= 1]2|3]...
<Letter>::= A|B|C|...|X]|Y|2Z

<variable>::= <Letter>|<Letter><label>

*
<assignment>::= <variable>+<variable> + 1] <variable><«<constant>

<variable><«<variable>
*
The restriction in the first two clauses is that the

variable be the same on the right and left,

<iterative> ::= DO <variable>;<program>: END
<program> ::= <assignment>]<iterative>|<program>;<program>
t . ‘ . 2.
Qi(x) = $.(i,x) mnmeans ci(x)+ iff Qi(l,x)¢ and if
<
2
0, GOV then o, (x) = 57 (:,)

- 14 -

The language is more simply specified by giving the instruction
set as [v+ v+ 1l , v<«<0,v<+w, DO, END] wvhere the
semantics are as in GR . The language without v « w is called
"minimal” Loop. The basic design of this language is due
independently to D. Ritchie [18] (pure Loop) and M. Minsky

[20] (min Loop). It was based on ideas developed by the logi-
cian R.M. Robinson [22]. It is thus easy to prove (see [18],

[2p] or [22]) that

Theorem 3.1: The Loop languages are characterized by 6?1 .

To show that SR and SA are characterized by 6?1 , the
primitive recursive functions, we describe a translator from
SR and SA into Loop. The ideas are very simple so we shall

only sketch the description for SR ,
Theorem 3.2: The language S8R 1is characterized by 7%1 .

Pf: (1) We construct a translator T : SR + min Loop by
considering all statement types. First the assignment state-
ments. To obtain the assignments of the type X « Y , X €« n

do the following:

X « Y becomes X+« 0
DO Y
X« X +1
END

and X «+ n becones X « 90
X« X +1

. n-times .

- 15 -
To do the basic arithmetic, like X +«+ Y £ 1 perform

S « 0

DO Y

X +« S

S« 8§ +1
END

The other arithmetic operations, X + Y y X~ Y , X Y, X+ Y
can be done in a routine manner. Assignments involving complex
terms of the form ((X + (Y ° 2)) # X) + 1 are broken down

into simple assignments

wl « Y ° Z
W2 « X + Wl

w3 + W2 + X using extra work variables Wi

(2) Next consider the iterative statement
DO <V>; m; END . Once 7 1is translated, this statement trans-
lates directly. Thus one can simply proceed by induction on
the depth of nesting of iteratives to prove that all can be
translated.

(3) The "go to’'s" provide a more interesting situation.
A go to of the form "go to + c" is of interest only when
it occurs in a conditional, otherwise simply take the statement
referred to and insert in place of the "go to + C" the entire
program from that statement to the end. Thc casc of a g0 to
in a conditional will be covered in stzp (4).

In the case of a2 computed go to | "go to + <yariable>h

we show how to replace it with = scegquence of conditionals and

- 16 -

g0 to's . First notice that only finitely many values of
variable can make sense, say l,,..,m . Therefore, to
translate '"go to + variable " simply replace it by m lines

(if V =1 then go to + (1 + m) else go to next statement
1f V = 2 then go to + (2 + m) else go to next statement

if V= m then go to + (m + m) else go to next statement

The logical expressioms " V = i " are of course by an appropriate
V=0

Remark: Up to this point the translation process can work by

simply making onc pass over the "source progran" in SR for
each step (1) - (3) and making the appropriate replacements.
The last phase, replacing thc conditionals, requirecs more
finesse.

(4) Preparatory to the last phase it nust be observed that

T can be arranged to have no computed 'go to's" within condi-

tionals. This is done by replacing any such go to with
"go to + c¢" and relocating at c¢ the computed go to
(5) The conditional statements present more of a problen.

Suppose "if V # 0 then 1 else sz” appears for s and s,

assignment statements. Then set D « 1 = V so that D = 0
iff V#0 and D=1 1iff V = 0 . Now translate to
V<«1320D
2C D
* °1
schene END
DO D
$2

- 17 -

where D and D do not occur in §, or S, If the state-
ments s, or s, are "go to’s" then we nmust be more careful.
Suppose s is go to + ¢ , then take the statement, call it

81 » referred to and put ;1 and the entire SR program fol-

lowing s into the position of s in the above expression.

1 1

Likewise for S, -
Letting [s,end] denote the program from s to the last

statement, we say succintly that [Ei,end] goes in for S .

At this point we must be careful about the translaticen
process. When the first "go to" is encountecred within a condi-
tional, the above translation takes Place and then further
translation take place within the scope of the DO-loops defined
above. (Therefore, it is critical that the variables D , D

not occur elsewhere on the source SR progranm , because thcy

should not be modified while [s .end] is being executed

1

otherwise [gz,end] night be executed also.) 1In summary, the

source progran is translated from top down according to rules
(1) - (3) until a conditional containing a "go to" is encoun-
tered. Then the translation takes Place within the scope of the

DO loops of the * scheme, still top-down,

The translation in step (5) is logically clear because it
displays the tree structure of the progran, It is, however,
wasteful because the prograns actually havs the structurs of

a graph. For instance, the flow diagran

Becomes the

tree

- 18 -

B,
Bs

B,
Bg
By
B, B,
Bg Bs

- 19 -

As the diagram clearly shows, the possibility for dupli-
cation of code is unlimited, A more cconomical method of tramns-
lating is given below., It does not duplicate code, instead it

expands the number of DO-statements.

Method 2:

Given the conditional”if v # 0 then 1 else 82"’ call v

the control variable. Call the statements T € SR entry points

if their labels are mentioned in conditionals.
(A) Assume program T has no'"go to exits" from DO-loops. Let
Vl""’vp be the control variables associated with the condi-

tional go to‘s of W ,

Insert a "dummy location"” after each transfer and before

each "entry point" in 7 , Call these locations Tl,...qu
Whether the instructions between Ti and Ti+1 are executed
depends on some binary valued expression of the Vi , say

(_)
Bi V)

Then T can be translated to:

T1 evaluate Bil
DO Bl
T2 evaluate B2
Tq-l evaluate Bqnl
DO Bq—l
::ér‘—"‘ —last statemcnt of 7
END
T

- 20 -
The evaluation of the Bi is straightforward.

Purz Loop

3
j Bi<-.L
DO V,
JO
B, « !

h|

END

(]
-

o
<

B, (V)

MAX(1,V,) B, « G

i
D0 V.,
3
Bi « 1
END

B, (V) j

) 4 i
W o= MAX(1,K,)
DO W)
Bi “ Bi + 1

EID

W = MAX(1,L,)

Bi « Bi + 1

-l
B,(V) =L, v 1 B, « 0
i 3

#ore complicated Boolean expressions can be realized in the

obvious way.

(B) It remains to consider the morc conplex case when
program 1 has nested DO-loops and there is a ''go to'
exit from the middle of a loop., Thi: general principle

same but now the "by-pass’ loops nmust be placed around

code which is in the scope of the loop exited. The sam

of Boolean expressions can be uscd. For ovxample, given

the-
causing
is the
all

¢ scheme

| &d

DO vy use the code o0 vy
I}
_ DO i
DO v, ::
END
—_— DO V2
. —— DO B
EN .
Nz by-pass /—END
E ’ loops ~—~— DO B
i
Ly -
— END
END
DO B
— END

The details are similar tc case A, They are not critical to

the main theorems, so we omit them here.

84 eliminary Theor

Before the main theorem on program efficiency can bc proved,
it is advantageous to organize certain scattered facts about
recursive functions, subrecursive hierarchies and computational
complexity. Thcre aré old results but we prescent then in a

new light,

- 21 -

To begin we define a class of functions mentioned frequently
in the literature of both recursion theory and complexity

theory, the class of elementary functions, é;. At present

there are two basic ways to define E s one algebraic, the other
computational, We present the latter here and refer the reader

to [11] for the former,
Def: Let Ln be the class of Loop programs such that the

DO-loops are nested to a depth of at most n , More precisely,

Lo programs have no DO-instructions, Ll programs allow DO

instructions but no nested instructions and L2 allows sub-
programs of the form —DO Xl

DO X2

m

END

—END for m € Lo .

1 £

In general, a Loop mT™ 1is in Ln+l 1ff w € Ln or the only

programs in the scope of a DO instruction of T® are programs

in Ln . The same rules define SRn

Def: The class of elementary functions, € , is the class
of functions computed by programs of L2 .+ (or of SR2 if the
arithmetics are only +1, =1).

Augmenting the Loop language or the SR language by allowing

computable functions f as basic instructions allows us to talk

about relative computability, Even for noncomputable £ this

T The definition was given first by the logician Kalmer in a
more algebraic form, and proved equivalent to this definition
in [].

- 22 -

concept is well defined; we imagine an "oracle'" which produces
the values f(x) for us on demand.

Let Loop(f) ©be the language based on the instruction set
[veO0, vev+1l, v+ f(v), DO, END] and let SR(f) be

the language SR augmented by the clause

<oracle assignment> ::= <variable> « f(<variable>) .*

Defining the class of functions elementary in f computa-

tionally using L2 is unnatpral, and for this reason the zpove
definition of éf is not completely satisfactory,
Def: g(f) , the class of functions elementary in £f. 1is the

class computed by Lz(f) where no f assignment is allowed

in the scope of a DO.

This definition works because it is known from the algebraic

approach that g € £(f) iff & 1 g(x) = T(i,x,f(x)), for mul-
tiple drgument, say X € N" , g(X) = Tn(i,x,f(max{f}) where
Tn € éi . The functions Tn are obtained from the well-known

Kleene "T-predicate'" using the bounded lecast number operator,

W < .++ Summarizing the relevant facts (thesc are not essential

to the main results of the paper, but they add deeper insight).

Fact (Kleene Normal Form): There are U , T, € fi such that

for all ¢: : Nn-* N

T More generally allow ﬁoop(fl,...,fn) and SR(fl,...,fn) by
adding the clause

<oraclec name> ::= f|f<label>

<oracle assignment> ::= <varlable><«<oracle name>(<variatlc>) ,

"7 The least number operator H,.. reads "the least n such
that ..., the operator M < x.,,. reads "“the least n < x such

that ...".

- 23 -
0% (X) = Uuy T_(1,%,y) = 1)
i = MY n y s Y =

Fact: G_(1,X,z) = U(uy < z T (i,X,2z) = 1) is in €

Another normal form theorem is of interest here.
Def: Let F : h]-+ N , the iterates of f arc defined as
f(o)(x) = x , f(p+l)(x) = f(f(p)(x)) .

Def: Let £ (x) = x + 1,) = féx)(x) .

fu-*-l(x

Theorem (Grzegorczyk Hicrarchy):

(a) f(fn) c é(fn-é-l) for n > 3

(b)

N C8

1
EE) = R,

n=0

This theorcm is proved in [11] and [5]. The theorem
becomes immediately 2 normal form for primitive recursive func-

tions.

Theorem (Grzegorczyk Normal Form, GNF):

If g: N » N and g ¢ E(fn),then di -dp

(
g(x) = Gl(i,x,f:)x)) for all x .

The theorem holds for m argumcnts using Gm() . It

applics to a wide class of functions, namcly all thosc of the

fornm U (fu) for fa a transfinite scquence of reccursive
o<3
functions satisfying certain conditions. An account of this is

given in Constable [7].

- 24 -

These results are applied to computational complexity via
the following two important theorems,
Def: For C a class of functions, write g < C 1iff 3

h€C Jglxy,.n,x) < h(xl,--.,xn) for all «<x),...,x > . If

C contains only one argument function, then

g(xl,...,xn) < h(maX{xl,...,xn})

Theorem (Ritchie-Cobham)+: For any GR program ¢i

(@ 6,0) =,0,0) & 00,0) <€(f)) iff $;C) € €(f).

Pf: (1) If o¢, <b € € (£) then looking at the definition

of a computation and the definition of the T-predicate, one can

find a function b € (£ (f) such that

o;(x) = Uluy < b(x) [T(i,x,y) = 1])
and since all operationms arc elementary in f , ¢i € (i(f) .
q.e.d.

Def: Any class K satisfying thc condition O¢i < K => ¢i € K

is called a full class (wrt o)

Thus for thenstep counting measure on GR , <f(f) are
full classes.

(2) To show:

then Hj Qj() = ¢i() and o¢j £ € (o¢f);

whaere éf is a program for computing f()

" The historical origins of this theorem can b: found in Hleenc's
treatment of primitive recursive functions, Routledge [] called
the theorem "Kleene's principle”’. The exact version given hecre
was first due to Ritchie [21] and later explicitly discussed by

Cobham[6].

25 -

Pf: If ¢, € (£(f) , then ¢,) = E[£f()] for E[] an
elementary operator. But Lz(f) can express the elementary
operator in such a way that the number of program steps of Lz(f)
is elementary, E[] » in f . Then given a program ¢f for
doing f() , the total computation in f[o¢f] . These facts

are tedious to verify in detail, These details can be found
in Ritchie [2], q,e.d.
Def: Any class of functions K satisfying the condition:

that ¢i € K => c¢i € K 1is called closed (wrt o),

Def: A function f 1is called h-honest iff there is a program

¢f for f such that O¢f(x) < h(f(x),x) for all x.. Call

f (f—honest iff h € (f .

Prop.: The functions G¢i() are £ -honest,
Pf: They can be computed by running ¢i and keeping track of
the number of steps. This tallying of stcps is an elementary

task. q.e,d,

’ +
Theorem (Emc-theorem) :

(a) if f is cf—hpnest, then for any recursive h ,
h € £(f) iff o¢, € £(f) in particular;

(b) h € Fl(od,) 1iff o9, € E@d.)

Open Problem: What is the least closed and full class X for

G cr GR ?

-
|

"Emc" stands for 'clecmentary machine class which descrites
2 wide class of machines for which the theorem is true, sec
Constable [8],

§5 Relative Efficiency of GR and SR Programs for 6?1 .

We know from the work of Blum that the availability of
the "negative go to” allows a programmer to '"compress his code".

That 1s, GR programs can be much shorter than the shortest

SR programs for some 0?1 functions. How does the "negative
go to" effect computational efficiency measured in terms of
running time?

The best result previously known, Meyer & Ritchie [1,

is that if ¢i denote GR programs and oy denote SR pro-

grams, then if o¢, < f(p) there 1s an a,() = ¢.() and
i n i i

oa, < f(p) . Thus the Emc theorem for F’ (f) remains the
n 2 n

i
same whether SR or GR 1is used.
There 1is, however, considerable latitude among run times

in éi(fn) » and the above results left open many interesting

questions, particularly qucstions about the existence of speed-
ups for primitive recursive programs. In fact, it has been
conjectured (see 81 Introduction) that arbitrarily large primi-
tive recursive gaps exist between the reasonable run-times for
some SR programs and the reasonable GR programs for the

same function, We show that there are no such gaps. Precisely

Relative Efficiency Theorem 5.1: For 2all ¢i() = £() € (Rl

v
o}
.
5]

sueh that 0¢(x) > x all x , therc is an aj(Y = £()

C € N such that

ga,(x) < C, - 09 (x) fecr 211 x .
i - 1 i

- 27 -

Pf: The theorem is proved with the restriction that SR pro-
grams do not 21llow e¢xits from the middle of a DO-loop. This
makes the result easily applicable to SA and Loop (pure and
minimal).

The method: The motivating idea is that given a ¢i for f£

1

with a¢i < 51 (other ¢i for f are clearly not of interest)

there is a least n and given n a least ©p such that
0¢i(x) < fép)(x) for the fn of the Grzegorczyk hierarchy.
The function f can be computed by an SR program in KNF ,

This form suggésts

Kleene Normal Form, using the bound fép)

an even better SR way to compute f£() . Namely, attempt to

"simulate® ¢ using

fép) as a clock to shut off the simula-

i
tion. If the clock can be computed in parallel and shut off

when ¢i halts, and if the simulation cost if a fixed function
of o¢i , then this normal form computation will not cost much
more than O¢i

The simulation cannot b¢ the usual variety used with Turing
machines because SR programs cannot perform negative go to's .
But a reasonable simulation concept can be defined. The probf
below consists of two parts. In part (A) we describe an SR

program 61 which is used for simulation, and we prove that

it does in fact simulate ¢i

in parallel with

In part (B) we show how tc compute fﬁp)

aey|

and most critically, we show how to shut the fép)

28 -

computation off without much "over run'”. 1In this regard we notice

that if there were 2 command to allow control to lecave loops

(0]
=
o
£

beforc they finish, then the over runm would be minimal. We

11

that even without this "exit loop” option, the clock can be shut

off withian ¢ ~ o¢i(x) .

It is interesting to obscrve that these “cloqk vs, Ssimula-
tion"” arguments and "clock shut off" arguments are characteristic
of many of the results in computational complexity, namely in
those using diagonalization constructions. The clock arguments

are €specially critical in techniqucs which attempt downward

diagonalization results. See [1l3], [4] for a discussion of thesc
phenomzna,
fhc proof: (1) The clock-functions fép) can te computed

by the following sequcnce of programs,

f is X « ¥ + 1
0
n+1 is Do X
f
n
END
f(p) is £ ;£ 3. s £ p-times, For example
n n) n’ LI) n s

f{z) is DO X
f X« X +1

- 29 -
o1 0
(2) Given ¢i() = £() € and 3¢i < xﬁ , let n

te the least n > 1 such that T p and J¢(x) < fép)(x) for

all x ; n, is known to exist by L 1. A Given n. lat

. (ry)

Py be the lcast p as above, That is o¢i(x) < fn (x) for
. i

all x . (It is shown later that therc is noecffective procedurc

to determine n,o, Py given ¢i)

(3) Th: goal of this step is to describe an effective

procedure translating ¢i into 51 as the SR program used

tc sinmulate ?

Let 9. be Sy5Sy5ec 38 Let be vacant

s s s
i m n+l’ "m+2*' "n+3
slots 1into which we¢ will latcr insert statcments, Obscerve that

2111 statements Sy of ¢i which are not negative go to's can

be translatz:d directly intc Sk (if ¢ has none, then

o4 € SR and there is nothing to prove,) Threce modifications

must be made.
(i) for computed go to's : For simplicity, label all

statements of ¢i . Say sk is labeled k . Recplace

all computed ncgative go to’'s by '"go to -c" for the
appropriate ¢ as was done in Theorem iL?for SR programs

Assume now without loss of gencrality that ¢i has this

form.

(ii) Lct tl""’t S¢ the negative go to's =znmong the
P

s. . Suppose that thec variables G S , dc not occur in

1 3

- 30 -

¢i . Then replace cach ti by the pair of instructions

G « "label of the instruction yeferred to by tj"

o to + d.
& J

vhere dj is the distancc (number of statements) to the
slot S +3 ° Now put 2 + Z + 1 into the slot labeled
Sm+3

(iii) for halting: The program ¢i halts either by trying

to cxecute a statement after 8, or by branching to a

non-existant statement, To cover the first case, insert

s ~ a ‘ e " “« "
into the slots sm+l and sm+2 the statements S 1

B

and "G « m + 17 respectively.l The variable S 1is used

to scnse the stop condition, In the case that ¢1 halts
by branching, replace each such branch statement by '"go to

" e i ¢ i c T
+ di where di is the distance to S 1+1
Denote .the program obtained from (i) - (iii) excluding
8 +3 by ¢i . Note that ¢i mimics ¢i until a negative

go to 1is encountcred. At that point 31 grinds to a halt

after setting G and increasing 2 . To keep the program

running, put a DO-loop around it, Thus DO X

go to + G
¢i
END will kecp
¢i running for a lcast x steps. Each passage through o,
i
recsults in executing at lecast onc more step of 2 To kce
To perform S <« 1" and "G + m + 1" wc have variables pre-

set to these values available,

- 31 -

¢i running long cnough rcquircs building morce loops around it,

(py)
This can bo done while computing the clock fn 1 , 28 1s shown
i

next,

- (4) The goal of this step is to describe a way to compute

the clock in parallel with 61 and shut it off (without much
"over run") when ¢i halts, The asterisk will indicate the

critical statement nececded,

*
if S # 0 then X « 0 eclse X <« Z

Now form the program B8

f
DO X j
DO X ;T
DO X |
DO X J
go to + G
%
Z +z+1
END \
*
EXD
* n,
EXD
*

END

- 32

Looking at the inner most loops wc seec thce machanism in
morc detail,

DO X
DO X
go to + G

¢i

2« 2 +1

END

if S # 0 then X « 0 eclsc X « Z

END

Observe that as long as § = 0 this program will compute

fn(x) in variable Z , since the program is zssentially
DO X]
. n.-timcs
i
DO X f
DO X
Z « Z + 1
END
X « 2
E ni—timcs
END
Furthermore, while S = 0 the pProgram is computing at least one

half step of ¢, every time Z « Z + 1 is exccuted, .Thus while

S = 0 the value of Z indicates a lowcr Yound on the number of

steps of ¢i which 51 has “simul-ztad'.
To compute the final result, ¢i(x) . form

p-times, How Z will potuntinlly have

(py)
the value fn . (x) . Its actual value will depend on the value
i

it has when S beccmes non-zero, i,e. when ¢ shuts off, i.e.

i

when ¢i(x) halts. 1In the next step we determine how long D

will run compared to 0¢i .
(5) To calculate oaf(x) , four facts are necded about
o and Sf

Let Dl""’Dn be the loop control registers (sece §2
i

Semantics) in B (listed in order with the inner most loop

f

first). The following hold for all inputs x .

Lemma 1: After executing the inner most DO, at every step of
the computation, z > Di for i = 1,...,ni
Lemma 2: After the first exccution of the inner most loop,

Dl < Z £ number of times instructions of Ei have been execu-

ted. Also, 2 ° Z < number of steps of ¢i already simulated.

Lemma 3: If S # 0 , then at most, 3(D; + D, + ... + D)

+ n, + Di steps can be executed before Bf halts.

Lemma 4&4: If S # 0 , then the maxinmum value of X 1is Z

Using these lemmata it is c¢asily proved that therc is 2 ¢

such that Gaf(x) < ¢ ° G¢i(x) fcr 2all x . When Si halts ,

- 34 -

Ei has been executed no more than 2 - o¢i(x) steps (''on the

average" ¢i is probably executing nearly one for one). Thus
when Ei halts, S # 0 , and Dl <X<z<2°- 0¢i(x) ; by

lemmas 1, 2, and 4, The total number of steps taken outside

31 is no more than (4n1) Z , thus no more than ' 3

4 > n o 20¢i(x) . When 51 halts, control is in some R

i f

and will not go imto another Bf + By lemma 3, Bf can execute

i
at most 4 - 2 Dj + n, more steps., So that by lemmas 1 and
j=1
2, at most &4 <« Z + ng < 4 - (20¢i(x) + ni) more steps. There-

fore to complete the program we add at most 2 - P, more steps

in slipping over unused RB_'s to complete @

£ Hence at least

. -
ga (x) < (8) » (a, + 1) - 06, (x)

To complete the proof we need only prove the lemmata,
(6) Proofs of lemmata:
Proof of lemma 1:

l., After the first time through inner most loop, 2 = X

and no Di has been increased,
2. Assume the result true after m steps, to prove that
it is true after m + 1 steps, At each step only

three instruction types can change values, They are

(i) D; < X
(idi) Z + 72 + 1
(iii) Ji + Di -1

(iv) X« 2

Therefore, if Di < Z at m , then (i) can at worst bring some

Dy = X which by (iv) is < 2 , The other two instructions can

only cause Dj < Z for some j . gq.e.d.

Proof of lemma 2:

1. Z cannot be increased unless an instruction of 5

i
is executed. Therefore 2Z number of steps taken in
in Ei

2. Every step of 61 either directly carries out a step

of ¢i or else carries out the step of ¢i after

one loop. thus after increesing 2 , Thus 2 ° Z < nunm-

ber of steps of ¢i already simulated,
q.e,d.
Proof of lemma 3:

1. If S # 0 , then by * statement the only value that

can be assigned to Di is 0 . Also when Di = 0
then the only statements executed in the Di+l looo
1 2 i " " 1
are Diy1 “ Dypq 1" , "go to ___ and if D, # 0
1 1] ~ ° =
then _ so that after 3 Di+l steps, Di+1 0

(See §2 Semantics.,)

2. After D, = 0 , them 3D, +1 + 3D, + 1 + ,,. + 3D
1 2 3 n

steps are executed, D1 may execute 4D1 steps before

being set to O (the 'go to G" 1is also executed).
q.e.d.

Proof of lemma 4: Trivial by examining * .,

q.e,d, Theorem

- 36 -

Discussion: The estimate produced in the proof is very crude.

There are two basic factors influencing the cost of ap (A)

simulation time, the cost of DO V

Ei

END , and (B) clock time, The
clock time, (B), has two subcosts: (i) computation time while
clock is still needed (ii) "over-run" time, the time the clock

keeps running after it is no .longer needed (after $i halts),

We could eliminate the over run time (the factor

3(2Di) + n, + Dl) if there were a "go to" instruction allowing

i
control to leave the scope of a DO-loop before its termination.
The cost of (i) is inescapable but is minimized by computing

it in parallel. This cost 1s reflected in the factor 4ni ° Z

the time spent outside of ®. . MNotice that the (B) cost depends
i

om m, , an index reflecting the complexity of the clock,

The simulation cost (A) depends on the '"structural com-

plexity"” of ¢i measured in terms of the number and distri-

bution of negative go to's . The value of Z , which deter-

mines the non-direct simulation cost as well as the clock

cost, actually measures the number of times that negative go
]

to's are executed. Thus if there are few negative go to's ,

then Gai() and O¢i() may be very close. The topic of

structural complexity and efficiecncy will be discussed further

,
C

wun

in

_37 -

The main theorem was proved with the restriction that

o¢i(x) > x for all x , This restriction is necessary because

SR programs constructed as in the above proof cannot run in
less than x steps. Moreover, in the modified Loop language,
Loop + , (Loop plus positive go to's and conditionals) to be
considered later, no function a(x) 1is computable in less than
X steps. For GR , functions with running times below x are

possible. However, all languages mentioned, G3 ,

SA , Loop , have a strong minimum growth rate in the following
sense: there is a recursive monotonic increasing function

A() such that if 1lim inf ¢,(x) = w , then g¢, (x) > A(x)
X>Ww 1 1 -

a.e.x . That is, if the run time grows, it must grow at least
at the rate A() . Given a strong min growth rate)\ for
the general recursive language GR and the time measure, we

know trivially

Cor.: There is a function A-l such that for all

¢i() = £() € d%l there is an aj() = £() such that

oaj(x) < A_l(max{x,c¢i(x)}) for all x .

Theorem 5.2: GR and G3 have strong minimum growth rates,

Pf: We prove firectly that G3 has strong min growth rate

A3() and then show that growth rate in GR «can be bounded in

terms of AB

- 38 -

1. The strong minimum growth rate for is K3(x) = x ,

&3
Given G3 progran ¢i and given a constant k it is possible
to produce a finite tree of all possible paths of execution of
length k (if there are no conditionals, the tree has only one
main branch),

On the edges after each decision node, the condition on
x which causes this branch is expressed. For single inputs

the expression is always an algebraic expression of x , In

the case of G3 the conditions must always be X - n = 0 ,

Slowest growth rate is obtained by finding the 1argest.
possible input x which can lead to a terminating path in the
k-length exescution tree, If the last decision leading to this
path was X - n = 0 , then n <k and n 1is the largest input.

So for such paths the growth rate is k3(x) = x ,

If the last decision along the terminating path was
x - n >0 , then for all x > n the program terminates in n

steps (note again =n < k ., So lim inf 0¢i(x) = w 1s impos-

sible. Thus no such path exists,
2. To establish the growth rate for GR , notice that since

GR can be translated uniformly into G3 , there is for each
GR arithmetic function (say x = y) a cost si(x,y) in terms

of G, . If o¢i{x) = y then the simulation cost using G

can be determinad. Let Six,y) =

- 39 .

monotone in X,y the simulation cost will be

S(vl,vl) + S(vz;vz) + .,. + S(vy,vy) where vy is the maximum

value in any variable at step 1 .

This maximum value \ can be determined as a function of
Vo s the maximum initial value, and y the number of steps.

The time measure ¢ has a speed-limit, sl , that is, in y

steps a program with maximum initial value v, cannot produce
a value larger than sl(vo,y) . Thus after y steps,

vy < sl(vo,y) . Since s() 1is monotone the value

dgf

y S(sl(vo,y),sl(vo,y)) t(vo,y) will be the maximum number

of simulation steps required. The function t() 1is increasing
in v and y and because of the a,e. conditions on min grewth

rate we need only consider T(y) = t(y,y) . Since T is

. ; -1 . e
increasing, T is defined.

The minimum growth rate in GK , say A , must satisfy
-1,.
A(x) > T (A3(x)) a.,e,x .

q.e,d.

The idea of a speed-limit which appears in this proof will
be of inéerest to us in § on abstract subrecursive complexity
messures.

To finish this section we note that the Efficiency Theorem

is not constructive in the sense that given ¢i we c2n not

determine 2y and Py cffeoctively,

- 40 -

3V
B
la

Theorem 5.3: (2) There is no algorithm to determine for

fer any GR program ¢i whether ¢i() € %?l . If
1 . . e
@i() € 6? , then there is an n such th:r Jd p and
* G¢i(x) < fip)(x) for all x . (b) However, given thc

information that ¢i() € %& , there is no algorithm to determine

an n satisfying * . (c) Moreover, given the information

that ¢i() € an, there is no algorithm to find the least p

satisfying * .

Proof:

1. Case a: This is a well-known fact, It is proved by zmbed-
ding the halting problem in the decision, Namely design

o} such that on input x it runs ¢n(n) for x steps.

o(i,n)
If this halts, it then computes 2 non-primitive recursive func-
tion. If it does not halt, it computes the successor function
) € @1 is equivalent to

X« X+ 1. Kuowing whether ¢c(i n
oi

knowing whether ¢n(n)+ .

Cases (b) and (c) are similar.

§6 Structural Complexity

Strong normal forms and program structure

1l Ma2chine Thz2orcm

b

Tha Xleens Horm2l Form thecren and Univzarss

havz been intsrprcoted 2s results sbout progrom structure. Tacy

say that the structural complexity of 2 program can bec traded

- 41 -

for 8ize. The computational cost of thes structural simplicity
is efficiency of operation. The main theorem of the last szction
determines a constant bound on the loss of efficiency.

The GNF can be used in its strong form to obtain

o, € f?l as

1
(1) e x) = UGy < £ G0 Ty = o £ ()

gor all x . (This means that in the GNF an elementary operator
B <, need only be applied once.)

In [18] this result is interpreted for the Loop language
by saying that

(p)

n

Theorem 6.1: If ai € Loop and Oai(x) < f (x) for 2al1ll «x

]

o.() and a, € L

and n > 1 , then there is an a,()
J 1 J n

The direct proof is to compute T of (1) in L2 and

sequentially adjoin the computation of fép) Thus the normal
form is

fn celock bound

T simulation ,

Meyer & Ritchie [Zg] actually use a direct simulation of
a rather than ¢kt T-pradicate.
The zcdvant-_ . ¢f rais normal form is that structural com-

lexity mensvraed in terms of depth of nesting level in
3 - Lo

hierarchy) is minimized, but at considerak%ls cost of run time,
By translating SR (or SA) into pure Loop, the Efficiency
Theorem, 5.1, immediately shows that there need be no significant

loss of run time in achieving nesting complexity within 1 of the

minimum for =n > 1 Dbecause the clock can be computed in parallel
and over-run is no more than a quadratic factor., The diagram

in this case is

[T

e

The L2 complexity of T 1is added directly to frl .

Precisely

Theorem 6.2: If B, € Loop and OBi(x) < fép)(x) for all x

i
then there is an Bj() = 8.0, Bj €L, and
2
OBj(x) < c ¢ (oBi(x)) for all «x
Proof: (1) Given Bi € pure Loop , translate it into GR using
the sematnics of 82, call the result ¢i . Then using ¢, of
FS

Theorem 5.1, there is an SR program oy such that
a, () =8,() and oa,(x) <c - og;(x) for all x , Note, the

complexity of «, is at most n ,

(2) Yow translate ¢i into pure Loop using the procedure
in 52, mcthod 2 for step 3 (only part (i) is neceded);. Yore,

for pure Loop the arithmetic operaticns x = 1 and 1 = x

- 43 -
must be simulated. The translation requires loops, but no
nested loops. Therefore, the loop complexity of T(gi) R

SE -+ pure Loop , is at most one, Thus the complexity of

¢, 1is =n + 1 .,

(3) The run-time of T(Ei) may not be proportional to
031 because x * 1 and 1 ®* x must be simulated, This
simulation requires x steps., Since the speed limit in Loop
is 1, in cai(x) steps the largest value is cgi(x) . There-
fore, the simulatiqn costs at most (GEi(x))2 ., The constant

¢ appears as in Theorem 5.1,
q.e.d,
Remark: If Loop had the same arithmetics as SR , then the
simulation would be a linear factor again,
Cor. 6.2: 1If ¢i() € d%l and 0$i() < @%” for ¢i € GR ,

then there is a Bj € pure Loop , RB.() = ¢,() and

ch(x) e 0¢i(x)2 for all x ,
Remark: The same results hold for min Loop where v w
must be simulated. Generally the result holds fcr a wide class

of languages with general recursivc bases like GR allowing

arithmetics fl’“'°sfn and subrecursive bascs like SR

and Loop allowing 2rithm.tics g

- 44 -

are the same, then the methods of analysis in Theorem 5.1 estab-
lish the relative efficiency. When they are different, the ef-
ficiency depends also on simulating the arithmetics., We discuss
the generality of this type of result in §7.

Nesting complexity and SRn are defined in the SR 1lan~
guage just as in Loop, but because the additional logical struc-
ture of the conditionals and forward go to‘s 1is available,

a good structure vs. efficiency result holds, Namely

Theorem 6.2: If a, € SR and cai(x) < fép)(x) for all x ,

n > 1 , then there is an aj() = o) and a, € SRn and

i(3

d ¢ such that

oaj(x) < ¢ oai(x) for all x ,

Proof: Immediate from 5,1 by translating oy into GR |, say
¢i and applying the result to ¢i . q.e.d.

Can a similar result be proved in pure Loop? The answer
is yes.

Theorem 6.4: If Bi € Loop and oBi(x) < fép)(x) for all x,,

n > 1, then there is an Bj € L and B.() = Bi() and

o J
X
ij(x) < s(max{x,oei(x)}) for all x where s(x) = 27 + x
Proof: Iranslate Theorem 5.1 intc pure Loop language. First
notice that the * statement can be replaced by a pair of

unnested DN°'s as shown abovsz,

- 45 -

Now use the simulation in [18], given Bi this procedure

produces a DO V

il

END where 7 has only unnested TO's if any,

Mow use

— DO X

DO 2Z
Z <« 2Z +1
END

i
*

L_END

to replace the inner most nested loops of the program Bf in

the main theorem. This program has nesting n as desired, and
its run time behaves as claimed for reasons similar to those
detailed in the main thsorem.

qg.e.d.

§7 Applications

Speed-up

One of the most interesting theorems in the theory of
computational complexity is Blum's '"speed-up theorem”.
Fact 7.1: For all r € 6% there is an f € 6? such that for

all ¢i() = £{) there ic a ¢j() = £() such that

)
(%
»

r(ge,{x)) < o9, (x)

)

- 46 -

This says that there are peculiar functions arcund whose compu-
tation time can be 'sped up” by an arbitrary amount r()
dlmost everywhere, However, 3lum has shown that the speed up
cannot be effective in the following sense
Fact 7.2: Let r € &7 be any sufficiently large function.

7 .
Let £ € v{ » then there does not exist a program mT such that

if ¢i() = £() then w(i)¥ and r(c¢“(i)(x)) < 0¢i(x) a.e.x

In the case of GR programs and the time measure o

2
" means r(x) > x a,e.x .

"sufficiently large r
The non-effectiveness of the speed-up means that it is

impossible to exhibit examples of square spead up in GR ,

For the purpose of teaching the speéd-up theorem this 1is dis-

appointing. One might thus ask whether square speed ups could

be illustrated in the Loop language or some subrecursive lan-

guage where the structure is simple. This question has cccurred

to several people. The first step in answering it is to prove

an Oel-speed-up theorem In ﬁ%l using a simple language like

Loop. One would aim to prove

Theorem 7.1: For all r € d?l there is an f € é;l such

that for all ai() = £() there is an aj() = £() such that
r(oai(x)) < Gai(X) a.e.x .

This theorem cannct be proved bty carrving out the 3lunm

. _ 1
[1] proof dirsctiy to 'G

- 47 -

different methods, for example those in [13] and {10]. However,

it has not been shown that this é%l—speed—up is non-effective.
From the main theorem of éS it is possible to easily prove

the above Theorem 7.1 and to prove directly that fdr sufficiently

large r the speed-up cannot be effective. Namely, the proof

is to apply Blum's proof for a givem r to yield an ﬁ?l

function with r speed-up in GR ., Then by Theorem 5.1 the

SR programs also have r speed up for r(x) > x2 a.e.x .
Finally the speed up cannot be effective in SR Dbecause it
would lead to an effective GR speed-up by the following
argument,

Suppose T speeds up SR programs in the sense that if

= f i 2 <
ai() f() then 7(i)¥ and r (oaw(i)(x)) oai(x)
a.e.x . Then define a program T in GR which uses a fixed
SR way to compute f£() , say Ge oo and given ¢i it assumes
that ¢i() = £() and that o¢i(x) < oaf(x) a,e,x . There-

fore, using a bound fép) such that qu(x) < fép)(x) for all
X , it produces the image program 51 and the simulation

progran “k(i) according to the method of Theorem 5,1, Now

if ¢i() = £() , and ¢i is reasonably fast, 1i.,e,

To handle the

1y
»

(p)<x)

o¢i(x) < fn , then r(can(k(a))) a,

£() bvut 93,() is slow (larzec), we

(¢]
L
[1)]
(1]
b
jon
(19)
3
>
~
~
i

sc that if time £

- 48 =

is computed. C=211 the nev image « . Ilow the program

H 2N
h' (1)

7N
s
-

- i A { = f
aﬂ(k'(i)) is an r speed up of any ¢«)

The same arguments will work for pure Loop, but now the

"sufficiently large r " must be increased to compensate for thz

simulation of x = 1 ,

SR k GR
<—9
. ,—
T | 0w
v
0 >0

id
diag., commutes

Abstract approach

The Blum speed up theorem was originally proved for abstract
(or Blum) measures of computational complexity. The time measure
0 on GR programe is only one concrete instance of an abstract
(computational complexity) mcusure,

The theory besgins with an acceptable indexing
¢ : N *-§> of all partial recursive functions and two axioms

characterizing a measure ¢ = {@i} . The indexing generalizes

the notion of a formalism and the measure generalizes the

set {G¢i} of run-tines. The axioms are simply that there

exists a 2,1 wvalued recursivz function M() and a list

o = {@i} such thet

A
aAXlod

[}
{r
~
"
N
1]
o
Ht

49

Thz 2 runcti.- ¢ benecraliization toe i
of KNF “rem these two intentionally weak axioms

number of the theorems and concepts about specific

-

carry over in a rcavealing machine (or programming

indcpendent form. Moreover,

sr..dicat:
34 3Urpris.ng

measurces

)

e

[

anguac

in this setting several ncew and

important thzuorems were proved such as the speed-up theoren

(Blum [3]).
*hecory (McCreight & Meyer [171),
1,

operators of the first two (Fischer & Mever [

An abstract treatment of subreccursive

iight be equally teneficial, At l.ast it would hel
~hic critical features of the arguments. We would
al: abstract treatment of certain as;-cts «f thc

complexity theory (restrictccd indexings,

«fficicney, relative size, ctc.s. Thig -opic will be trieated 1r
mere detail ir Borodin & Constable [371 Here we =hall indicate
2 general approach to the area.

We suppose that of ie an r.e. <ubs=: of ﬁk , and w=:
hepin with ¢ = N > of c f as an iadexing of £ obtiinea nw
seclecting a subset of {¢i} by the fun«tionmn 1,

= a(n} = ¢(t(n)) = o \.* T:t the mzasur A = {ma, b
T(n,‘ 7
~efinced by mai(x) QT(i)(x) all «x .
There sre certain obvious restrictic:s =iich muxt -
ctoiced on o for it to gualify 2s ano . sur imorne tn
crirable attribures wculd be
-7 ua._ceptabla o -incdexing .anmot n: 4. iiden SIMD Ly o VoL
-ver Roger's [23] definition of 2anm acceptab] “edndexine Rioonees
-annot rave 2 Universal <“2:h<ne Thesrem

along with gencralizations

Constable

rhus

ni:rarchie

the gap thecorem (Borodin [3) and the honesty

formalisms and measzur.s

p isolatw

CTOpPOS-.

subrecursive

S, r=iative

B T

- 50 -

(a) Ai,x,y M(T(i),x.y) € &

(b) each ma, € A

(c) the measure has a speed limit, s € a(, i,e.

ai(x) < s(mai(x)) for all x .,

These properties are analogiee of the Blum axioms., Blum
axiom 1 forces the measure to have arbitrarily large complexity

functions, e.g. it prevents ¢ = {@i(x)} = 0 for all x from

being a measure. This is accomplished herec by (¢)., Blum axiom -

2 prevents ¢ = {¢i()} from being a measure. This is accom-

plished here by (a).
Among the consequences desired for the subrecursive measures
are those theorems of the general theory which hold in the
class X . For example, when k; = Jﬁl we want
(1) speed-up theorem

(2) compression theorem (upward diagponalization thecorem

or jump theorem when stated in terms of classes)

(3) gap theorem

(4) honesty theorem

(5) union theorem

Many important abstract properticss can be established using
the reéursive relationship theorem 2 15[1] in the following
manner. Prove the result for T a specific measurec like time,
then show that the result is measurz independent, and finally
use the recursive relationship to carry vver the. result to any

other measure, i,e, speed-up theorem [13] and [10].

- 51 -

Using the same technique with abstract subrecursive measures
requires an jirecursive relationship,

gf-(recursive) relationship: If A = {mai} and B = {mai}

-«

are df—measures, then there is an r in A such that

(i) mai(x) < r(mBi(x),x) a.e.x .,
(i1) mBi(x) < r(mai(x),x) a.e.x .

This attribute does not follow from (a) - (c) because it
involves two formalisms while the others are all "internal” or
"co-ordinate free'" properties. In the Blum case, recursive
relationship holds because the indexings are acceptable. The
satisfying fact is that acceptable indexings are given an in-
trinsic or co-ordinate free definition, A satisfactory defini=-
tion of 5Aaacceptable indexing would presumably lead to the
55~relationship among measures,

Some intsresting observations can already be nmade z2bout
(a), (b), (c) as possible axioms., First, they are independent
but insufficient to guarantee either the compression theorem or
a recursive relationship between measures, Even a, b, c plus
compression do not guarantee a recursive relationship. However,
if 5{ is closed under U < and iteration, then (a) above‘
implies the gap theorem. 1In [16] Lewis shows that (a), (b),
(¢) allow no r.e. complexity classes,

Results like Theorem 5,1 would follow from the existence

of the function Gn(i,x,y) of 54 in .{ and from a parallel

cost axiom of the fornm

(d) d p € ¥yi¥%¥j

ga,(0,) < ploa,,0a.) .

3 3

The function p() represents the cost of parallelism in the
formalism. For general recursive formalisms and measures such
a p() always exists because of a recursive relationship
with models like multi-tape Turing machines, However, there are
subrecursive formalisms without that property (at first sight
Loop might appear to be one),

In Borodin & Constable [3] these topics are treated in
detail. Various consequences of possible axiom systems for
subrecursive measures are examined. In [16] Lewis has considered

the effect of requiring that the measures be finitely invariant.

- 53 -

Applications to the '"go to' controversy

We have studies certain facits of program structure found
in high-level languages like FORTRAN, Algol and PL/I, The use
of the more sophisticated languages like Algol and PL/I has
caused a certain controversy over the need for '"go to's", The
motivation for the controversial discussions is the fact that the
use of "go to's" in Algol destroys the logical simplicity of
programs and makes description of the computation difficult
(see Dykstra [15]). Therefore, it is desirable to minimize
their use. The question arises of whether they can be eliminated
entirely without unbearable sacrifice.

The answer to the simple question of whether they can be
eliminated at all is a trivial yes, Using the Kleene Normal

Form we can express every number theoretic computation ¢i as

Sr (1)

DO WHILE S = 0
Y«Y +1

8 « T(I,X,Y)
END

OUT <+« U(Y)

The T-predicate can be computed in Loop, and we know that
Loop does not need any conditionals.

Furthermore, we know that in the presence of an instruction

of the form
#* 4if S # 0 then exit

which means '"leave the loop immgdiately" (go to the statement

immediately following the END of the inner most loeop in which

- 54 -

* occurs), the efficiency of a program similar to ¢k(i)

(using the Ei simulation of §5) is within 3 o 0¢i(x) .+

Another interpretation of the fact that '"go to’s" are

unnecessary is that all functions actually used in computing

belong to f?l and therefore can be computed in a restricted
language like SR or SA . The main result of §5 shows that
the loss of efficiency caused by using the restricted language
is small, The loss of size is discussed in [2] and [8].

The intereéting question about '"go to’'s" is whether they
can be eliminated in any "practical sense”. To analyze this
question thoroughly we should have precise measures of structural
complexity and perhaps a measure of "conceptual" complexity,

It will also be necessary to consider more carefully the problem
of translating the high level language and executing the trans-
lated code. All of these problems =2ppear to produce interesting

mathematical questions.

The convenience of #* suggests that one mieght want such an
instruction in an actual programming language.

AL PERENCES

(1]

Lla]

(6]

(9]

(1¢]

[11]

(12]

t135]

Blum, ¥. "Machine-Iudepencent Theory of the Cumplexity
of Recursive Functions,” JACH 14 (1ve67), 322-336.

blum, . "un Effective Procedures for Speeding up
Algorithms" ACM Symposium on Theory of Computing Marina
del Rey (1909)

Blum,M. "On the Size of liachines,’ Informatior and
Control II (1967)., 257-265.

Borodin, A.B., and Constable, R.L. "Subrecursive Abstract
Measures," Computer Science Tech. Report, Cornell Univ.
to appear July 1970.

Borodin, A.B. "Computational Complexity and the Existence
of Complexity Gaps," Ph.D. Thesis, Cornell University,
1969.

Cleave, John, Pl "A teirarchy of Primitive Recursive
Functions,” Zeriscihir. F. Math. Logik and Grund D. iiath.
9 (1963), 331-345.

Cobham, A.an, "The Intrinsic Computational Difficulty
of Functions, Logic Mhethodology and Philosophy of
Science, Amsterdam, 1965.

Constable, Robert L. '"Extending and Kefining Hierarci:iies
of Computable Functions,” Computer Science Tech. RepoTrt
#25, University of Wixconsin, 1968.

Constable, R.L. "“"Cn the Size of Programs in Subrecursive
Formalisms," AC:i Symposium on the Theory of Computing,
1570,]-9.

Elgot, C.C., and Robinson., A. "Random-Access Stored
Program Machines, An Approach to Programming Languages, "
JACM 11 (1964), 365-3935.

Fischer, P.C., and .ieyer, A.R. "0On the Computational
Speed-Up," IEEE Conf. Record, 9th Annual SWAT, 196§,
351-355.

Grzegorczyk, A. "Some Classes of Recursive Functions,"
Rozprawy Mathematcyzne (1953), 1-45.

Hartmanis, J., and Stearms, R.L. "On the Computational
Complexity of Algorithms," Trans. AMC 117, 5 (1965)
235-306.

hartmanis, J., and Hopcroft, J.E. "An OJvcrvicw of the
Theory of Computational Complexity,” Computer Science
Tech. Zeport 73-5%, z2pril 1570, Cormnell Universicy
sleene, S.0. Introducticn to Metamathematics, Trincoton,
Sois Lroducilcn 9o atnoecmacics

Knuth, .., and rFloyd, =x. "Note on Avoiding ‘zo to’
Statements, ' Computrr Science Tech. Report, Stanford,

19%76.

REFERENCES (cont'd,)

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

(24]

Lewis, F.D, '"Decision Problems for Complexity Classes of
Recursive Functions," Proc, 2nd Ann, ACM Symp, on Theory
of Computing, Northampton, 1970,

McCreight, E.M,, and Meyer, A,R, ‘Classes of Computable
Punctions Defined by Bounds on Computations,'" ACM Symp,
on Theory of Computing, 1969, 79-88,

Meyer, A.R., and Ritchie, DM, "The Complexity of Loop
Programs,"” Proc. 22nd National ACM Conf,, 1967, 465-470.

Meyer, A,R,, and Ritchie, D.M, "A Classification of Func-
tions by Computational Complexity,” Proc., Hawaii Inter,.
Conf. on System Sciences, University of Hawaii Press, 1968,
17_190

Minsky, M, Computation, Finite and Infinite, Prentice-
Hall, 1967,

Ritchie, Robert W. '"Classes of Predictably Computable
Functions,” Trans, AMS 106 (1963), 139-173.

Robinson, R.M., "Primitive Recursive Functions,'" Bull,
ACM 53 (1947), 915-942,

Rogers, Hartley, Jr. Theory of Recursive Functions and
Effective Computability, New York, 1967,

Shepherdson, J,C., and Sturgis, H.E, '"Computability of
Recursive Functions,” JACM 10 (1963), 217-255,

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif

