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Abstract— Systolic online algorithms for the multiplication
of univariate polynomials and of multiple precision integers
are synthesised using a novel method based on the following
functional (or inductive) view: a systolic array is a head processor
followed by an identical tail array. The synthesis method consists
in first unfolding the functional expression of the target function
until the first four elements are separated, and then by projecting
the remaining list expression into the scalar space in order to
obtain the transition function of the individual processors. The
method is implemented as a set of rewrite rules in the Theorema
system, and it generates the description of the systolic arrays
in a completely automatic manner, starting from the functional
definitions of the arithmetic operations.

I. INTRODUCTION

The problem of integer multiplication on an online systolic
array was once a challenge problem in cellular automata [1],
[8], and its solution required a good deal of ingenuity. With
the advent of systolic computations and their applications in
digital circuit design (especially digital signal processing),
intensive research lead to various methods for the systematic
(and even automatic) design and synthesis methods of online
systolic arrays.

However, most of these methods (see a short survey below)
follow an iterative view of systolic arrays (and systolic com-
putations): the arrays (and the computations) are represented
as [multidimensional] matrices of a certain size (in fact many
methods only work for a fixed size). This leads to complex
operations over the multidimensional index space, and in fact
to many repetitions in the synthesis process.

In this paper we use a functional view (or inductive view):
an infinite systolic array is composed of a head processor and
an identical tail array. Similarly, functional programs for list
operations describe how to compute the head and the tail of the
result in function of the head and the tail of the argument. By
exploiting this similarity, we demonstrate on two case studies
(multiplication of univariate polynomials and multiplication of
multiple precision integers), that the synthesis problem can be
solved by [essentially] rewriting of the functional programs.

We use a simplified version of online arrays, in which the
output from the head processor towards the tail array consists
in a copy of the main input, except for the first 2 elements:
thus the tail array receives the second tail of the input. The
synthesis method is based on two main properties, which are
detected by equational reasoning based on the functional view
of the array and of the computed functions:

� The list function computed by the array has the property
that the 4-th tail of the result can be expressed recursively
using the same function applied to the 2-nd tail of the
input (and some other head and tail components which
are easy to synthesise).

� The scalar expressions (involving individual numeric
variables and functions upon them) describing the transi-
tion function of the head processor generate the list ex-
pressions (involving also list variables and list functions)
describing the function realised by the array according to
certain simple rewrite rules, which are also “reversible”.

These two facts lead to the following synthesis method:
� Unfold the list expression of the target list function

until it has the required property stated above. Unfolding
consists in extracting repetitively the scalar expression
of the head and the list expression of the tail, by using
the functional definitions of the list functions and a few
simple unfolding rules.

� Project the final list expression into the scalar space, by
using the “reversed” rules mentioned above, and thus
obtain the expression of the transition function.

This paper presents the principles used for synthesis in the
two case studies, however the development of a complete
method needs more experiments and also a continuation of the
theoretical investigation in order to possibly identify necessary
conditions upon the list functions which can be synthesised,
as well as other aspects – notably the termination problem,
which is not treated in this paper. However, we believe that
the case studies presented here already demonstrate the power
of the method and the interesting mathematical aspects of
the interplay between functional programming and systolic
computing.

The method works completely automatically and it is im-
plemented in the Theorema system (www.theorema.org) [2],
basically as a set of rewrite rules, together with a simula-
tor which allows the visualisation of concrete computations.
The Theorema system is a mathematical assistant developed
at RISC–Linz under the supervision of B. Buchberger, and
combines facilities for proving, solving, and computing for
the purpose of exploring mathematical theories and algorithms.
The system is currently implemented on top of the computer
algebra system Mathematica [17].

Related Work: Most of the design methods use the concept



usually referred to as space-time transformation methodology.
The work of many researchers like Quinton, Robert, Van
Dongen [12], [14], [13], Delosme and Ipsen [3], Nelis and
Deprettere [11] rely on the idea of this unifying approach. A
review of the main ideas involved in these systolic algorithm
synthesis methods is presented by Song in [15].
Many algorithms were already parallelised using the effi-
cient technique of time-space transformations; however, this
methodology also has some drawbacks.

The problem to solve should usually be formulated in the
form of uniform recurrence equations, and it is not always
easy to find such a recurrence equation. The uniformization
problem, that is to say the problem of transforming linear re-
currence equations into uniform recurrence equations, tackled
by Quinton and Dongen in [13], Fortes and Moldovan [5] and
others is not completely solved.

On the other hand, the time-space transformation method
depends heavily on finding an affine timing function. The
problem with finding affine timing function is that one needs
to solve a system of linear recurrence equations, which is
generally difficult and also possible only for systems having
certain properties.

Although our method is less general in the sense that it
generates a systolic array with a certain property, however
making use of this property we get a more powerful design
method, that does not have to investigate the whole index space
of the problem, but considers only the relation between some
computational steps.

Other attempts have been also made to overcome the draw-
backs of the space-time transformation method. A remarkable
alternate approach represents the methods based on viewing
systolic design as program design. The work of Gribomont
and Dongen [6] is based on the concept of generic systolic
array, which means that it also makes use of the idea that the
architecture of the systolic array is already chosen before the
design process. However this method represents a program-
oriented methodology, and for the same reason it has a low
degree of automation. Our method is completely automatic.

Other methods, like that proposed by Kazerouni, Rajan
and Shyamasundar in [9], [10] also try to avoid the tedious
work with solving linear equation systems in order to find an
adequate timing function. This method also generates solutions
suitable for existing target architectures rather than design-
ing new ones. The method essentially consist of mapping
normalised linear recurrence equations, a subclass of linear
recurrence equations, - which properly includes the class of
uniform recurrence equations - onto a generic architecture
called basic systolic architecture and then applying correctness
preserving transformations to adopt this intermediate solution
onto specific target architectures.

The drawback of this method is that it cannot work with
parametrised problems: the size of the target architecture has
to be fixed in advance.

For additional details one may also see the short survey
about the systolic array design methods available in the
literature [16].

II. FORMAL BACKGROUND

This section introduces the notations used in this paper for
the well known notions of lists, programs, and systolic arrays.

A. Scalars and lists

Both the systolic arrays and the functional programs which
we consider in this paper act upon lists (finite or infinite) of
fixed-size objects.

A fixed-size object is an object of a scalar type: A scalar
type is an elementary type or a fixed-size tuple of scalar types.
An elementary type (such as a finite set of symbols or a
fixed-precision number type) can have only a finite number
of instantiations. A fixed-size object will be called a scalar.

A list type over a certain scalar type characterises all the
tuples (finite and infinite) of objects of that scalar type. A list
is an object of a certain list type.

For any list � � ���� ��� � � � � ��� � � ��� we denote
by � �� � � �� the head of it, and by � �� � �
���� � � � � ��� � � �� the tail of it. The ��� tail of � : ���� � �
���� ����� � � � � ��� � � �� is obtained by iterating � � times and
removes the first � elements of � . By convention, ���� � � ��

and note that �� � � . The ��� head of � is ���� � �
� ����� �� and gives the �� � ���� element of � (thus �� �
�).

The concatenation of two lists is denoted by “�”:

���� ��� � � � � ��� �� � ���� ��� � � � � ��� ��� ��� � � ���

The first operand must be finite, but the second may also be
infinite. We also use “

�

� ” for prepending a scalar to a (finite
or infinite) list:

�
�

� � � ������

Since in practice one actually uses only finite lists, we
consider here only lists having a finite number of “interesting”
values. Namely, we use (as in the theory of cellular automata)
a special quiescent symbol “�” (which belongs to all scalar
types) in order to encode the “blank” values. Thus, an infinite
list will start to have only blank values after a certain finite
number of elements. Furthermore we will not allow “�” to be
interspersed among other elements, however we allow a list
to start with a certain number of blanks.

B. Functional programs

Functions from scalar types to scalar types will be called
scalar functions. Informally, scalar functions can be computed
in constant time.

Functions from list types to list types will be called list
functions. We will consider only list functions acting upon
infinite lists and producing infinite lists.

We will also assume that our scalar functions produce
blanks when applied to blanks, and that our list functions are
producing lists of blanks when applied to lists of blanks.

A program describing a scalar function 	 is an expres-
sion involving elementary scalar functions (considered as
“known”):

	 ��� � 
�



A program describing a list function � must indicate how to
compute the head and the tail of the result, by starting from
the tail and the head of the argument:

� ��
�

� � � � 

�

� � �

where 
 is a scalar expression and � is a list expression in-
volving already known functions. Furthermore 
 may contain
�, and � may contain �, � , and subexpressions of the form
� ����� ��.

Note that the syntactic restriction to one argument (and
one value) is not essential. Indeed, a multiple scalar can be
assigned a new scalar type, and a multiple list can be seen as
single list by transposition:

��
�

� �� �
�

� 
� � � ��� � ��� �� � � ���
�

� ���
� � � ��� �

Therefore functions with mixed-type (scalar and list) argu-
ment and/or mixed-type value reduce to functions taking one
scalar and one list and producing one scalar and one list. The
most general case is:

� ��
�

� �� �� � �

�

� � � 
���

where 
, � , and 
� may also contain �.

C. Online systolic arrays

Informally, we view an online systolic array as a device
consisting from one head-processor connected to a tail-array,
which is an identical systolic array (fig. 1).
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Fig. 1. Informal view of a systolic array

The array receives as input a list � � ���� ��� � � �� and
outputs a list 
 � ���� ��� � � ��, while the list of the values of
the internal state of the head-processor is � � ���� ��� � � ��.
The communication with the tail-array is substantiated in the
lists � � � ����� �

�

�� � � �� and 
 � � ����� �
�

�� � � ��� � and � �, as
well as 
 and 
 � are built upon the same scalar types.

At each discrete time step � (starting at 0), the array receives
a value �� and outputs a value �� through the head-processor.
Additionally the head processor outputs the value ��� and
receives the value ��� (which are the input and the output,
respectively, of the tail array), and updates its internal state
�� into ����. The update is performed by a scalar function
	 (identical for all the processors), and uses the currently
received values �� and ���, as well as the current value of ��.
The outputs �� and ��� are parts of the same current value ��,
obtained by the projection functions �� and ��. More exactly:

���� � 	 ���� ��� �
�

��� (1)

�� � ������� ��� � �������

In more practical terms, the internal state is composed by a
certain number of internal variables. We further convene that
some of these variables represent the input � , some represent
the output 
 , and some represent the output � � towards
the tail-array. The transition function 	 will be represented
as a parallel assignment for all variables except the ones
corresponding to � . Note that the array is completely specified
by the list of these variables, their association to ��
�� �, and
the assignment describing 	 .

The initial configuration of the array consists in blanks
(as values of the internal states of all the processors), and
we convene that 	 must have the property 	 ��� �� �� � ��
Therefore �� � �� � ��� � �� thus only � �
 � and � ��� contain
“interesting” values. We will say that the array computes the
function � �� � � � �
 �� Usually, the infinite lists representing
the input and the output will have “interesting” values only
for a finite number of elements at the beginning, and the rest
will be blanks.

The synthesis problem consists in finding 	 when � is
known. When � is given as a recursive functional program,
we will show in the sequel that 	 can be obtained by syntactic
transformations of this program.

III. ARRAYS WITH DELAYED INPUT PASS-THROUGH

A. Definition

In this paper we consider a special type of online systolic
arrays, whose behaviour is even more specific: the input � � of
the tail-array is ���� � for some fixed �, thus the computation
of � �� � will use � ����� �� computed by the tail-array. The
data flow is illustrated in fig. 2 for the case � � �.

This behaviour can be realized by including into the internal
state a “state variable” � with values from �0 = $, 1, 2, . . . ,
k+2�, and the following assignments for � and ��:

� 	�

�
�� 
� � � � �
 � � � � �
�� �� 
� � �� � ��� � � � � �

�� 	�

�
�� 
� � � �

�� 
� � � �
When � is ���, then the first “interesting” value computed

by the tail array becomes available.

B. The direct problem

We will derive now the general recursive equation for the
function � computed by such an array. Let us denote by
� the list function which gives � ��� from � : �� � ��.
(In the sequel we will sometimes omit the brackets denoting
function application, when this does not lead to ambiguities.)
Furthermore let us consider the list extensions of the scalar
functions characterising the array:

�	 ��
�

� �� �
�

� ���
�

� � � � 	 ��� �� ��
�

� �	 ��� ��� ��

����
�

� � � � �����
�

� ���� ��

����
�

� � � � �����
�

� �� �� ��

Note that they all commute with � :

�	 ���� ��� �� � � � �	 ��� ��� ��
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Fig. 2. Data flow in an array with input pass-through delayed by 2.

����� � � ����� �� ����� � � ����� ��

and also that (1) extends to the list equations:

�� � �	 ����� 
 �� � �	 ����� ���
���

where �� denotes the list of internal states of the first processor
of the tail array.

In order to simplify the presentation, we will develop the
expressions for the case � � � (but the generalisation is
straightforward).

Clearly we need to express the function �, and then � �
���. We know that �� � ��, whose first 4 values are:
�� � 	 ������ ����� ��� � � �� �, thus they do not use any result
from the tail array. The behaviour after this moment allows
the derivation of a recursive expression for ���:

���� � ��� � �	 ����� ���� �����
���

On the right-hand side, ��� � ���� , because �� � �� .
Also: ������ � �����

� (commutativity of �� with � ), and
���

� � ����
� (the tail–array computes the same function

�), and ���
� � ��� (input pass–through). Thus one obtains

the characteristic equation for �:

���� � �	 ����� ����� ������ ��

Additionally one may use � � ��� in order to transform
this into:

���� � �� �	 ����� ����� ���� �� (2)

which shows that a function � that can be unfolded until
the expression of ��� contains ��� is a good candidate for
implementation on an online systolic array.

C. Expressions vs. functions

If 
 is a scalar expression with variables from the internal
state, then the list of values of 
 depends on � . We will
say that 
 realizes the function �� , and also that it realizes
the list �� �� �. For instance, the expression � realizes the list
���� � � ��� �� � � � � � � �� � � �� � � �� � � �� � � ��, and also
���� � � � .

Let 	 be a scalar function in two variables and �	 defined as
�	 ��

�

� �� �
�

� � � � 	 ��� ��
�

� �	 ��� � �. Then the expression
	 �
�� 
�� realizes the function �	 ����� ����. This relation
allows us to transform a scalar expression into its list function
and also the other way around, by recursive projection of the
list expressions into the scalar space.

Of particular interest are the head and tail functions �� and
�� mentioned in the previous section. They can be realized by
adding some suitable variables to the internal state.

The list having (almost) all elements equal to �� is realized
by a “static” variable �� having the assignment:

�� 	�

�
�� 
� � � �

��� 
� � �� �
.

Let us also consider the “transition” variables ��� ��� ��� ��
having the assignments:

�� � ��� �� � ��� �� � ��� �� � ��

In the expression of ���� , the subexpression ��� will be
realized by the expression �, and each ��� will be realized
by the expression �� (for � � � � �).

D. The inverse problem

The previous considerations allow us to construct the sys-
tolic array in a systematic manner by transformations and
projections of the target function � .

First one unfolds the recursive expression of � until one
obtains an expression � for ���� which contains ���� .
(The unfolding principles are common knowledge in the
program transformation theory and are illustrated in the next
section.) By unfolding one also obtains the scalar expressions
for the first 4 values of �� , which can be directly used in
the expression of the transition function 	 .

Second one adds the necessary static and transition variables
to the internal state, according to the occurrences of �� and
�� in the expression � .

Third one projects the expression � into the scalar space,
in order to obtain the assignment for �:

� The subexpression ���� is projected into ��, because it
corresponds to the output of the tail-array.

� ��� is projected to �, because it is the current input of
the array.

� �� and �� are projected to the corresponding static and
transit variables.

� Recursively, each subexpression of the form �	 ���� ��� is
projected into the corresponding 	 �
�� 
��.



The expressions corresponding to the first 4 values of the
output contain only scalar functions and subexpressions of the
form ���� �, which are projected into the variables ��, with the
exception that if ���� � occurs in the expression of ���� �� ��,
then it is projected into �.

All these transformations are readily specified as rewrite
rules and are used in order to generate the online array in a
completely automatic manner, as illustrated in the examples
below.

Of course the automatic generation succeeds only if the
unfolded version of � has the appropriate shape and contains
only functions which are also “projectable”, but this is ab-
solutely natural, since we cannot expect that every recursive
function is realizable by an online array.

E. Unfolding

The purpose of unfolding a list expression � is to transform
it into 


�

� � �, where 
 is a scalar expression representing
the first element of the list.

We implemented an unfolding function � as a set of rewrite
rules:

� Scalar expressions, as well as already unfolded ones
remain unchanged:

� �
� � 
� (3)

� �

�

� � � � 

�

� � � (4)

� A list variable or the tail of it is further decomposed into
head and tail:

� �� � � ���� �
�

� ���� �� (5)

� ����� �� � ���� �
�

� ������ �� (6)

� If � is a list function, then one first unfolds the [list]
argument, and then applies the recursive definition of � :

� �� �� �� � � �� �� �� ���� (7)

� �� �

�

� � �� � 
� �

� � �� (8)

where 
� � � 
� and � � are the corresponding instances of
the expressions occurring in the definition of � . (Similar
rules apply to mixed scalar–list functions.)

IV. EXAMPLES

A. Polynomial multiplication

We demonstrate now the method by synthesising the online
multiplier of univariate polynomials.

An univariate polynomial (like e. g. ����������
��� � �) is

represented by the list of its coefficients (lowest degree first):
! � ����

�

�	�, with an infinite number of redundant zeroes at
the end. The type of the coefficients is not important, we just
assume it is some scalar type having ring properties.

We also assume as known the scalar operations “
� �

� ” and
“

� �

� ” in the ring of the coefficients, as well as the following
functional definitions of the operations on polynomials:

� addition of a scalar with a polynomial:

�
�

� �"
�

� #� � ��
� �

� "�
�

� #

� addition of polynomials:

��
�

� !� � �"
�

� #� � ��
� �

� "�
�

� �!�#�

� multiplication of a scalar with a polynomial:

�
�

� �"
�

� #� � ��
� �

� "�
�

� ��
�

� #�

� multiplication of polynomials: ��
�

� !� � �"
�

� #� �

��
� �

� "�
�

� ���
�

� #� � �"
�

� !� � ��
�

� �! �#���

Using these definitions and the unfolding rules presented
previously, we unfold the expression “! � #”, extracting
repetitively the scalar expression representing the first element
of the result, until the list expression representing the tail of
the result contains ���!�����#�. (For brevity we denote ���!�
by ��, ���!� by !�, and similarly for #.)

! �# �

� ���
�

� !�� � �"�
�

� #��

� ���
� �

� "����

���
��

��
�

� #�

"�
�

� !�

�
�

� �!� �#��

� ���
� �

� "����

���
��

��
�

� �"�
�

� #��

"�
�

� ���
�

� !��

�
�

� !� �#�

� ���
� �

� "�� ��
� �

� "�
� �

� "�
� �

� �����

���
��

��
�

� #�

"�
�

� !�

!� �#�

� � � �

� � ��
� �

� "��

��
� �

� "�
� �

� "�
� �

� ���

��
� �

� "�
� �

� ��
� �

� "�
� �

� ��
� �

� "���

��
� �

� "�
� �

� ��
� �

� "�
� �

� ��
� �

� "�
� �

� ��
� �

� "� ��

� ����
�

� #�� � �"�
�

� !���

����
�

� #�� � �"�
�

� !�� � �!� �#���

Thus we obtain an expression of the form required by (2):

���! �#� � �

��������
�������

���!�
�

� ���#�

���#�
�

� ���!�

���!�
�

� ���#�

���#�
�

� ���!�
���!� � ���#�

as well as the first 4 values of the output.
Let us denote the input by �� and �" and the corresponding

static and transition variables by ���� �"�� ���� �"�� According



to the rules presented in the previous section, the expression
on the right–hand side is projected into:

����
� �

� �"�
� �

� ��"�
� �

� ���
� �

�
� �

� ����
� �

� �"��
� �

� ��"�
� �

� ����
� �

� ��

The first � elements are projected into:

� ��
� �

� �"�

�"�
� �

� ��
� �

� ���
� �

� �"�

���
� �

� �"�
� �

� �"�
� �

� ��
� �

� ���
� �

� �"�

�"�
� �

� ���
� �

� ���
� �

� �"�
� �

� �"�
� �

� ��
� �

� ���
� �

� �" �

Thus each processor of the array has the input variables
��� �"� and the output variable � and communicates with the
next processor through the variables ���� �"�� and ��. The
internal variables are �� ���� �"�� ���� �"�� ���� �"�, and �,
from which � is the output variable. The transition function
is described by the assignments presented in the previous
section for the variables �� ���� �"�� ���� �"�� ��

�� �"�, and by
the following assignment for �:�������������������
������������������

� � 
� � � � � ��

��
� �

� �" � 
� � � � �� ��

�"�
� �

� ��
� �

� ���
� �

� �" � 
� � � �

���
� �

� �"�
� �

�
� �

� �"�
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B. Integer multiplication

The multiplication of two numbers is similar to the polyno-
mial multiplication problem, the only significant difference is
the carry propagation.

Let $ be the radix for integer representation ($ % �). We
consider that integer numbers are represented by the list of
their digits, least significant digits first:

���� ��� ��� � � �� 
��
������ �� � ��$ � ��$
� � � � �

We will use a scalar type for digits (positive integers less
than $) and the corresponding list type for arbitrary precision
integers, but also a scalar type for large integers – but not
arbitrary large. The later is determined by the fixed number
of operations performed by the transition function, and for
sufficiently large $ will be equivalent to three digits. Unless
otherwise specified, in the sequel we will use “scalar” for large
integer.

On large integers we define the operation “&” of carry
decomposition

&��� � �� ��� $� 	
�

$

��

which generates a pair consisting in the least significant digit
of � and the “carry”. Note that the carry is not necessarily a
digit.

We consider as known the scalar operations “
� �

� ” and
“

� �

� ” acting on large integers (thus also on digits).

The operation “
�

� ” of addition between a scalar and a list
is defined as:
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Here the construct “���” contains a local assignment and a
final expression which is the result of the construct. This
construct is necessary in order to avoid repeated computations
of the same expression, in particular when the result occurs
both in the head and in the tail of the resulting list (as above).
The projection of this construct (when translating from list
expressions into scalar expressions) is performed by inserting
(if necessary) the local variables into the internal state and by
adding the respective assignment to the transition function, at
the time step corresponding to the stage of decomposition of
the main function (see the example below).

In order to treat carry propagation in a functional way, we
use the operation “

�

� ” (prepend with carry addition):

�
�

�! � ()����� '� � &���� �
�

� �'
�

� !��

Obviously
�

�

� ! � �
�

�!

when � is a digit, and also:
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The operations with lists are defined by:
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and note that:
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Similarly to what happened by polynomial multiplication,
we unfold the expression of the multiplication:
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which gives the expression for the first value of the output as �,
while the tail of the output is further unfolded and transformed
using the properties of “

�

� ”:
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which gives the expression of the second value of the input
as � and the second tail of the output. The later is further
transformed in a similar manner into:
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and finally:
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gives the expression of the fourth value of the output and the
list expression for ���! �#� becomes of the same form as in
(2).

We need to use the same variables as in the case of
polynomial multiplication, but also the additional variable '

for the carry. The assignments are again all the same, with the
exception of the assignment for �, which is replaced by a new

assignment for ��� '�:
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The last expression (having 6 terms of 2 digits) indicates that
3 digits suffice as the size of a large integer, if $ % �. Thus
we have also determined this scalar type.

V. CONCLUSIONS AND FURTHER WORK

The similarity between the functional (or inductive) view of
systolic arrays and the shape of functional programs, combined
with the power of rewriting logic, leads to an effective,
efficient and elegant method for the synthesis of systolic online
multipliers.

The method is implemented in the Theorema system and
generates both a polynomial multiplier and an integer multi-
plier in a completely automatic manner.

Although these two case studies do not reveal all the
practical and theoretical aspects of the method (in particular:
the termination problem, and the characterisation of the class
of functions which are realizable in this manner), the results
of the present investigation offer a good basis and motivation
for continuing the functional–based study of the systolic
algorithms.

ACKNOWLEDGEMENTS

The Theorema system is supported by FWF (Austrian Na-
tional Science Foundation) – SFB project F1302. The research
presented here is also part of the project on program verifica-
tion and synthesis, which is supported by BMBWK (Austrian
Ministry of Education, Science, and Culture), BMWA (Aus-
trian Ministry of Economy and Work) and by MEC (Romanian
Ministry of Education and Research) in the frame of the
Institute e-Austria Timisoara. The second author was partially
supported by a CEEPUS scholarship.

REFERENCES

[1] A. J. Atrubin. A one-dimensional real-time iterative multiplier. IEEE
Trans. on Electronic Computers, EC-14(3):394–399, Oct 1965.
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